
Lecture 13

• Connectedness in graphs

• Spanning trees in graphs

• Finding a minimal spanning tree

• Time costs of graph problems and NP-completeness

• Finding a minimal spanning tree: Prim’s and Kruskal’s algorithms

• Intro to disjoint subsets and union/find

Reading: Weiss, Ch. 9, Ch 8
Page 1 of 29
CSE 100, UCSD: LEC 13

Connectedness of graphs

• Some definitions:

• An undirected graph is connected if

• For every vertex v in the graph, there is a path from v to every other vertex

• A directed graph is strongly connected if

• For every vertex v in the graph, there is a path from v to every other vertex

• A directed graph is weakly connected if

• The graph is not strongly connected, but the underlying undirected graph (i.e.,
considering all edges as undirected) is connected

• A graph is completely connected if for every pair of distinct vertices v1, v2, there is an
edge from v1 to v2
Page 2 of 29
CSE 100, UCSD: LEC 13

Connected graphs: an example

• Consider this undirected graph:

• Is it connected?

• Is it completely connected?

V0 V1

V4

V6V5

V2 V3
Page 3 of 29
CSE 100, UCSD: LEC 13

Strongly/weakly connected graphs: an example

• Consider this directed graph:

• Is it strongly connected?

• Is it weakly connected?

• Is it completely connected?

V0 V1

V4

V6V5

V2 V3
Page 4 of 29
CSE 100, UCSD: LEC 13

Spanning trees

• We will consider spanning trees for undirected graphs

• A spanning tree of an undirected graph G is an undirected graph that...

• contains all the vertices of G

• contains only edges of G

• has no cycles

• is connected

• So, only connected graphs have spanning trees

• A spanning tree is called “spanning” because it connects all the graph’s vertices

• A spanning tree is called a “tree” because it has no cycles (recall the definition of cycle
for undirected graphs)

• What is the root of the spanning tree?

• you could pick any vertex as the root; the vertices adjacent to that one are then the
children of the root; etc.
Page 5 of 29
CSE 100, UCSD: LEC 13

Spanning trees: examples

• Consider this undirected graph G:

V0 V1

V4

V6V5

V2 V3
Page 6 of 29
CSE 100, UCSD: LEC 13

Spanning tree? Ex. 1

• Is this graph a spanning tree of G?

V0 V1

V4

V6V5

V2 V3
Page 7 of 29
CSE 100, UCSD: LEC 13

Spanning tree? Ex. 2

• Is this graph a spanning tree of G?

V0 V1

V4

V6V5

V2 V3
Page 8 of 29
CSE 100, UCSD: LEC 13

Spanning tree? Ex. 3

• Is this graph a spanning tree of G?

V0 V1

V4

V6V5

V2 V3
Page 9 of 29
CSE 100, UCSD: LEC 13

Spanning tree? Ex. 4

• Is this graph a spanning tree of G?

V0 V1

V4

V6V5

V2 V3
Page 10 of 29
CSE 100, UCSD: LEC 13

Multiple spanning trees

• In general a graph can have more than one spanning tree. All these are spanning trees
of that graph G (and there are more):

• Note: The spanning tree for a graph with N vertices always has N-1 edges (like a tree!)

V0 V1

V4

V6V5

V2 V3

V0 V1

V4

V6V5

V2 V3

V0 V1

V4

V6V5

V2 V3

V0 V1

V4

V6V5

V2 V3
Page 11 of 29
CSE 100, UCSD: LEC 13

Finding a spanning tree in an unweighted graph

• A spanning tree in an unweighted graph is easy to construct...

• Use the basic unweighted single-source shortest-path algorithm (breadth-first search):

• (That algorithm is designed for directed graphs. Convert an undirected graph to a
directed one by treating each undirected edge as two antiparallel directed edges)

• Pick any vertex as the start vertex s. (Think of it as the root of the spanning tree.)

• When done, the “prev” indices in the table will give, for each vertex in the spanning
tree, the index of its parent

• This represents a spanning tree because (if the graph is connected) each vertex except
the start vertex will have exactly one parent, and each vertex appears in the table

• So, a spanning tree can be found in an unweighted graph in time O(|V| + |E|)

• ...What about weighted graphs?
Page 12 of 29
CSE 100, UCSD: LEC 13

Minimum spanning trees in a weighted graph

• A single graph can have many different spanning trees

• They all must have the same number of edges, but if it is a weighted graph, they may
differ in the total weight of their edges

• Of all spanning trees in a weighted graph, one with the least total weight is a minimum
spanning tree (MST)

• It can be useful to find a minimum spanning tree for a graph: this is the least-cost
version of the graph that is still connected, i.e. that has a path between every pair of
vertices

• How to do it?
Page 13 of 29
CSE 100, UCSD: LEC 13

Finding a minimum spanning tree: Prim’s algorithm

• As you know, minimum weight paths from a start vertex can be found using Djikstra’s
algorithm

• At each stage, Djikstra’s algorithm extends the best path from the start vertex (priority
queue ordered by total path cost) by adding edges to it

• To build a minimum spanning tree, you can modify Djikstra’s algorithm slightly to get
Prim’s algorithm

• At each stage, Prim’s algorithm adds the edge that has the least cost from any vertex in
the spanning tree being built so far (priority queue ordered by single edge cost)

• Like Djikstra’s algorithm, Prim’s algorithm has worst-case time cost O(|E| log |V|)

• We will look at another algorithm: Kruskal’s algorithm, which also is a simple greedy
algorithm

• Kruskal’s has the same big-O worst case time cost as Prim’s, but in practice it can be
made to run faster than Prim’s, if efficient supporting data structures are used
Page 14 of 29
CSE 100, UCSD: LEC 13

A note about graph algorithm time costs

• So far we have mentioned these graph problems:

• Find shortest path in unweighted graphs

• Solved by basic breadth-first search: O(|V|+|E|) worst case

• Find shortest path in weighted graphs

• Solved by Dijkstra’s algorithm: O(|E| log|V|) worst case

• Find minimum-cost spanning tree in weighted graphs

• Solved by Prim’s or Kruskal’s algorithm: O(|E| log|V|) worst case

• The “greedy” algorithms used for solving these problems have polynomial time cost
functions in the worst case

• since |E|<=|V|2, Dijkstra’s, Prim’s and Kruskal’s algorithms are O(|V|3)

• As a result, these problems can be solved in a reasonable amount of time, even for large
graphs; they are considered to be ‘tractable’ problems

• However, many graph problems do not have any known polynomial time solutions...!
Page 15 of 29
CSE 100, UCSD: LEC 13

Intractable graph problems

• For many interesting graph problems, the best known algorithms to solve them have
exponential time costs O(2|V|)

• In the worst case, these intractable problems simply cannot be solved exactly, except for
quite small graphs (say, 50 or at most 100 vertices, even on the world’s fastest
computers); the best known algorithms for these problems take too long to run

• For these problems, simple greedy best-first algorithms do not work... Essentially the
best approach known for solving them exactly is basically to try all the possibilities, and
there can be exponentially many possibilities to try

• These intractable graph problems are often members of the class called “NP-complete”
problems, which includes many non-graph problems as well...
Page 16 of 29
CSE 100, UCSD: LEC 13

NP-complete problems

• A problem that can be exactly solved in time that is a polynomial function of the size of
the problem is in the class “P” (for Polynomial time)

• A problem whose solution can be checked for correctness in time that is a polynomial
function of the size of the problem is in the class “NP” (for Nondeterministic
Polynomial time)

• A “nondeterministic” computer could guess the solution to the problem, and then
check if it is a solution in polynomial time, and never give a wrong answer

• Note that the class P is contained in NP

• A problem that is in NP, and is as hard as any problem in NP (an algorithm for it is also
essentially an algorithm for any NP problem) is NP-complete

• For all the NP-complete problems, the best known algorithms take exponential time in
the worst case...

• ...However, nobody has yet been able to prove that there are no polynomial time
algorithms for them! If you find one, you will be instantly very very famous

• What are some of the NP-complete graph problems?...
Page 17 of 29
CSE 100, UCSD: LEC 13

Examples of intractable graph problems

• Here are a few examples of the many graph problems that are NP-complete, and so
seem to require O(2|V|) time worst-case:

• “Hamiltonian circuit”: Given a graph, say whether the graph has a cycle that
includes all the vertices of the graph exactly once.

• “Travelling salesman”: Given a weighted graph, find the Hamiltonian circuit that
has the smallest total cost.

• “Longest path”: Given a graph and two vertices s and d, find the longest path from s
to d that doesn’t contain any cycles. (But note that “shortest path” is solvable in
polynomial time!)

• “Shortest total path length spanning tree”: Given a graph, find the spanning tree that
has the smallest total path lengths between every pair of vertices

• “Steiner tree”: Given a graph (V,E) and a subset S of V, find the minimum-cost
spanning tree that spans every vertex in S (and may also span some other vertices)
(but note that if S=V, the problem is solvable in polynomial time!)
Page 18 of 29
CSE 100, UCSD: LEC 13

The problem with intractable problems

• If a problem is NP-complete, the best known algorithms to solve it requires
exponentially many steps in the worst case

• Simple greedy algorithms do not work for these problems

• backtracking, or some other way of looking at, and checking, possible alternatives
is usually required...

• ... and there are exponentially many alternatives to check!

• For example:

• The problem has N boolean variables, and you need to check the 2N possible
different assignments of truth values to them

• The problem has N items, and you need to check each of the 2N different subsets
of those items

• Because of the exponential time costs of the best known solutions to these problems,
you have to either...

• restrict yourself to small instances of the problems, or

• try to find approximate algorithms that are fast, but not always exactly correct
Page 19 of 29
CSE 100, UCSD: LEC 13

Finding a minimum spanning tree: Kruskal’s algorithm

• Prim’s algorithm starts with a single vertex, and grows it by adding edges until the MST
is built

• Kruskal’s algorithm starts with a forest of single-node trees (one for each vertex in the
graph) and joins them together by adding edges until the MST is built
Page 20 of 29
CSE 100, UCSD: LEC 13

Kruskal’s algorithm

• Pseudocode for Kruskal’s MST algorithm, on a weighted undirected graph G = (V,E):

1. Create a forest of one-node trees, one for each vertex in V

2. Create a priority queue containing all the edges in E, ordered by edge weight

3. While fewer than |V|-1 edges have been added to the forest:

 3a. Delete the smallest-weight edge, (vi, vj), from the priority queue.

 3b. If vi and vj already belong to the same tree in the forest, go to 3a.
 (Adding this edge would create a cycle.)

 3c. Else, vi and vj are in different trees. Join those vertices with that edge (this
 joins their trees, reducing the number of trees in the forest by 1), and continue.

• When run on a connected graph, the forest will finally contain one tree, which is a
minimum spanning tree
Page 21 of 29
CSE 100, UCSD: LEC 13

Kruskal’s algorithm: input

• Run Kruskal’s algorithm on this weighted undirected graph:

V0 V1

V4

V6V5

V2 V31

3

2

3

7
9 2

20

30
Page 22 of 29
CSE 100, UCSD: LEC 13

Kruskal’s algorithm: output

• Show the result here:

• What is the total cost of this spanning tree?

• Is there another spanning tree with lower cost? With equal cost?

V0 V1

V4

V6V5

V2 V3
Page 23 of 29
CSE 100, UCSD: LEC 13

Implementing Kruskal’s algorithm

• To make Kruskal’s algorithm efficient, all steps in the algorithm must be implemented
efficiently:

• initializing the priority queue must be efficient (2)

• delete-min in the priority queue must be efficient (3a)

• testing whether two vertices are already in the same tree in the forest must be
efficient (3b)

• joining two trees in the forest must be efficient (3c)

• Using a binary heap to implement a priority queue leads to efficient steps (2) and (3a):

• building the heap: O(|E|)

• each delete-min operation: O(log|E|)

• What is an efficient way to do steps 3b and 3c?

• This requires looking at doing efficient computations with representations of
equivalence classes...
Page 24 of 29
CSE 100, UCSD: LEC 13

Equivalence relations

• An equivalence relation E(x,y) over a domain S is a boolean function that satisfies these
properties for every x,y,z in S:

• E(x,x) is true (reflexivity)

• If E(x,y) is true, then E(y,x) is true (symmetry)

• If E(x,y) and E(y,z) are true, then E(x,z) is true (transitivity)

• For example: Given an undirected graph G. Suppose for any vertices v1, v2 in G,
E(v1, v2) is true if and only if v1 is connected to v2 (i.e., there is a path from v1 to v2).
Then E() is an equivalence relation over the vertices of G:

• Every vertex is connected to itself (reflexivity)

• If v1 is connected to v2, then v2 is connected to v1 (it’s an undirected graph)

• If v1 is connected to v2, and v2 is connected to v3, then v1 is connected to v3

• For another example: Suppose E(x,y) is true if and only if x, y are integers and x=y.
Then E() is an equivalence relation over the integers
Page 25 of 29
CSE 100, UCSD: LEC 13

Equivalence classes

• An equivalence relation E() over a set S defines a system of equivalence classes
within S

• The equivalence class of some element x of S is that set of all y in S such that E(x,y)
is true

• Note that every equivalence class defined this way is a subset of S

• The equivalence classes are disjoint subsets: no element of S is in two different
equivalence classes

• The equivalence classes are exhaustive: every element of S is in some equivalence
class

• For example: Given an undirected graph G. Suppose for any vertices v1, v2 in G,
E(v1, v2) is true if and only if v1 is connected to v2. Then the equivalence classes
defined by E() are the connected components of G

• For another example: Suppose E(x,y) is true if and only if x, y are integers and x=y.
Then the equivalence classes defined by E() are all singleton sets: each integer is its
own equivalence class
Page 26 of 29
CSE 100, UCSD: LEC 13

Computing with equivalence classes

• A common problem is this:

• You are given a set S of items

• You are given some pairs of items in S that satisfy some equivalence relation E()

• Given that information, you want to do things like

• Determine how many equivalence classes there are in S, as defined by the pairs
of items satisfying E() that you have seen so far

• Given an item in S, determine which equivalence class is it in

• Given two items in S, determine whether they are in the same equivalence class

• Given a new pair of items in S that satisfy E(), update the system of equivalence
classes appropriately
Page 27 of 29
CSE 100, UCSD: LEC 13

Computing equivalence classes: an example

• You are manipulating equivalence classes when building a minimum spanning tree
using Kruskal’s algorithm

• The initial set of items is the set of vertices in the graph

• Initially, each vertex is its own equivalence class of one

• The algorithm considers edges in order of increasing cost. For each edge:

• It is accepted if the vertices it connects are not in the same equivalence class

• If it is accepted, the equivalence classes containing the vertices it connects are
joined into one equivalence class

• When |V|-1 edges have been accepted, the algorithm terminates

• The edges that have been accepted are the edges of the minimum spanning tree

• These equivalence-class computations can be done very efficiently using a “disjoint
subset”, “union/find” structure. More next time...
Page 28 of 29
CSE 100, UCSD: LEC 13

Next time

• An application of disjoint subsets

• Disjoint subset structures and union/find algorithms

• Union-by-size and union-by-height

• Find with path compression

• Amortized cost analysis

Reading: Weiss, Ch. 8
Page 29 of 29
CSE 100, UCSD: LEC 13

	Lecture 13
	• Connectedness in graphs
	• Spanning trees in graphs
	• Finding a minimal spanning tree
	• Time costs of graph problems and NP-completeness
	• Finding a minimal spanning tree: Prim’s and Kruskal’s algorithms
	• Intro to disjoint subsets and union/find Reading: Weiss, Ch. 9, Ch 8

	Connectedness of graphs
	• Some definitions:
	• An undirected graph is connected if
	• For every vertex v in the graph, there is a path from v to every other vertex

	• A directed graph is strongly connected if
	• For every vertex v in the graph, there is a path from v to every other vertex

	• A directed graph is weakly connected if
	• The graph is not strongly connected, but the underlying undirected graph (i.e., considering all edges as undirected) is connected

	• A graph is completely connected if for every pair of distinct vertices v1, v2, there is an edge from v1 to v2

	Connected graphs: an example
	• Consider this undirected graph:
	• Is it connected?
	• Is it completely connected?

	Strongly/weakly connected graphs: an example
	• Consider this directed graph:
	• Is it strongly connected?
	• Is it weakly connected?
	• Is it completely connected?

	Spanning trees
	• We will consider spanning trees for undirected graphs
	• A spanning tree of an undirected graph G is an undirected graph that...
	• contains all the vertices of G
	• contains only edges of G
	• has no cycles
	• is connected

	• So, only connected graphs have spanning trees
	• A spanning tree is called “spanning” because it connects all the graph’s vertices
	• A spanning tree is called a “tree” because it has no cycles (recall the definition of cycle for undirected graphs)
	• What is the root of the spanning tree?
	• you could pick any vertex as the root; the vertices adjacent to that one are then the children of the root; etc.

	Spanning trees: examples
	• Consider this undirected graph G:

	Spanning tree? Ex. 1
	• Is this graph a spanning tree of G?

	Spanning tree? Ex. 2
	• Is this graph a spanning tree of G?

	Spanning tree? Ex. 3
	• Is this graph a spanning tree of G?

	Spanning tree? Ex. 4
	• Is this graph a spanning tree of G?

	Multiple spanning trees
	• In general a graph can have more than one spanning tree. All these are spanning trees of that graph G (and there are more):
	• Note: The spanning tree for a graph with N vertices always has N-1 edges (like a tree!)

	Finding a spanning tree in an unweighted graph
	• A spanning tree in an unweighted graph is easy to construct...
	• Use the basic unweighted single-source shortest-path algorithm (breadth-first search):
	• (That algorithm is designed for directed graphs. Convert an undirected graph to a directed one by treating each undirected edge as two antiparallel directed edges)

	• Pick any vertex as the start vertex s. (Think of it as the root of the spanning tree.)
	• When done, the “prev” indices in the table will give, for each vertex in the spanning tree, the index of its parent
	• This represents a spanning tree because (if the graph is connected) each vertex except the start vertex will have exactly one parent, and each vertex appears in the table
	• So, a spanning tree can be found in an unweighted graph in time O(|V| + |E|)
	• ...What about weighted graphs?

	Minimum spanning trees in a weighted graph
	• A single graph can have many different spanning trees
	• They all must have the same number of edges, but if it is a weighted graph, they may differ in the total weight of their edges
	• Of all spanning trees in a weighted graph, one with the least total weight is a minimum spanning tree (MST)
	• It can be useful to find a minimum spanning tree for a graph: this is the least-cost version of the graph that is still connected, i.e. that has a path between every pair of vertices
	• How to do it?

	Finding a minimum spanning tree: Prim’s algorithm
	• As you know, minimum weight paths from a start vertex can be found using Djikstra’s algorithm
	• At each stage, Djikstra’s algorithm extends the best path from the start vertex (priority queue ordered by total path cost) by adding edges to it
	• To build a minimum spanning tree, you can modify Djikstra’s algorithm slightly to get Prim’s algorithm
	• At each stage, Prim’s algorithm adds the edge that has the least cost from any vertex in the spanning tree being built so far (priority queue ordered by single edge cost)
	• Like Djikstra’s algorithm, Prim’s algorithm has worst-case time cost O(|E| log |V|)
	• We will look at another algorithm: Kruskal’s algorithm, which also is a simple greedy algorithm
	• Kruskal’s has the same big-O worst case time cost as Prim’s, but in practice it can be made to run faster than Prim’s, if efficient supporting data structures are used

	A note about graph algorithm time costs
	• So far we have mentioned these graph problems:
	• Find shortest path in unweighted graphs
	• Solved by basic breadth-first search: O(|V|+|E|) worst case

	• Find shortest path in weighted graphs
	• Solved by Dijkstra’s algorithm: O(|E| log|V|) worst case

	• Find minimum-cost spanning tree in weighted graphs
	• Solved by Prim’s or Kruskal’s algorithm: O(|E| log|V|) worst case

	• The “greedy” algorithms used for solving these problems have polynomial time cost functions in the worst case
	• since |E|<=|V|2, Dijkstra’s, Prim’s and Kruskal’s algorithms are O(|V|3)

	• As a result, these problems can be solved in a reasonable amount of time, even for large graphs; they are considered to be ‘tractable’ problems
	• However, many graph problems do not have any known polynomial time solutions...!

	Intractable graph problems
	• For many interesting graph problems, the best known algorithms to solve them have exponential time costs O(2|V|)
	• In the worst case, these intractable problems simply cannot be solved exactly, except for quite small graphs (say, 50 or at most 100 vertices, even on the world’s fastest computers); the best known algorithms for these problems take too long to ru
	• For these problems, simple greedy best-first algorithms do not work... Essentially the best approach known for solving them exactly is basically to try all the possibilities, and there can be exponentially many possibilities to try
	• These intractable graph problems are often members of the class called “NP-complete” problems, which includes many non-graph problems as well...

	NP-complete problems
	• A problem that can be exactly solved in time that is a polynomial function of the size of the problem is in the class “P” (for Polynomial time)
	• A problem whose solution can be checked for correctness in time that is a polynomial function of the size of the problem is in the class “NP” (for Nondeterministic Polynomial time)
	• A “nondeterministic” computer could guess the solution to the problem, and then check if it is a solution in polynomial time, and never give a wrong answer
	• Note that the class P is contained in NP

	• A problem that is in NP, and is as hard as any problem in NP (an algorithm for it is also essentially an algorithm for any NP problem) is NP-complete
	• For all the NP-complete problems, the best known algorithms take exponential time in the worst case...
	• ...However, nobody has yet been able to prove that there are no polynomial time algorithms for them! If you find one, you will be instantly very very famous

	• What are some of the NP-complete graph problems?...

	Examples of intractable graph problems
	• Here are a few examples of the many graph problems that are NP-complete, and so seem to require O(2|V|) time worst-case:
	• “Hamiltonian circuit”: Given a graph, say whether the graph has a cycle that includes all the vertices of the graph exactly once.
	• “Travelling salesman”: Given a weighted graph, find the Hamiltonian circuit that has the smallest total cost.
	• “Longest path”: Given a graph and two vertices s and d, find the longest path from s to d that doesn’t contain any cycles. (But note that “shortest path” is solvable in polynomial time!)
	• “Shortest total path length spanning tree”: Given a graph, find the spanning tree that has the smallest total path lengths between every pair of vertices
	• “Steiner tree”: Given a graph (V,E) and a subset S of V, find the minimum-cost spanning tree that spans every vertex in S (and may also span some other vertices) (but note that if S=V, the problem is solvable in polynomial time!)

	The problem with intractable problems
	• If a problem is NP-complete, the best known algorithms to solve it requires exponentially many steps in the worst case
	• Simple greedy algorithms do not work for these problems
	• backtracking, or some other way of looking at, and checking, possible alternatives is usually required...
	• ... and there are exponentially many alternatives to check!
	• For example:
	• The problem has N boolean variables, and you need to check the 2N possible different assignments of truth values to them
	• The problem has N items, and you need to check each of the 2N different subsets of those items

	• Because of the exponential time costs of the best known solutions to these problems, you have to either...
	• restrict yourself to small instances of the problems, or
	• try to find approximate algorithms that are fast, but not always exactly correct

	Finding a minimum spanning tree: Kruskal’s algorithm
	• Prim’s algorithm starts with a single vertex, and grows it by adding edges until the MST is built
	• Kruskal’s algorithm starts with a forest of single-node trees (one for each vertex in the graph) and joins them together by adding edges until the MST is built

	Kruskal’s algorithm
	• Pseudocode for Kruskal’s MST algorithm, on a weighted undirected graph G = (V,E): 1. Create a forest of one-node trees, one for each vertex in V 2. Create a priority queue containing all the edges in E, ordered by edge weight 3. While fewer tha...
	• When run on a connected graph, the forest will finally contain one tree, which is a minimum spanning tree

	Kruskal’s algorithm: input
	• Run Kruskal’s algorithm on this weighted undirected graph:

	Kruskal’s algorithm: output
	• Show the result here:
	• What is the total cost of this spanning tree?
	• Is there another spanning tree with lower cost? With equal cost?

	Implementing Kruskal’s algorithm
	• To make Kruskal’s algorithm efficient, all steps in the algorithm must be implemented efficiently:
	• initializing the priority queue must be efficient (2)
	• delete-min in the priority queue must be efficient (3a)
	• testing whether two vertices are already in the same tree in the forest must be efficient (3b)
	• joining two trees in the forest must be efficient (3c)

	• Using a binary heap to implement a priority queue leads to efficient steps (2) and (3a):
	• building the heap: O(|E|)
	• each delete-min operation: O(log|E|)

	• What is an efficient way to do steps 3b and 3c?
	• This requires looking at doing efficient computations with representations of equivalence classes...

	Equivalence relations
	• An equivalence relation E(x,y) over a domain S is a boolean function that satisfies these properties for every x,y,z in S:
	• E(x,x) is true (reflexivity)
	• If E(x,y) is true, then E(y,x) is true (symmetry)
	• If E(x,y) and E(y,z) are true, then E(x,z) is true (transitivity)

	• For example: Given an undirected graph G. Suppose for any vertices v1, v2 in G, E(v1, v2) is true if and only if v1 is connected to v2 (i.e., there is a path from v1 to v2). Then E() is an equivalence relation over the vertices of G:
	• Every vertex is connected to itself (reflexivity)
	• If v1 is connected to v2, then v2 is connected to v1 (it’s an undirected graph)
	• If v1 is connected to v2, and v2 is connected to v3, then v1 is connected to v3

	• For another example: Suppose E(x,y) is true if and only if x, y are integers and x=y. Then E() is an equivalence relation over the integers

	Equivalence classes
	• An equivalence relation E() over a set S defines a system of equivalence classes within S
	• The equivalence class of some element x of S is that set of all y in S such that E(x,y) is true
	• Note that every equivalence class defined this way is a subset of S
	• The equivalence classes are disjoint subsets: no element of S is in two different equivalence classes
	• The equivalence classes are exhaustive: every element of S is in some equivalence class

	• For example: Given an undirected graph G. Suppose for any vertices v1, v2 in G, E(v1, v2) is true if and only if v1 is connected to v2. Then the equivalence classes defined by E() are the connected components of G
	• For another example: Suppose E(x,y) is true if and only if x, y are integers and x=y. Then the equivalence classes defined by E() are all singleton sets: each integer is its own equivalence class

	Computing with equivalence classes
	• A common problem is this:
	• You are given a set S of items
	• You are given some pairs of items in S that satisfy some equivalence relation E()
	• Given that information, you want to do things like
	• Determine how many equivalence classes there are in S, as defined by the pairs of items satisfying E() that you have seen so far
	• Given an item in S, determine which equivalence class is it in
	• Given two items in S, determine whether they are in the same equivalence class
	• Given a new pair of items in S that satisfy E(), update the system of equivalence classes appropriately

	Computing equivalence classes: an example
	• You are manipulating equivalence classes when building a minimum spanning tree using Kruskal’s algorithm
	• The initial set of items is the set of vertices in the graph
	• Initially, each vertex is its own equivalence class of one
	• The algorithm considers edges in order of increasing cost. For each edge:
	• It is accepted if the vertices it connects are not in the same equivalence class
	• If it is accepted, the equivalence classes containing the vertices it connects are joined into one equivalence class

	• When |V|-1 edges have been accepted, the algorithm terminates
	• The edges that have been accepted are the edges of the minimum spanning tree
	• These equivalence-class computations can be done very efficiently using a “disjoint subset”, “union/find” structure. More next time...

	Next time
	• An application of disjoint subsets
	• Disjoint subset structures and union/find algorithms
	• Union-by-size and union-by-height
	• Find with path compression
	• Amortized cost analysis Reading: Weiss, Ch. 8

