Lecture 13

- Connectedness in graphs
- Spanning trees in graphs
- Finding a minimal spanning tree
- Time costs of graph problems and NP-completeness
- Finding a minimal spanning tree: Prim's and Kruskal's algorithms
- Intro to disjoint subsets and union/find

Reading: Weiss, Ch. 9, Ch 8

Connectedness of graphs

- Some definitions:
- An undirected graph is connected if
- For every vertex v in the graph, there is a path from v to every other vertex
- A directed graph is strongly connected if
- For every vertex v in the graph, there is a path from v to every other vertex
- A directed graph is weakly connected if
- The graph is not strongly connected, but the underlying undirected graph (i.e., considering all edges as undirected) is connected
- A graph is completely connected if for every pair of distinct vertices $v 1, v 2$, there is an edge from $v 1$ to $v 2$

Connected graphs: an example

- Consider this undirected graph:

- Is it connected?
- Is it completely connected?

Strongly/weakly connected graphs: an example

- Consider this directed graph:

- Is it strongly connected?
- Is it weakly connected?
- Is it completely connected?

Spanning trees

- We will consider spanning trees for $u n$ directed graphs
- A spanning tree of an undirected graph G is an undirected graph that...
- contains all the vertices of G
- contains only edges of G
- has no cycles
- is connected
- So, only connected graphs have spanning trees
- A spanning tree is called "spanning" because it connects all the graph's vertices
- A spanning tree is called a "tree" because it has no cycles (recall the definition of cycle for undirected graphs)
- What is the root of the spanning tree?
- you could pick any vertex as the root; the vertices adjacent to that one are then the children of the root; etc.

Spanning trees: examples

- Consider this undirected graph G:

Spanning tree? Ex. 1

- Is this graph a spanning tree of G ?

Spanning tree? Ex. 2

- Is this graph a spanning tree of G ?

Spanning tree? Ex. 3

- Is this graph a spanning tree of G?

Spanning tree? Ex. 4

- Is this graph a spanning tree of G ?

Multiple spanning trees

- In general a graph can have more than one spanning tree. All these are spanning trees of that graph G (and there are more):

- Note: The spanning tree for a graph with N vertices always has $\mathrm{N}-1$ edges (like a tree!)

Finding a spanning tree in an unweighted graph

- A spanning tree in an unweighted graph is easy to construct...
- Use the basic unweighted single-source shortest-path algorithm (breadth-first search):
- (That algorithm is designed for directed graphs. Convert an undirected graph to a directed one by treating each undirected edge as two antiparallel directed edges)
- Pick any vertex as the start vertex s. (Think of it as the root of the spanning tree.)
- When done, the "prev" indices in the table will give, for each vertex in the spanning tree, the index of its parent
- This represents a spanning tree because (if the graph is connected) each vertex except the start vertex will have exactly one parent, and each vertex appears in the table
- So, a spanning tree can be found in an unweighted graph in time $\mathrm{O}(|\mathrm{V}|+|\mathrm{E}|)$
- ...What about weighted graphs?

Minimum spanning trees in a weighted graph

- A single graph can have many different spanning trees
- They all must have the same number of edges, but if it is a weighted graph, they may differ in the total weight of their edges
- Of all spanning trees in a weighted graph, one with the least total weight is a minimum spanning tree (MST)
- It can be useful to find a minimum spanning tree for a graph: this is the least-cost version of the graph that is still connected, i.e. that has a path between every pair of vertices
- How to do it?

Finding a minimum spanning tree: Prim's algorithm

- As you know, minimum weight paths from a start vertex can be found using Djikstra's algorithm
- At each stage, Djikstra's algorithm extends the best path from the start vertex (priority queue ordered by total path cost) by adding edges to it
- To build a minimum spanning tree, you can modify Djikstra's algorithm slightly to get Prim's algorithm
- At each stage, Prim's algorithm adds the edge that has the least cost from any vertex in the spanning tree being built so far (priority queue ordered by single edge cost)
- Like Djikstra's algorithm, Prim's algorithm has worst-case time cost $\mathrm{O}(|\mathrm{E}| \log |\mathrm{V}|)$
- We will look at another algorithm: Kruskal's algorithm, which also is a simple greedy algorithm
- Kruskal's has the same big-O worst case time cost as Prim's, but in practice it can be made to run faster than Prim's, if efficient supporting data structures are used

A note about graph algorithm time costs

- So far we have mentioned these graph problems:
- Find shortest path in unweighted graphs
- Solved by basic breadth-first search: $\mathrm{O}(|\mathrm{V}|+|\mathrm{E}|)$ worst case
- Find shortest path in weighted graphs
- Solved by Dijkstra's algorithm: $\mathrm{O}(|\mathrm{E}| \log |\mathrm{V}|)$ worst case
- Find minimum-cost spanning tree in weighted graphs
- Solved by Prim's or Kruskal's algorithm: $\mathrm{O}(|\mathrm{E}| \log |\mathrm{V}|)$ worst case
- The "greedy" algorithms used for solving these problems have polynomial time cost functions in the worst case
- since $|\mathrm{E}|<=|\mathrm{V}|^{2}$, Dijkstra's, Prim's and Kruskal's algorithms are $\mathrm{O}\left(|\mathrm{V}|^{3}\right)$
- As a result, these problems can be solved in a reasonable amount of time, even for large graphs; they are considered to be 'tractable' problems
- However, many graph problems do not have any known polynomial time solutions...!

Intractable graph problems

- For many interesting graph problems, the best known algorithms to solve them have exponential time costs $\mathrm{O}\left(2^{|\nabla|}\right)$
- In the worst case, these intractable problems simply cannot be solved exactly, except for quite small graphs (say, 50 or at most 100 vertices, even on the world's fastest computers); the best known algorithms for these problems take too long to run
- For these problems, simple greedy best-first algorithms do not work... Essentially the best approach known for solving them exactly is basically to try all the possibilities, and there can be exponentially many possibilities to try
- These intractable graph problems are often members of the class called "NP-complete" problems, which includes many non-graph problems as well...

NP-complete problems

- A problem that can be exactly solved in time that is a polynomial function of the size of the problem is in the class "P" (for Polynomial time)
- A problem whose solution can be checked for correctness in time that is a polynomial function of the size of the problem is in the class "NP" (for Nondeterministic Polynomial time)
- A "nondeterministic" computer could guess the solution to the problem, and then check if it is a solution in polynomial time, and never give a wrong answer
- Note that the class P is contained in NP
- A problem that is in NP, and is as hard as any problem in NP (an algorithm for it is also essentially an algorithm for any NP problem) is $N P$-complete
- For all the NP-complete problems, the best known algorithms take exponential time in the worst case...
- ...However, nobody has yet been able to prove that there are no polynomial time algorithms for them! If you find one, you will be instantly very very famous
- What are some of the NP-complete graph problems?...

Examples of intractable graph problems

- Here are a few examples of the many graph problems that are NP-complete, and so seem to require $O\left(2^{|V|}\right)$ time worst-case:
- "Hamiltonian circuit": Given a graph, say whether the graph has a cycle that includes all the vertices of the graph exactly once.
- "Travelling salesman": Given a weighted graph, find the Hamiltonian circuit that has the smallest total cost.
- "Longest path": Given a graph and two vertices s and d, find the longest path from s to d that doesn't contain any cycles. (But note that "shortest path" is solvable in polynomial time!)
- "Shortest total path length spanning tree": Given a graph, find the spanning tree that has the smallest total path lengths between every pair of vertices
- "Steiner tree": Given a graph (V,E) and a subset S of V, find the minimum-cost spanning tree that spans every vertex in S (and may also span some other vertices) (but note that if $\mathrm{S}=\mathrm{V}$, the problem is solvable in polynomial time!)

The problem with intractable problems

- If a problem is NP-complete, the best known algorithms to solve it requires exponentially many steps in the worst case
- Simple greedy algorithms do not work for these problems
- backtracking, or some other way of looking at, and checking, possible alternatives is usually required...
- ... and there are exponentially many alternatives to check!
- For example:
- The problem has N boolean variables, and you need to check the 2^{N} possible different assignments of truth values to them
- The problem has N items, and you need to check each of the 2^{N} different subsets of those items
- Because of the exponential time costs of the best known solutions to these problems, you have to either...
- restrict yourself to small instances of the problems, or
- try to find approximate algorithms that are fast, but not always exactly correct

Finding a minimum spanning tree: Kruskal's algorithm

- Prim's algorithm starts with a single vertex, and grows it by adding edges until the MST is built
- Kruskal's algorithm starts with a forest of single-node trees (one for each vertex in the graph) and joins them together by adding edges until the MST is built

Kruskal's algorithm

- Pseudocode for Kruskal's MST algorithm, on a weighted undirected graph $G=(V, E)$:

1. Create a forest of one-node trees, one for each vertex in V
2. Create a priority queue containing all the edges in E , ordered by edge weight
3. While fewer than $|\mathrm{V}|-1$ edges have been added to the forest:

3a. Delete the smallest-weight edge, $\left(v_{i}, v_{j}\right)$, from the priority queue.
3b. If v_{i} and v_{j} already belong to the same tree in the forest, go to 3 a. (Adding this edge would create a cycle.)

3c. Else, v_{i} and v_{j} are in different trees. Join those vertices with that edge (this joins their trees, reducing the number of trees in the forest by 1), and continue.

- When run on a connected graph, the forest will finally contain one tree, which is a minimum spanning tree

Kruskal's algorithm: input

- Run Kruskal's algorithm on this weighted undirected graph:

Kruskal's algorithm: output

- Show the result here:

- What is the total cost of this spanning tree?
- Is there another spanning tree with lower cost? With equal cost?

Implementing Kruskal's algorithm

- To make Kruskal's algorithm efficient, all steps in the algorithm must be implemented efficiently:
- initializing the priority queue must be efficient (2)
- delete-min in the priority queue must be efficient (3a)
- testing whether two vertices are already in the same tree in the forest must be efficient (3b)
- joining two trees in the forest must be efficient (3c)
- Using a binary heap to implement a priority queue leads to efficient steps (2) and (3a):
- building the heap: $\mathrm{O}(|\mathrm{E}|)$
- each delete-min operation: $\mathrm{O}(\log |\mathrm{E}|)$
- What is an efficient way to do steps 3 b and 3 c ?
- This requires looking at doing efficient computations with representations of equivalence classes...

Equivalence relations

- An equivalence relation $E(x, y)$ over a domain S is a boolean function that satisfies these properties for every $\mathrm{x}, \mathrm{y}, \mathrm{z}$ in S :
- $\mathrm{E}(\mathrm{x}, \mathrm{x})$ is true (reflexivity)
- If $\mathrm{E}(\mathrm{x}, \mathrm{y})$ is true, then $\mathrm{E}(\mathrm{y}, \mathrm{x})$ is true (symmetry)
- If $\mathrm{E}(\mathrm{x}, \mathrm{y})$ and $\mathrm{E}(\mathrm{y}, \mathrm{z})$ are true, then $\mathrm{E}(\mathrm{x}, \mathrm{z})$ is true (transitivity)
- For example: Given an undirected graph G. Suppose for any vertices v_{1}, v_{2} in G , $\mathrm{E}\left(v_{1}, v_{2}\right)$ is true if and only if v_{1} is connected to v_{2} (i.e., there is a path from v_{1} to v_{2}). Then $E()$ is an equivalence relation over the vertices of G :
- Every vertex is connected to itself (reflexivity)
- If v_{1} is connected to v_{2}, then v_{2} is connected to v_{1} (it's an undirected graph)
- If v_{1} is connected to v_{2}, and v_{2} is connected to v_{3}, then v_{1} is connected to v_{3}
- For another example: Suppose $\mathrm{E}(\mathrm{x}, \mathrm{y})$ is true if and only if x, y are integers and $\mathrm{x}=\mathrm{y}$. Then $E()$ is an equivalence relation over the integers

Equivalence classes

- An equivalence relation $E()$ over a set S defines a system of equivalence classes within S
- The equivalence class of some element x of S is that set of all y in S such that $E(x, y)$ is true
- Note that every equivalence class defined this way is a subset of S
- The equivalence classes are disjoint subsets: no element of S is in two different equivalence classes
- The equivalence classes are exhaustive: every element of S is in some equivalence class
- For example: Given an undirected graph G. Suppose for any vertices v_{1}, v_{2} in G, $\mathrm{E}\left(v_{1}, v_{2}\right)$ is true if and only if v_{1} is connected to v_{2}. Then the equivalence classes defined by $E()$ are the connected components of G
- For another example: Suppose $\mathrm{E}(\mathrm{x}, \mathrm{y})$ is true if and only if x, y are integers and $\mathrm{x}=\mathrm{y}$. Then the equivalence classes defined by E() are all singleton sets: each integer is its own equivalence class

Computing with equivalence classes

- A common problem is this:
- You are given a set S of items
- You are given some pairs of items in S that satisfy some equivalence relation $E()$
- Given that information, you want to do things like
- Determine how many equivalence classes there are in S, as defined by the pairs of items satisfying $E()$ that you have seen so far
- Given an item in S, determine which equivalence class is it in
- Given two items in S , determine whether they are in the same equivalence class
- Given a new pair of items in S that satisfy $E()$, update the system of equivalence classes appropriately

Computing equivalence classes: an example

- You are manipulating equivalence classes when building a minimum spanning tree using Kruskal's algorithm
- The initial set of items is the set of vertices in the graph
- Initially, each vertex is its own equivalence class of one
- The algorithm considers edges in order of increasing cost. For each edge:
- It is accepted if the vertices it connects are not in the same equivalence class
- If it is accepted, the equivalence classes containing the vertices it connects are joined into one equivalence class
- When $|\mathrm{V}|-1$ edges have been accepted, the algorithm terminates
- The edges that have been accepted are the edges of the minimum spanning tree
- These equivalence-class computations can be done very efficiently using a "disjoint subset", "union/find" structure. More next time...

Next time

- An application of disjoint subsets
- Disjoint subset structures and union/find algorithms
- Union-by-size and union-by-height
- Find with path compression
- Amortized cost analysis

Reading: Weiss, Ch. 8

