Lecture 12

* Algorithms on graphs

* Breadth first, depth first searches

 Shortest path in unweighted graphs

* Greedy algorithms

* Djikstra’s algorithm for shortest path in weighted graphs

Reading: Weiss, Chapter 9, 10
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Shortest path problems

* Suppose graph vertices represent computers, and graph edges represent network links
between computers, and edge weights represent communications times...

... then a shortest-path algorithm can find the fastest route to send email between one
computer and another

* Suppose graph vertices represent cities, and graph edges represent airline routes
between cities, and edge weights represent travel costs ...

* ... then a shortest-path algorithm can find the cheapest route to travel by air between
one city and another

* Many, many other examples...
* We will look at shortest-path algorithms in unweighted and weighted graphs

* These algorithms will find the shortest path from a “source” or “start” vertex to every
other vertex in the graph

* (Often you may want only the shortest path from a source vertex to one particular
destination vertex... but there 1s no known algorithm to do that with better worst-case
time cost than a good algorithm to find shortest path to every other vertex!)
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The unweighted shortest path problem

* Input: an unweighted directed graph G = (V,E) and a “source vertex” s in V

* Output: for each vertex v in V, a representation of the shortest path in G that starts at s
and ends at v

* What is the best approach to this problem?
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Search in graphs

The shortest-path problem is a search problem in a graph: starting at a vertex s, you are
searching for the shortest path to another vertex v

* When searching in a graph, three important approaches are:
* depth-first search
* breadth-first search

* best-first search

* These approaches can be applied to many different search problems

* We’ll consider applying depth-first and breadth-first to the unweighted shortest-path
problem. (Best-first will arise in the weighted shortest-path case)
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Breadth-first search

* Breadth-first search in a graph visits a node; and then all the nodes adjacent to that
node; then all the nodes adjacent to those nodes; etc.

* A level-order traversal of a tree 1s a breadth-first search:
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Depth first search

* Depth first search in a graph visits a node; and then recursively does depth-first search
from each of the nodes adjacent to that node

* A pre-order traversal of a tree is a depth-first search:
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Depth-first search for shortest paths
* Consider searching for shortest paths with start vertex VO 1in this unweighted graph,
using depth-first search:
9 (v
/
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Depth-first search for shortest paths: frame 1

* Immediately we have the shortest path from VO to VO, following 0 edges.

O (v

<

* Continue the depth-first search, following the edge to V1
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Depth-first search for shortest paths: frame 2
* We have found a path to V1, of length 1.
(v )
» Now continuing the depth-first search, there are two choices. Suppose we follow the
edge to V3...
/
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Depth-first search for shortest paths: frame 3

* We have found a path to V3, of length 2.

O {0
(V4

* Continuing the depth-first search, we follow edges to V2, and then to V4...
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Depth-first search for shortest paths: frame 4

* We have found a path to V2, of length 3, and a path to V4 of length 4.

&9 V)

* There are no untravelled edges to follow from V4. So we backtrack to the last node
visited with an untravelled edge: V1, and follow the edge to V4
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Depth-first search for shortest paths: frame 5

* Following the other edge from V1 to V4, we find a path to V4 of length 2, which 1s
shorter than the one found previously (going through V3 and V2)

&9 {7

7

w )
G

* Now all edges have been traversed, and we have visited all the nodes.

* However, note that if there were nodes reachable from V4, we would have to search
them again, now having found a shorter path to V4!

* We can eventually find all shortest paths this way, but any simple implementation of
this 1dea could be very inefficient
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Breadth-first search for shortest paths
* Consider searching for shortest paths with start vertex VO 1in this unweighted graph,
using breadth-first search:
9 (7
/
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Breadth-first search for shortest paths: frame 1

* First visit VO, giving the shortest path from VO to VO, following 0 edges.

O (v

e

V3] (v

N

* Continue the breadth-first search, visiting all the unvisited nodes adjacent to VO.
(There 1s only one: V1)
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Breadth-first search for shortest paths: frame 2

* We have found a path to V1, of length 1. We can be sure this is the shortest path to V1.

w ©)
V3 (V4

* Now visit continuing the breadth-first search, there are two unvisited vertices adjacent
to V1. They can be visited in any order, as long as they are visited before any other
vertices
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Breadth-first search for shortest paths: frame 3

* We have found a paths to V3 and V4, of length 2. We can be sure these are the shortest
paths to these vertices

O

* Continuing the breadth-first search, we follow edges to vertices adjacent to V3 and to
V4. There is only one, V2
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Breadth-first search for shortest paths: frame 4

* We have found a path to V2, of length 3

&9 V)

@/ v

* Now we have visited all the vertices in the graph, and have found the shortest path from
VO to each of them
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Comparing depth- and breadth-first search for shortest path

* Either depth-first or breadth-first search will traverse the graph, visiting all nodes. But

breadth-first search is better for the shortest-path problem in graphs

* In depth-first search:

* you need to keep track of which edges have been traversed

* you need to know which node to backtrack to when you reach a “dead end” (this can

be done with a stack)

* when you visit a node, you may not be sure if you have found the shortest path or
not; you may find a shorter path later. If you do, you will have to repeat the depth-
first search from that node! These repetitions can lead to exponentially many steps

* In breadth-first search:
* you need to keep track of which nodes have been visited

* you need to make sure you visit all nodes adjacent to a node before visiting any
others (this can be done with a queue)

* the first time you visit a node, you can be sure you have found the shortest path to it,

so that node does not need to be visited again

~
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Unweighted shortest path

* Input: an unweighted directed graph G = (V,E) ; and a source vertex s in V

* Output: for each vertex v in V, a representation of the shortest path in G that starts at s
and ends at v

* Ordinary breadth-first search solves this problem efficiently: worst-case time cost
O([E[+[V])
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Breadth-first search for unweighted shortest path: basic idea

* By distance between two nodes u,v we mean the number of edges on the shortest path
between u and v. Now:

» Start at the start vertex s. It 1s at distance O from itself, and there are no other nodes at
distance 0

* Consider all the nodes adjacent to s. These all are at distance at most 1 from s (maybe
less than 1, if s has an edge to itself; but then we would have found a shorter path
already) and there are no other nodes at distance 1

* Consider all the nodes adjacent to the nodes adjacent to s. These are all at distance at
most 2 from s (maybe less than 2; but then we would have found a shorter path already)
and there are no other nodes at distance 2

* ...and so on. In this breadth-first search, as soon as we visit a node in the graph, we
know the shortest path from s to it; and so by the time we have visited all the nodes in
the graph, we know the shortest path from s to each of them
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Unweighted shortest path: sketch of algorithm

* The basic 1dea is a breadth-first search of the graph, starting at source vertex s
* Initially, give all vertices in the graph a distance of INFINITY

 Start at s; give s distance = 0

* Consider the vertices in the adjacency list of s

* these all have a distance 1 from s, so give each of them distance = 1 unless a shorter
distance (i.e. 0) has already been found

* there is no shorter path from s to any of these vertices!

* Now consider the vertices in the adjacency lists of vertices at distance 1 from s

* these all have a distance 2 from s, so give each of them distance = 2 unless a shorter
distance (i.e. 1 or 0) has already been found

* there 1s no shorter path from s to any of these vertices!
* Continue 1n this fashion until all vertices have been visited

 This finds the lengths of the shortest paths. Representing the actual sequence of
vertices on the paths is easy to do, as we will see momentarily
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Unweighted shortest path: auxilliary data structures
* Maintain a sequence (e.g. an array) of vertex objects, indexed by vertex number

* Vertex objects contain these 2 fields (and others):

» “dist”: the cost of the best (least-cost) path discovered so far from the start vertex
to this vertex (initially INFINITY)

* “prev’: the vertex number (index) of the previous node on that best path

* Maintain a queue, containing vertices, or vertex numbers (similar to use of queue in
level-order traversal of a tree)

Initially the queue contains only the start vertex s, with dist field 0
* A vertex is “visited” when it is enqueued: then shortest path to it is known

* When a vertex v is dequeued, vertices on v’s adjacency list that have not yet been
visited are enqueued, and given a distance = 1 + v’s distance

*  When the queue 1s empty, the algorithm terminates

%
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Unweighted shortest path: more algorithm details

* How do you tell if a vertex has been visited before or not?
* Check to see if its distance is INFINITY. Ifit is, it has not been visited yet

* How do you figure out the actual paths, not just their costs?

*  When you enqueue a vertex w, it is because it is on the adjacency list of a vertex v,

which is the previous vertex on the shortest path from the source vertex to w

* You give w a distance equal to the distance to v, plus 1; and you also set the
previous- node field of w to be v

* So, the entire shortest path from source to w can be found by tracing back these
previous node indices to the source vertex

* What is the time complexity of this algorithm?

* Each vertex is visited exactly once: so there are O(|V|) enqueue and dequeue
operations

*  When you dequeue a vertex, you traverse the adjacency list for that vertex; these
traversals total O(|E|) steps

* So, the algorithm has total worst-case time cost O(|V| + |E|)
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Unweighted shortest path: an example

* We will find shortest paths in this graph, with source vertex VO

9 (v

S

- : %

@ V6
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Do it!

* The array of vertices, which include dist and prev fields (initialize dist to ‘INFINITY"):
VO :
V1:
V2.
V3:
Va4 :
V5:

Vé6:

dist=

dist=

dist=

dist=

dist=

dist=

dist=

prev=

prev=

prev=

prev=

prev=

prev=

prev=

j: V1
j: V3,
j: VO,
j: V2,

j: V1,

j: V5

V4
V5
V5, V6

V6

* The queue (give source vertex dist=0 and prev=-1 and enqueue to start):

HEAD

TAIL

~

/
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Unweighted shortest path, C++ code

/** Compute the unweighted shortest path. */
void unweightedShortestPath( int startNode ) {
queue<Vertex*> q;
initData( ); // sets all Vertex dists to INFINITY, prevs to -1
Vertex* s = vertexVec[startNode];
s->dist = 0;

qg.push( s ) ;
while( 'q.empty( ) ) {
Vertex* v = q.front( ); // get a Vertex* from the queue
g.pop () ; // and remove it from the queue
std: :list<Edge*>::iterator it = v->adj.begin() ;
for( ; it !'= v->adj.end() ; ++it ) { // go thru v’s adj list
Vertex* w = vertexVec[ it->dest ];
if( w->dist == INFINITY ) { // not yet visited

w->dist = v->dist + 1;
w->prev = v->indx;
qg.push( w );

/
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Weighted shortest path

Input: a weighted directed graph G = (V,E) with no negative edge weights; and a
source vertex s in V

* Output: for each vertex v in V, a representation of the shortest weighted path in G that
starts at s and ends at v

* The best general algorithm for this problem is Djikstra’s algorithm [Djikstra, 1959]

* Djikstra’s algorithm uses ‘greedy’, ‘best-first’ search and runs in worst-case time
O(E| log| V1)
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Greedy algorithms

* A greedy algorithm is one that, at each stage of the algorithm, commits to a move that
seems to be the best, considering just the state of computation at that stage

* Greedy algorithms tend to be fast: they don’t require any backtracking or second-
guessing

* However not every problem can be solved with a greedy algorithm!
* And not every greedy algorithm is fast (may still have exponentially many moves)
* Example: Huffman’s algorithm for constructing a coding tree is a greedy algorithm

* At each step you choose two trees to join together, and you never second-guess the
choice; but if symbols are not independent the result will not be optimal

* Example: the usual algorithm for making change (in the U.S.) is a greedy algorithm:

* Give back as many quarters as possible, then as many dimes as possible, then as
many nickels as possible, then the remaining in pennies

» This algorithm is optimal: it always makes change with the fewest coins possible

* But suppose there were also a 12-cent coin; then the algorithm 1s not optimal
(consider making 20 cents change...)

 Djikstra’s algorithm is fast, but it requires the precondition: no edge weights are
negative
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Weighted vs. unweighted shortest path algorithms
* The basic 1dea is similar to the unweighted case

* A major difference is this:

* In an unweighted graph, breadth-first search guarantees that when we first make it to
a node v, we can be sure we have found the shortest path to it; more searching will
never find a path to v with fewer edges

* In a weighted graph, when we first make it to a node v, we can’t be sure we have
found the best path to v: there could be a path with more edges, but less overall cost,
that we would find later

« Still, Dijkstra’s is a greedy algorithm:

* At each stage of the algorithm, we will extend the best path we have found so far:
this guarantees we will know when we have found the shortest (least-cost) path from
the source vertex, if there are no negative-cost edges

» Keeping track of paths in terms of which is best will require a priority queue -- a
very common data structure in greedy algorithms

* (Note that Djikstra’s algorithm will work for an unweighted graph: treat it as a

weighted graph with all edge weights the same, e.g. 1) )

Page 29 of 35
CSE 100, UCSD: LEC 12




Weighted shortest path: auxilliary data structures

* Maintain a sequence (e.g. an array) of vertex objects, indexed by vertex number

* Vertex objects contain these 3 fields (and others):

* “dist”: the cost of the best (least-cost) path discovered so far from the start vertex
to this vertex

* “prev”: the vertex number (index) of the previous node on that best path

* “done”: a boolean indicating whether the “dist” and “prev” fields contain the
final best values for this vertex, or not

* Maintain a priority queue
* The priority queue will contain (pointer-to-vertex, path cost) pairs
* Path cost is priority, in the sense that low cost means high priority

* Note: multiple pairs with the same “pointer-to-vertex” part can exist in the priority
queue at the same time. These will usually differ in the “path cost” part

%
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Weighted shortest path: Dijkstra’s algorithm

0. Initialize the vertex vector for the graph. Set all “dist” fields to INFINITY, and all
“done” fields to false. Locate the start vertex s. Set its “dist” field to 0, and its “prev”
field to -1. Put the pair (s,0) on the priority queue.

1. Is the priority queue empty? Done!
2. Remove from the priority queue the pair (v, cost) with the smallest cost.
3. Is the “done” field of the vertex v marked true? Go to 1.

4. Mark the “done” field of vertex v true. The shortest path from s to v is now known, and
the “cost” and “prev” fields in v are correct

5. Traverse v’s adjacency list. For each vertex w adjacent to v:

Compute the path cost ¢ from s to w going through v (this is just the sum of the true
cost from s to v, which is now known, plus the cost of the edge from v to w).

If ¢ 1s less than the best cost from s to w known so far (this value is stored in the
“dist” field of w), we have found a better path to w. Update the “dist” field in w with this
value, and insert the pair (w,c) into the priority queue.

6. Goto I.
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Weighted shortest path: more algorithm details

* How do you figure out the actual paths, not just their costs?

* Same as for the unweighted path algorithm

* How do you know that when you delete-min vertex v from the priority queue, that we
have searched enough to have found the shortest weighted path to v?

» All the other vertices in the priority queue have at least as great a path cost to them,
so we can’t do better by extending those paths to v

* (If there were negative weights, continuing to add edges to a path can make its cost
less, and this “greedy” approach does not work)

* What is the time complexity of Djikstra’s algorithm?

* Each element of each adjacency list can be inserted and deleted from the priority
queue; there are |E| such elements

* An insertion or delete-min in a binary heap implementation of a priority queue is
O(log N); here N = |E| worst-case

* So, the algorithm has total worst-case time cost O(|E| log |E|)
« Since |E| <= |V, this is O(|V|* log |V|) and also O(|E| log [V])

. %

Page 32 of 35
CSE 100, UCSD: LEC 12



4 M
Weighted shortest path: an example

* We will find shortest weighted paths in this graph, with start vertex VO

: - v2)
S
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Do it!

* The array of vertices, which include dist, prev, and done fields (initialize dist to

‘INFINITY” and done to ‘false’):

VO: dist=
V1: dist=
V2: dist=
V3: dist=

* The priority queue (set start vertex dist=0, prev=-1, and insert it with priority 0 to start)

done=

done=

done=

done=

(vi,1), (vz,6), (V3,3)

(V2,4)

(v2,1)

/
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Next time

* Connectedness in graphs

* Spanning trees in graphs

* Finding a minimal spanning tree

* Time costs of graph problems and NP-completeness

* Finding a minimal spanning tree: Prim’s and Kruskal’s algorithms

* Intro to disjoint subsets and union/find

Reading: Weiss, Ch. 9, Ch 8
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	Lecture 12
	• Algorithms on graphs
	• Breadth first, depth first searches
	• Shortest path in unweighted graphs
	• Greedy algorithms
	• Djikstra’s algorithm for shortest path in weighted graphs Reading: Weiss, Chapter 9, 10

	Shortest path problems
	• Suppose graph vertices represent computers, and graph edges represent network links between computers, and edge weights represent communications times...
	• ... then a shortest-path algorithm can find the fastest route to send email between one computer and another

	• Suppose graph vertices represent cities, and graph edges represent airline routes between cities, and edge weights represent travel costs ...
	• ... then a shortest-path algorithm can find the cheapest route to travel by air between one city and another

	• Many, many other examples...
	• We will look at shortest-path algorithms in unweighted and weighted graphs
	• These algorithms will find the shortest path from a “source” or “start” vertex to every other vertex in the graph
	• (Often you may want only the shortest path from a source vertex to one particular destination vertex... but there is no known algorithm to do that with better worst-case time cost than a good algorithm to find shortest path to every other vertex!)

	The unweighted shortest path problem
	• Input: an unweighted directed graph G = (V,E) and a “source vertex” s in V
	• Output: for each vertex v in V, a representation of the shortest path in G that starts at s and ends at v
	• What is the best approach to this problem?

	Search in graphs
	• The shortest-path problem is a search problem in a graph: starting at a vertex s, you are searching for the shortest path to another vertex v
	• When searching in a graph, three important approaches are:
	• depth-first search
	• breadth-first search
	• best-first search

	• These approaches can be applied to many different search problems
	• We’ll consider applying depth-first and breadth-first to the unweighted shortest-path problem. (Best-first will arise in the weighted shortest-path case)

	Breadth-first search
	• Breadth-first search in a graph visits a node; and then all the nodes adjacent to that node; then all the nodes adjacent to those nodes; etc.
	• A level-order traversal of a tree is a breadth-first search:

	Depth first search
	• Depth first search in a graph visits a node; and then recursively does depth-first search from each of the nodes adjacent to that node
	• A pre-order traversal of a tree is a depth-first search:

	Depth-first search for shortest paths
	• Consider searching for shortest paths with start vertex V0 in this unweighted graph, using depth-first search:

	Depth-first search for shortest paths: frame 1
	• Immediately we have the shortest path from V0 to V0, following 0 edges.
	• Continue the depth-first search, following the edge to V1

	Depth-first search for shortest paths: frame 2
	• We have found a path to V1, of length 1.
	• Now continuing the depth-first search, there are two choices. Suppose we follow the edge to V3...

	Depth-first search for shortest paths: frame 3
	• We have found a path to V3, of length 2.
	• Continuing the depth-first search, we follow edges to V2, and then to V4...

	Depth-first search for shortest paths: frame 4
	• We have found a path to V2, of length 3, and a path to V4 of length 4.
	• There are no untravelled edges to follow from V4. So we backtrack to the last node visited with an untravelled edge: V1, and follow the edge to V4

	Depth-first search for shortest paths: frame 5
	• Following the other edge from V1 to V4, we find a path to V4 of length 2, which is shorter than the one found previously (going through V3 and V2)
	• Now all edges have been traversed, and we have visited all the nodes.
	• However, note that if there were nodes reachable from V4, we would have to search them again, now having found a shorter path to V4!
	• We can eventually find all shortest paths this way, but any simple implementation of this idea could be very inefficient

	Breadth-first search for shortest paths
	• Consider searching for shortest paths with start vertex V0 in this unweighted graph, using breadth-first search:

	Breadth-first search for shortest paths: frame 1
	• First visit V0, giving the shortest path from V0 to V0, following 0 edges.
	• Continue the breadth-first search, visiting all the unvisited nodes adjacent to V0. (There is only one: V1)

	Breadth-first search for shortest paths: frame 2
	• We have found a path to V1, of length 1. We can be sure this is the shortest path to V1.
	• Now visit continuing the breadth-first search, there are two unvisited vertices adjacent to V1. They can be visited in any order, as long as they are visited before any other vertices

	Breadth-first search for shortest paths: frame 3
	• We have found a paths to V3 and V4, of length 2. We can be sure these are the shortest paths to these vertices
	• Continuing the breadth-first search, we follow edges to vertices adjacent to V3 and to V4. There is only one, V2

	Breadth-first search for shortest paths: frame 4
	• We have found a path to V2, of length 3
	• Now we have visited all the vertices in the graph, and have found the shortest path from V0 to each of them

	Comparing depth- and breadth-first search for shortest path
	• Either depth-first or breadth-first search will traverse the graph, visiting all nodes. But breadth-first search is better for the shortest-path problem in graphs
	• In depth-first search:
	• you need to keep track of which edges have been traversed
	• you need to know which node to backtrack to when you reach a “dead end” (this can be done with a stack)
	• when you visit a node, you may not be sure if you have found the shortest path or not; you may find a shorter path later. If you do, you will have to repeat the depth- first search from that node! These repetitions can lead to exponentially many ...

	• In breadth-first search:
	• you need to keep track of which nodes have been visited
	• you need to make sure you visit all nodes adjacent to a node before visiting any others (this can be done with a queue)
	• the first time you visit a node, you can be sure you have found the shortest path to it, so that node does not need to be visited again


	Unweighted shortest path
	• Input: an unweighted directed graph G = (V,E) ; and a source vertex s in V
	• Output: for each vertex v in V, a representation of the shortest path in G that starts at s and ends at v
	• Ordinary breadth-first search solves this problem efficiently: worst-case time cost O(|E| + |V|)

	Breadth-first search for unweighted shortest path: basic idea
	• By distance between two nodes u,v we mean the number of edges on the shortest path between u and v. Now:
	• Start at the start vertex s. It is at distance 0 from itself, and there are no other nodes at distance 0
	• Consider all the nodes adjacent to s. These all are at distance at most 1 from s (maybe less than 1, if s has an edge to itself; but then we would have found a shorter path already) and there are no other nodes at distance 1
	• Consider all the nodes adjacent to the nodes adjacent to s. These are all at distance at most 2 from s (maybe less than 2; but then we would have found a shorter path already) and there are no other nodes at distance 2
	• ... and so on. In this breadth-first search, as soon as we visit a node in the graph, we know the shortest path from s to it; and so by the time we have visited all the nodes in the graph, we know the shortest path from s to each of them

	Unweighted shortest path: sketch of algorithm
	• The basic idea is a breadth-first search of the graph, starting at source vertex s
	• Initially, give all vertices in the graph a distance of INFINITY
	• Start at s; give s distance = 0
	• Consider the vertices in the adjacency list of s
	• these all have a distance 1 from s, so give each of them distance = 1 unless a shorter distance (i.e. 0) has already been found
	• there is no shorter path from s to any of these vertices!

	• Now consider the vertices in the adjacency lists of vertices at distance 1 from s
	• these all have a distance 2 from s, so give each of them distance = 2 unless a shorter distance (i.e. 1 or 0) has already been found
	• there is no shorter path from s to any of these vertices!

	• Continue in this fashion until all vertices have been visited
	• This finds the lengths of the shortest paths. Representing the actual sequence of vertices on the paths is easy to do, as we will see momentarily

	Unweighted shortest path: auxilliary data structures
	• Maintain a sequence (e.g. an array) of vertex objects, indexed by vertex number
	• Vertex objects contain these 2 fields (and others):
	• “dist”: the cost of the best (least-cost) path discovered so far from the start vertex to this vertex (initially INFINITY)
	• “prev”: the vertex number (index) of the previous node on that best path


	• Maintain a queue, containing vertices, or vertex numbers (similar to use of queue in level-order traversal of a tree)
	• Initially the queue contains only the start vertex s, with dist field 0
	• A vertex is “visited” when it is enqueued: then shortest path to it is known
	• When a vertex v is dequeued, vertices on v’s adjacency list that have not yet been visited are enqueued, and given a distance = 1 + v’s distance
	• When the queue is empty, the algorithm terminates


	Unweighted shortest path: more algorithm details
	• How do you tell if a vertex has been visited before or not?
	• Check to see if its distance is INFINITY. If it is, it has not been visited yet

	• How do you figure out the actual paths, not just their costs?
	• When you enqueue a vertex w, it is because it is on the adjacency list of a vertex v, which is the previous vertex on the shortest path from the source vertex to w
	• You give w a distance equal to the distance to v, plus 1; and you also set the previous- node field of w to be v
	• So, the entire shortest path from source to w can be found by tracing back these previous node indices to the source vertex

	• What is the time complexity of this algorithm?
	• Each vertex is visited exactly once: so there are O(|V|) enqueue and dequeue operations
	• When you dequeue a vertex, you traverse the adjacency list for that vertex; these traversals total O(|E|) steps
	• So, the algorithm has total worst-case time cost O(|V| + |E|)


	Unweighted shortest path: an example
	• We will find shortest paths in this graph, with source vertex V0

	Do it!
	• The array of vertices, which include dist and prev fields (initialize dist to ‘INFINITY’):
	V0: dist= prev= adj: V1
	V1: dist= prev= adj: V3, V4
	V2: dist= prev= adj: V0, V5
	V3: dist= prev= adj: V2, V5, V6
	V4: dist= prev= adj: V1, V6
	V5: dist= prev= adj:
	V6: dist= prev= adj: V5
	• The queue (give source vertex dist=0 and prev=-1 and enqueue to start):

	HEAD TAIL

	Unweighted shortest path, C++ code
	/** Compute the unweighted shortest path. */
	void unweightedShortestPath( int startNode ){
	queue<Vertex*> q;
	initData( ); // sets all Vertex dists to INFINITY, prevs to -1
	Vertex* s = vertexVec[startNode];
	s->dist = 0;
	q.push( s ) ;
	while( !q.empty( ) ) {
	Vertex* v = q.front( ); // get a Vertex* from the queue
	q.pop(); // and remove it from the queue
	std::list<Edge*>::iterator it = v->adj.begin();
	for( ; it != v->adj.end() ; ++it ) { // go thru v’s adj list
	Vertex* w = vertexVec[ it->dest ];
	if( w->dist == INFINITY ) { // not yet visited
	w->dist = v->dist + 1;
	w->prev = v->indx;
	q.push( w );
	}
	}
	}

	Weighted shortest path
	• Input: a weighted directed graph G = (V,E) with no negative edge weights; and a source vertex s in V
	• Output: for each vertex v in V, a representation of the shortest weighted path in G that starts at s and ends at v
	• The best general algorithm for this problem is Djikstra’s algorithm [Djikstra, 1959]
	• Djikstra’s algorithm uses ‘greedy’, ‘best-first’ search and runs in worst-case time O(|E| log|V|)

	Greedy algorithms
	• A greedy algorithm is one that, at each stage of the algorithm, commits to a move that seems to be the best, considering just the state of computation at that stage
	• Greedy algorithms tend to be fast: they don’t require any backtracking or second- guessing
	• However not every problem can be solved with a greedy algorithm!
	• And not every greedy algorithm is fast (may still have exponentially many moves)

	• Example: Huffman’s algorithm for constructing a coding tree is a greedy algorithm
	• At each step you choose two trees to join together, and you never second-guess the choice; but if symbols are not independent the result will not be optimal

	• Example: the usual algorithm for making change (in the U.S.) is a greedy algorithm:
	• Give back as many quarters as possible, then as many dimes as possible, then as many nickels as possible, then the remaining in pennies
	• This algorithm is optimal: it always makes change with the fewest coins possible
	• But suppose there were also a 12-cent coin; then the algorithm is not optimal (consider making 20 cents change...)

	• Djikstra’s algorithm is fast, but it requires the precondition: no edge weights are negative

	Weighted vs. unweighted shortest path algorithms
	• The basic idea is similar to the unweighted case
	• A major difference is this:
	• In an unweighted graph, breadth-first search guarantees that when we first make it to a node v, we can be sure we have found the shortest path to it; more searching will never find a path to v with fewer edges
	• In a weighted graph, when we first make it to a node v, we can’t be sure we have found the best path to v: there could be a path with more edges, but less overall cost, that we would find later

	• Still, Dijkstra’s is a greedy algorithm:
	• At each stage of the algorithm, we will extend the best path we have found so far: this guarantees we will know when we have found the shortest (least-cost) path from the source vertex, if there are no negative-cost edges
	• Keeping track of paths in terms of which is best will require a priority queue -- a very common data structure in greedy algorithms

	• (Note that Djikstra’s algorithm will work for an unweighted graph: treat it as a weighted graph with all edge weights the same, e.g. 1)

	Weighted shortest path: auxilliary data structures
	• Maintain a sequence (e.g. an array) of vertex objects, indexed by vertex number
	• Vertex objects contain these 3 fields (and others):
	• “dist”: the cost of the best (least-cost) path discovered so far from the start vertex to this vertex
	• “prev”: the vertex number (index) of the previous node on that best path
	• “done”: a boolean indicating whether the “dist” and “prev” fields contain the final best values for this vertex, or not


	• Maintain a priority queue
	• The priority queue will contain (pointer-to-vertex, path cost) pairs
	• Path cost is priority, in the sense that low cost means high priority
	• Note: multiple pairs with the same “pointer-to-vertex” part can exist in the priority queue at the same time. These will usually differ in the “path cost” part


	Weighted shortest path: Dijkstra’s algorithm
	0. Initialize the vertex vector for the graph. Set all “dist” fields to INFINITY, and all “done” fields to false. Locate the start vertex s. Set its “dist” field to 0, and its “prev” field to -1. Put the pair (s,0) on the priority queue.
	1. Is the priority queue empty? Done!
	2. Remove from the priority queue the pair (v, cost) with the smallest cost.
	3. Is the “done” field of the vertex v marked true? Go to 1.
	4. Mark the “done” field of vertex v true. The shortest path from s to v is now known, and the “cost” and “prev” fields in v are correct
	5. Traverse v’s adjacency list. For each vertex w adjacent to v: Compute the path cost c from s to w going through v (this is just the sum of the true cost from s to v, which is now known, plus the cost of the edge from v to w). If c is less than t...
	6. Go to 1.

	Weighted shortest path: more algorithm details
	• How do you figure out the actual paths, not just their costs?
	• Same as for the unweighted path algorithm

	• How do you know that when you delete-min vertex v from the priority queue, that we have searched enough to have found the shortest weighted path to v?
	• All the other vertices in the priority queue have at least as great a path cost to them, so we can’t do better by extending those paths to v
	• (If there were negative weights, continuing to add edges to a path can make its cost less, and this “greedy” approach does not work)

	• What is the time complexity of Djikstra’s algorithm?
	• Each element of each adjacency list can be inserted and deleted from the priority queue; there are |E| such elements
	• An insertion or delete-min in a binary heap implementation of a priority queue is O(log N); here N = |E| worst-case
	• So, the algorithm has total worst-case time cost O(|E| log |E|)
	• Since |E| <= |V|2, this is O(|V|2 log |V|) and also O(|E| log |V|)


	Weighted shortest path: an example
	• We will find shortest weighted paths in this graph, with start vertex V0

	Do it!
	• The array of vertices, which include dist, prev, and done fields (initialize dist to ‘INFINITY’ and done to ‘false’):
	V0: dist= prev= done= adj: (V1,1), (V2,6), (V3,3)
	V1: dist= prev= done= adj: (V2,4)
	V2: dist= prev= done= adj:
	V3: dist= prev= done= adj: (V2,1)
	• The priority queue (set start vertex dist=0, prev=-1, and insert it with priority 0 to start)


	Next time
	• Connectedness in graphs
	• Spanning trees in graphs
	• Finding a minimal spanning tree
	• Time costs of graph problems and NP-completeness
	• Finding a minimal spanning tree: Prim’s and Kruskal’s algorithms
	• Intro to disjoint subsets and union/find Reading: Weiss, Ch. 9, Ch 8


