## Lecture 11

- Graphs
- Vertices, edges, paths, cycles
- Sparse and dense graphs
- Representations: adjacency matrices and adjacency lists

Reading: Weiss, Chapter 9

## Kinds of data structures

- You are familiar with these kinds of data structures:
- unstructured structures: sets
- linear, sequential structures: arrays, linked lists
- hierarchical structures: trees
- Now we will look at graphs
- Graphs consist of
- a collection of elements, called "nodes" or "vertices"
- a set of connections, called "edges" or "links" or "arcs", between pairs of nodes
- Graphs are in general not hierarchical or sequential: there is no requirement for a distinguished root node or first node, no requirement that nodes have a unique parent or a unique successor, etc.


## Why graphs?

- Trees are a generalization of lists (a list is just a special case of a tree)...
- Graphs are a generalization of of trees (a tree is just a special case of a graph)...
- So, graphs are very general structures and are very useful in many applications
- the set of machines on the internet, and network lines between them, form a graph
- the set of statements in a program, and flow of control between them, form a graph
- the set of web pages in the world, and HREF links between them, form a graph
- the set of transistors on a chip, and wires between them, form a graph
- the set of possible base sequences in a DNA gene, and mutations between them, form a graph
- the set of possible situations that can arise in solving a problem or playing a game, and moves that get you from one situation to another, form a graph
- et cetera...
- We will look at a formal definition of a graph, some ways of representing graphs, and some important algorithms on graphs


## Graphs: some definitions

- A graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ consists of a set of vertices V and a set of edges E
- Each edge in E is a pair $(\mathrm{v}, \mathrm{w})$ such that v and w are in V .
- If G is an undirected graph, ( $\mathrm{v}, \mathrm{w}$ ) in E means vertices v and w are connected by an edge in G. This ( $\mathrm{v}, \mathrm{w}$ ) is an unordered pair
- If G is a directed graph, ( $\mathrm{v}, \mathrm{w}$ ) in E means there is an edge going from vertex v to vertex w in G . This ( $\mathrm{v}, \mathrm{w}$ ) is an ordered pair; there may or may not also be an edge $(w, v)$ in $E$
- In a weighted graph, each edge also has a "weight" or "cost" c , and an edge in E is a triple (v,w,c)
- When talking about the size of a problem involving a graph, the number of vertices $|\mathrm{V}|$ and the number of edges $|\mathrm{E}|$ will be relevant


## Graphs: an example

- Here is an unweighted directed graph:

- $V=\{$
\}
- $|\mathrm{V}|=$
- $\mathrm{E}=\{$
- $|\mathrm{E}|=$


## Graphs: more definitions

- A path in a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is a sequence of vertices $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{N}}$ in V such that $\left(\mathrm{v}_{\mathrm{i}}\right.$, $\left.\mathrm{v}_{\mathrm{i}+1}\right)$ is in E for all $\mathrm{i}=1, \ldots, \mathrm{~N}-1$.
- The length of a path is the number of edges in the path (might be zero)
- The weighted length of a path is the sum of the weights of the edges in the path
- A simple path is a path in which all the vertices are different (except the first and last can be the same)
- A cycle in a directed graph is a path of length $>=1$ in which the first and last vertices are the same (in an undirected graph, the edges in a cycle must be distinct)
- A simple cycle is a cycle that is a simple path
- If a directed graph has no cycles, it is called a directed acyclic graph (DAG)
- Is the example graph on the previous page a DAG?
- Note: Every tree is a DAG, but not every DAG is a tree. Example:



## Dense and sparse graphs

- If a directed graph has $|\mathrm{V}|$ vertices, how many edges can it have?
- The first vertex can have an edge to every vertex (including itself): |V| edges
- The second vertex can have an edge to every vertex (including itself): $|\mathrm{V}|$ edges
- ... and so on for each of the $|\mathrm{V}|$ vertices; and all these edges are distinct
- So, the maximum total number of edges possible is $|\mathrm{E}|=|\mathrm{V}| \mathrm{x}|\mathrm{V}|=|\mathrm{V}|^{2}$
- A graph with "close to" $|\mathrm{V}|^{2}$ edges is considered dense
- A graph with "closer to" $|\mathrm{V}|$ edges is considered sparse


## Representing graphs

- There are two major techniques for representing graphs:
- Adjacency matrix
- Adjacency list
- Each of these has advantages and we will look at each


## Adjacency matrices

- An adjacency matrix is a 2 D array
- The [i][j] entry in the matrix encodes connectivity information between vertices i and j
- For an unweighted graph, the entry is " 1 " or "true" if there is an edge, " 0 " or "false" if there is no edge
- For a weighted graph, the entry is the weight of the edge, or "infinity" if there is no edge
- For an undirected graph, the matrix will be symmetric (or you could just use an upper-triangular matrix)
- There are $|\mathrm{V}|$ rows and $|\mathrm{V}|$ columns in an adjacency matrix, and so the matrix has $|V|^{2}$ entries
- This is space inefficient for sparse graphs


## Adjacency matrix, an example

- Fill in this adjacency matrix for the example graph:

|  | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 |  |  |  |  |  |  |  |
| 1 |  |  |  |  |  |  |  |
| 2 |  |  |  |  |  |  |  |
| 3 |  |  |  |  |  |  |  |
| 4 |  |  |  |  |  |  |  |
| 5 |  |  |  |  |  |  |  |
| 6 |  |  |  |  |  |  |  |

## Adjacency lists

- An adjacency list representation uses, well, lists
- Each vertex in the graph has associated with it a list of the vertices adjacent to it
- That is, if $\left(\mathrm{v}_{\mathrm{j}}, \mathrm{v}_{\mathrm{k}}\right)$ is an edge in the graph, then $\mathrm{v}_{\mathrm{j}}$ 's adjacency list contains (a reference to) $\mathrm{v}_{\mathrm{k}}$
- For a weighted graph, the list entry would also contain the weight of the edge
- For an undirected graph, if $\mathrm{v}_{\mathrm{j}}$ 's adjacency list contains $\mathrm{v}_{\mathrm{k}}$, then $\mathrm{v}_{\mathrm{k}}$ 's adjacency list should contain $\mathrm{v}_{\mathrm{j}}$
- Using an adjacency list representation, each edge in a directed graph is represented by one item in one list; and there are as many lists as there are vertices
- Therefore the storage required is proportional to $|\mathrm{V}|+|\mathrm{E}|$, which is much better than $|\mathrm{V}|^{2}$ for sparse graphs, and comparable to $|\mathrm{V}|^{2}$ for dense graphs


## Adjacency lists, an example

- Write down the adjacency lists to represent the example graph:

V0:

V1:
V2:
V3:
V4:
V5:
V6:

