
Lecture 11

• Graphs

• Vertices, edges, paths, cycles

• Sparse and dense graphs

• Representations:  adjacency matrices and adjacency lists

Reading:  Weiss, Chapter 9
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Kinds of data structures

• You are familiar with these kinds of data structures:

• unstructured structures:  sets

• linear, sequential structures:  arrays, linked lists

• hierarchical structures:  trees

• Now we will look at graphs

• Graphs consist of 

• a collection of elements, called “nodes” or “vertices”

• a set of connections, called “edges” or “links” or “arcs”, between pairs of nodes

• Graphs are in general not hierarchical or sequential:  there is no requirement for a 
distinguished root node or first node, no requirement that nodes have a unique parent or 
a unique successor, etc.
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Why graphs?

• Trees are a generalization of lists (a list is just a special case of a tree)...

• Graphs are a generalization of of trees (a tree is just a special case of a graph)...

• So, graphs are very general structures and are very useful in many applications

• the set of machines on the internet, and network lines between them, form a graph

• the set of statements in a program, and flow of control between them, form a graph

• the set of web pages in the world, and HREF links between them, form a graph

• the set of transistors on a chip, and wires between them, form a graph

• the set of possible base sequences in a DNA gene, and mutations between them, 
form a graph

• the set of possible situations that can arise in solving a problem or playing a game, 
and moves that get you from one situation to another, form a graph

• et cetera...

• We will look at a formal definition of a graph, some ways of representing graphs, and 
some important algorithms on graphs
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Graphs:  some definitions

• A graph G = (V,E) consists of a set of vertices V and a set of edges E

• Each edge in E is a pair (v,w) such that  v and w are in V.  

• If G is an undirected graph, (v,w)  in E  means  vertices v and w are connected by an 
edge in G.  This (v,w) is an unordered pair

• If G is a directed graph, (v,w)  in E  means there is an edge going from vertex v to 
vertex w in G.  This (v,w) is an ordered pair; there may or may not also be an edge 
(w,v) in E

• In a weighted graph, each edge also has a “weight” or “cost” c, and an edge in E is a 
triple  (v,w,c)

• When talking about the size of a problem involving a graph, the number of vertices |V| 
and the number of edges |E| will be relevant
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Graphs: an example

• Here is an unweighted directed graph:

•  V = {                                                     }   

•    |V| = 

•  E = {                                                                                                                 }

•    |E| = 

V0 V1

V4

V6V5

V2 V3
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Graphs: more definitions

• A path in a graph G=(V,E) is a sequence of vertices v1, v2, ..., vN in V such that (vi, 
vi+1) is in E for all i = 1,...,N-1. 

• The length of a path is the number of edges in the path (might be zero)

• The weighted length of a path is the sum of the weights of the edges in the path

• A simple path is a path in which all the vertices are different (except the first and last 
can be the same)

• A cycle in a directed graph is a path of length >= 1 in which the first and last vertices are 
the same  (in an undirected graph, the edges in a cycle must be distinct)

• A simple cycle is a cycle that is a simple path

• If a directed graph has no cycles, it is called a directed acyclic graph (DAG)

• Is the example graph on the previous page a DAG?

• Note:  Every tree is a DAG, but not every DAG is a tree.  Example:

V1

V4

V3V2
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Dense and sparse graphs

• If a directed graph has |V| vertices, how many edges can it have?

• The first vertex can have an edge to every vertex (including itself): |V| edges

• The second vertex can have an edge to every vertex (including itself): |V| edges

• ... and so on for each of the |V| vertices; and all these edges are distinct

• So, the maximum total number of edges possible is  |E| = |V|x|V| = |V|2

• A graph with “close to” |V|2 edges is considered dense

• A graph with “closer to”  |V| edges is considered sparse
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Representing graphs

• There are two major techniques for representing graphs:

• Adjacency matrix

• Adjacency list

• Each of these has advantages and we will look at each
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Adjacency matrices

• An adjacency matrix is a 2D array

• The [i][j] entry in the matrix encodes connectivity information between vertices i and j

• For an unweighted graph, the entry is “1” or “true” if there is an edge, “0” or “false” 
if there is no edge

• For a weighted graph, the entry is the weight of the edge, or “infinity” if there is no 
edge

• For an undirected graph, the matrix will be symmetric (or you could just use an 
upper-triangular matrix)

• There are |V| rows and |V| columns in an adjacency matrix, and so the matrix has
 |V|2 entries

• This is  space inefficient for sparse graphs
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Adjacency matrix, an example

• Fill in this adjacency matrix for the example graph:

0

1

2

3

4

5

6

0 1 2 3 4 5 6
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Adjacency lists

• An adjacency list representation uses, well, lists

• Each vertex in the graph has associated with it a list of the vertices adjacent to it

• That is, if (vj, vk) is an edge in the graph, then vj’s adjacency list contains (a reference 
to) vk

• For a weighted graph, the list entry would also contain the weight of the edge

• For an undirected graph, if vj’s adjacency list contains vk , then vk’s adjacency list 
should contain vj

• Using an adjacency list representation, each edge in a directed graph is represented by 
one item in one list; and there are as many lists as there are vertices

• Therefore the storage required is proportional to |V| + |E|, which is much better than |V|2 
for sparse graphs, and comparable to |V|2 for dense graphs
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Adjacency lists, an example

• Write down the adjacency lists to represent the example graph:

V0:

V1:

V2:

V3:

V4:

V5:

V6:
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