Graphs

Vertices, edges, paths, cycles

Sparse and dense graphs

Reading: Weiss, Chapter 9

Lecture 11

Representations: adjacency matrices and adjacency lists
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Kinds of data structures

You are familiar with these kinds of data structures:
unstructured structures: sets
linear, sequential structures: arrays, linked lists

hierarchical structures: trees
* Now we will look at graphs

* Graphs consist of
a collection of elements, called “nodes” or “vertices”

a set of connections, called “edges™ or “links” or “arcs”, between pairs of nodes

* Graphs are 1n general not hierarchical or sequential: there 1s no requirement for a
distinguished root node or first node, no requirement that nodes have a unique parent or
a unique successor, etc.
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Why graphs?

* Trees are a generalization of lists (a list is just a special case of a tree)...

» Graphs are a generalization of of trees (a tree is just a special case of a graph)...
* So, graphs are very general structures and are very useful in many applications

the set of machines on the internet, and network lines between them, form a graph
the set of statements in a program, and flow of control between them, form a graph
the set of web pages in the world, and HREF links between them, form a graph

the set of transistors on a chip, and wires between them, form a graph

the set of possible base sequences in a DNA gene, and mutations between them,
form a graph

the set of possible situations that can arise in solving a problem or playing a game,
and moves that get you from one situation to another, form a graph

et cetera...

* We will look at a formal definition of a graph, some ways of representing graphs, and
some important algorithms on graphs
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Graphs: some definitions

* A graph G = (V,E) consists of a set of vertices V and a set of edges E

* Each edge in E is a pair (v,w) such that v and w are in V.

If G is an undirected graph, (v,w) in E means vertices v and w are connected by an
edge in G. This (v,w) is an unordered pair

If G 1s a directed graph, (v,w) in E means there is an edge going from vertex v to
vertex w in G. This (v,w) is an ordered pair; there may or may not also be an edge
(w,v) In E

* In a weighted graph, each edge also has a “weight” or “cost” ¢, and an edge in E is a
triple (v,w,c)

* When talking about the size of a problem involving a graph, the number of vertices |V|
and the number of edges |E| will be relevant
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Graphs: an example
* Here 1s an unweighted directed graph:
\ .
© V=4 b
° |V| =
e E= {
° |E| =
/
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Graphs: more definitions

* A path n a graph G=(V,E) 1s a sequence of vertices vy, v,, ..., viy In V such that (v,
vi+p 1sin E foralli=1,...,N-1.

* The length of a path 1s the number of edges in the path (might be zero)
* The weighted length of a path is the sum of the weights of the edges in the path

* A simple path is a path in which all the vertices are different (except the first and last
can be the same)

* A cycle in a directed graph is a path of length >= 1 in which the first and last vertices are
the same (in an undirected graph, the edges in a cycle must be distinct)

* A simple cycle 1s a cycle that is a simple path

 If a directed graph has no cycles, it 1s called a directed acyclic graph (DAG)
Is the example graph on the previous page a DAG?
Note: Every tree is a DAG, but not every DAG is a tree. Example:

@\ 3
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Dense and sparse graphs

If a directed graph has | V| vertices, how many edges can it have?
The first vertex can have an edge to every vertex (including itself): |V| edges
The second vertex can have an edge to every vertex (including itself): |V| edges

... and so on for each of the | V| vertices; and all these edges are distinct

So, the maximum total number of edges possible is |E| = |V[x|V]|= |V|2

A graph with “close to” |V|2 edges is considered dense

A graph with “closer to” |V]| edges is considered sparse
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Representing graphs

* There are two major techniques for representing graphs:
Adjacency matrix

Adjacency list

* Each of these has advantages and we will look at each
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Adjacency matrices
* An adjacency matrix is a 2D array
* The [1][j] entry in the matrix encodes connectivity information between vertices 1 and j

For an unweighted graph, the entry is “1” or “true” if there is an edge, “0” or “false”
if there is no edge

For a weighted graph, the entry is the weight of the edge, or “infinity” if there is no
edge

For an undirected graph, the matrix will be symmetric (or you could just use an
upper-triangular matrix)

* There are |[V| rows and |V| columns in an adjacency matrix, and so the matrix has
|V|2 entries

* This is space inefficient for sparse graphs
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Adjacency matrix, an example

* Fill in this adjacency matrix for the example graph:

o I 2 3 4 5 6

- %

CSE 100, UCSD: LEC 11 Page 10 of 12



-~

Adjacency lists
* An adjacency list representation uses, well, lists
* Each vertex in the graph has associated with it a list of the vertices adjacent to it

* That s, if (vj, v) is an edge in the graph, then v;’s adjacency list contains (a reference
tO) Vk

For a weighted graph, the list entry would also contain the weight of the edge

For an undirected graph, if v;’s adjacency list contains vy , then vy ’s adjacency list

should contain Vi

» Using an adjacency list representation, each edge in a directed graph is represented by
one item in one list; and there are as many lists as there are vertices

* Therefore the storage required is proportional to |V| + [E|, which is much better than |V|2
for sparse graphs, and comparable to |V|2 for dense graphs
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4 ™
Adjacency lists, an example

* Write down the adjacency lists to represent the example graph:

VO:
V1:
V2:
V3:
V4.
V5.

Vé:
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