
Lecture 11

• Graphs

• Vertices, edges, paths, cycles

• Sparse and dense graphs

• Representations: adjacency matrices and adjacency lists

Reading: Weiss, Chapter 9
Page 1 of 12
CSE 100, UCSD: LEC 11

Kinds of data structures

• You are familiar with these kinds of data structures:

• unstructured structures: sets

• linear, sequential structures: arrays, linked lists

• hierarchical structures: trees

• Now we will look at graphs

• Graphs consist of

• a collection of elements, called “nodes” or “vertices”

• a set of connections, called “edges” or “links” or “arcs”, between pairs of nodes

• Graphs are in general not hierarchical or sequential: there is no requirement for a
distinguished root node or first node, no requirement that nodes have a unique parent or
a unique successor, etc.
Page 2 of 12
CSE 100, UCSD: LEC 11

Why graphs?

• Trees are a generalization of lists (a list is just a special case of a tree)...

• Graphs are a generalization of of trees (a tree is just a special case of a graph)...

• So, graphs are very general structures and are very useful in many applications

• the set of machines on the internet, and network lines between them, form a graph

• the set of statements in a program, and flow of control between them, form a graph

• the set of web pages in the world, and HREF links between them, form a graph

• the set of transistors on a chip, and wires between them, form a graph

• the set of possible base sequences in a DNA gene, and mutations between them,
form a graph

• the set of possible situations that can arise in solving a problem or playing a game,
and moves that get you from one situation to another, form a graph

• et cetera...

• We will look at a formal definition of a graph, some ways of representing graphs, and
some important algorithms on graphs
Page 3 of 12
CSE 100, UCSD: LEC 11

Graphs: some definitions

• A graph G = (V,E) consists of a set of vertices V and a set of edges E

• Each edge in E is a pair (v,w) such that v and w are in V.

• If G is an undirected graph, (v,w) in E means vertices v and w are connected by an
edge in G. This (v,w) is an unordered pair

• If G is a directed graph, (v,w) in E means there is an edge going from vertex v to
vertex w in G. This (v,w) is an ordered pair; there may or may not also be an edge
(w,v) in E

• In a weighted graph, each edge also has a “weight” or “cost” c, and an edge in E is a
triple (v,w,c)

• When talking about the size of a problem involving a graph, the number of vertices |V|
and the number of edges |E| will be relevant
Page 4 of 12
CSE 100, UCSD: LEC 11

Graphs: an example

• Here is an unweighted directed graph:

• V = { }

• |V| =

• E = { }

• |E| =

V0 V1

V4

V6V5

V2 V3
Page 5 of 12
CSE 100, UCSD: LEC 11

Graphs: more definitions

• A path in a graph G=(V,E) is a sequence of vertices v1, v2, ..., vN in V such that (vi,
vi+1) is in E for all i = 1,...,N-1.

• The length of a path is the number of edges in the path (might be zero)

• The weighted length of a path is the sum of the weights of the edges in the path

• A simple path is a path in which all the vertices are different (except the first and last
can be the same)

• A cycle in a directed graph is a path of length >= 1 in which the first and last vertices are
the same (in an undirected graph, the edges in a cycle must be distinct)

• A simple cycle is a cycle that is a simple path

• If a directed graph has no cycles, it is called a directed acyclic graph (DAG)

• Is the example graph on the previous page a DAG?

• Note: Every tree is a DAG, but not every DAG is a tree. Example:

V1

V4

V3V2
Page 6 of 12
CSE 100, UCSD: LEC 11

Dense and sparse graphs

• If a directed graph has |V| vertices, how many edges can it have?

• The first vertex can have an edge to every vertex (including itself): |V| edges

• The second vertex can have an edge to every vertex (including itself): |V| edges

• ... and so on for each of the |V| vertices; and all these edges are distinct

• So, the maximum total number of edges possible is |E| = |V|x|V| = |V|2

• A graph with “close to” |V|2 edges is considered dense

• A graph with “closer to” |V| edges is considered sparse
Page 7 of 12
CSE 100, UCSD: LEC 11

Representing graphs

• There are two major techniques for representing graphs:

• Adjacency matrix

• Adjacency list

• Each of these has advantages and we will look at each
Page 8 of 12
CSE 100, UCSD: LEC 11

Adjacency matrices

• An adjacency matrix is a 2D array

• The [i][j] entry in the matrix encodes connectivity information between vertices i and j

• For an unweighted graph, the entry is “1” or “true” if there is an edge, “0” or “false”
if there is no edge

• For a weighted graph, the entry is the weight of the edge, or “infinity” if there is no
edge

• For an undirected graph, the matrix will be symmetric (or you could just use an
upper-triangular matrix)

• There are |V| rows and |V| columns in an adjacency matrix, and so the matrix has
 |V|2 entries

• This is space inefficient for sparse graphs
Page 9 of 12
CSE 100, UCSD: LEC 11

Adjacency matrix, an example

• Fill in this adjacency matrix for the example graph:

0

1

2

3

4

5

6

0 1 2 3 4 5 6
Page 10 of 12
CSE 100, UCSD: LEC 11

Adjacency lists

• An adjacency list representation uses, well, lists

• Each vertex in the graph has associated with it a list of the vertices adjacent to it

• That is, if (vj, vk) is an edge in the graph, then vj’s adjacency list contains (a reference
to) vk

• For a weighted graph, the list entry would also contain the weight of the edge

• For an undirected graph, if vj’s adjacency list contains vk , then vk’s adjacency list
should contain vj

• Using an adjacency list representation, each edge in a directed graph is represented by
one item in one list; and there are as many lists as there are vertices

• Therefore the storage required is proportional to |V| + |E|, which is much better than |V|2
for sparse graphs, and comparable to |V|2 for dense graphs
Page 11 of 12
CSE 100, UCSD: LEC 11

Adjacency lists, an example

• Write down the adjacency lists to represent the example graph:

V0:

V1:

V2:

V3:

V4:

V5:

V6:
Page 12 of 12
CSE 100, UCSD: LEC 11

	Lecture 11
	• Graphs
	• Vertices, edges, paths, cycles
	• Sparse and dense graphs
	• Representations: adjacency matrices and adjacency lists Reading: Weiss, Chapter 9

	Kinds of data structures
	• You are familiar with these kinds of data structures:
	• unstructured structures: sets
	• linear, sequential structures: arrays, linked lists
	• hierarchical structures: trees

	• Now we will look at graphs
	• Graphs consist of
	• a collection of elements, called “nodes” or “vertices”
	• a set of connections, called “edges” or “links” or “arcs”, between pairs of nodes

	• Graphs are in general not hierarchical or sequential: there is no requirement for a distinguished root node or first node, no requirement that nodes have a unique parent or a unique successor, etc.

	Why graphs?
	• Trees are a generalization of lists (a list is just a special case of a tree)...
	• Graphs are a generalization of of trees (a tree is just a special case of a graph)...
	• So, graphs are very general structures and are very useful in many applications
	• the set of machines on the internet, and network lines between them, form a graph
	• the set of statements in a program, and flow of control between them, form a graph
	• the set of web pages in the world, and HREF links between them, form a graph
	• the set of transistors on a chip, and wires between them, form a graph
	• the set of possible base sequences in a DNA gene, and mutations between them, form a graph
	• the set of possible situations that can arise in solving a problem or playing a game, and moves that get you from one situation to another, form a graph
	• et cetera...

	• We will look at a formal definition of a graph, some ways of representing graphs, and some important algorithms on graphs

	Graphs: some definitions
	• A graph G = (V,E) consists of a set of vertices V and a set of edges E
	• Each edge in E is a pair (v,w) such that v and w are in V.
	• If G is an undirected graph, (v,w) in E means vertices v and w are connected by an edge in G. This (v,w) is an unordered pair
	• If G is a directed graph, (v,w) in E means there is an edge going from vertex v to vertex w in G. This (v,w) is an ordered pair; there may or may not also be an edge (w,v) in E

	• In a weighted graph, each edge also has a “weight” or “cost” c, and an edge in E is a triple (v,w,c)
	• When talking about the size of a problem involving a graph, the number of vertices |V| and the number of edges |E| will be relevant

	Graphs: an example
	• Here is an unweighted directed graph:
	• V = { }
	• |V| =
	• E = { }
	• |E| =

	Graphs: more definitions
	• A path in a graph G=(V,E) is a sequence of vertices v1, v2, ..., vN in V such that (vi, vi+1) is in E for all i = 1,...,N-1.
	• The length of a path is the number of edges in the path (might be zero)
	• The weighted length of a path is the sum of the weights of the edges in the path
	• A simple path is a path in which all the vertices are different (except the first and last can be the same)
	• A cycle in a directed graph is a path of length >= 1 in which the first and last vertices are the same (in an undirected graph, the edges in a cycle must be distinct)
	• A simple cycle is a cycle that is a simple path
	• If a directed graph has no cycles, it is called a directed acyclic graph (DAG)
	• Is the example graph on the previous page a DAG?
	• Note: Every tree is a DAG, but not every DAG is a tree. Example:

	Dense and sparse graphs
	• If a directed graph has |V| vertices, how many edges can it have?
	• The first vertex can have an edge to every vertex (including itself): |V| edges
	• The second vertex can have an edge to every vertex (including itself): |V| edges
	• ... and so on for each of the |V| vertices; and all these edges are distinct

	• So, the maximum total number of edges possible is |E| = |V|x|V| = |V|2
	• A graph with “close to” |V|2 edges is considered dense
	• A graph with “closer to” |V| edges is considered sparse

	Representing graphs
	• There are two major techniques for representing graphs:
	• Adjacency matrix
	• Adjacency list

	• Each of these has advantages and we will look at each

	Adjacency matrices
	• An adjacency matrix is a 2D array
	• The [i][j] entry in the matrix encodes connectivity information between vertices i and j
	• For an unweighted graph, the entry is “1” or “true” if there is an edge, “0” or “false” if there is no edge
	• For a weighted graph, the entry is the weight of the edge, or “infinity” if there is no edge
	• For an undirected graph, the matrix will be symmetric (or you could just use an upper-triangular matrix)

	• There are |V| rows and |V| columns in an adjacency matrix, and so the matrix has |V|2 entries
	• This is space inefficient for sparse graphs

	Adjacency matrix, an example
	• Fill in this adjacency matrix for the example graph:

	Adjacency lists
	• An adjacency list representation uses, well, lists
	• Each vertex in the graph has associated with it a list of the vertices adjacent to it
	• That is, if (vj, vk) is an edge in the graph, then vj’s adjacency list contains (a reference to) vk
	• For a weighted graph, the list entry would also contain the weight of the edge
	• For an undirected graph, if vj’s adjacency list contains vk , then vk’s adjacency list should contain vj

	• Using an adjacency list representation, each edge in a directed graph is represented by one item in one list; and there are as many lists as there are vertices
	• Therefore the storage required is proportional to |V| + |E|, which is much better than |V|2 for sparse graphs, and comparable to |V|2 for dense graphs

	Adjacency lists, an example
	• Write down the adjacency lists to represent the example graph: V0: V1: V2: V3: V4: V5: V6:

