
Lecture 10

• C++ I/O

• Some useful classes in <iostream>

• I/O buffering

• Bit-by-bit I/O

Reading: online documentation on C++ streams
Page 1 of 23
CSE 100, UCSD: LEC 10

A quick tour of the C++ I/O classes

• The C++ standard library defines classes used for I/O

• We will look at some of the most important classes in that package, to understand how
and why to use them

• (For more details, see the online documentation)

• All C++ I/O class names are in the std namespace

• All C++ I/O classes inherit from the class std::ios_base

• We will mainly concetrate on the classes used for file I/O...
Page 2 of 23
CSE 100, UCSD: LEC 10

Class inheritance hierarchy for the C++ I/O classes

• (At the top of each column is shown the system header file that should be included in
order to use the classes in that column)

• Note that cout, cerr are instances of ostream; and cin is an instance of istream

• In fact, the << operator for output, and the >> operator for input, work for any ostream
or istream object, respectively

• However, these operators do “formatted” I/O. What if you want to do raw binary I/O?
Page 3 of 23
CSE 100, UCSD: LEC 10

C++ iostream object error conditions

• When dealing with streams, various errors and exceptional conditions can happen (good
things happen too, hopefully)

• The stream might be corrupted or incapable of working, in some unrecoverable way

• A particular operation might have failed, but the stream is recoverable

• On input, the end of stream (EOF) might be reached

• With these C++ classes, these conditions are signaled by setting flags on the stream
object, which can be inspected with member functions

• These functions are defined in the ios class, so are inherited by all I/O stream objects:
bool bad () const; // return true if "bad" flag is set
bool fail () const; // return true "bad" or "fail" flag is set
bool eof () const; // return true if "eof" flag is set
bool good () const; // return true if no flag is set
void clear (); // clear (i.e. unset) all flags

• (It is also possible to have the stream object throw an exception instead of setting a flag;
see documentation for details)
Page 4 of 23
CSE 100, UCSD: LEC 10

C++ istream

• The istream class introduces member functions in common to all input streams (that
is, streams used for input into your program)

• Some important ones are:

istream& operator>> (type & val);

• This is the stream extraction operator. It is overloaded for many primitive types
type. It performs an input operation on an istream generally involving some sort of
interpretation of the data (like translating a sequence of numerical characters to a
value of a given numerical type). It returns a reference to the istream, so extractions
can be ‘chained’.

int get();

• Perform basic unformatted input. Extracts a single byte from the stream and returns
its value (cast to an integer).

istream& read (char* s, streamsize n);

• Perform unformatted input on a block of data. Reads a block of data of n bytes and
stores it in the array pointed to by s.
Page 5 of 23
CSE 100, UCSD: LEC 10

C++ ostream

• The ostream class introduces member functions in common to all output streams (that
is, streams used for output from your program)

• Some important ones are:
ostream & operator<< (type & val);

• This is the stream insertion operator. It is overloaded for many primitive types
type. It performs an output operation on an ostream generally involving some
formatting of the data (like for example writing a numerical value as a sequence of
characters). It returns a reference to the ostream, so insertions can be ‘chained’.

ostream & put(char c);

• Perform basic unformatted output. Writes a single byte to the stream and returns a
reference to the stream.

ostream & write (const char* s , streamsize n);

• Perform unformatted output on a block of data. Write a block of data of n bytes
starting at address s.

ostream & flush ();

• Any unwritten characters in the ostream’s buffer are written to its output destination
as soon as possible ("flushed").
Page 6 of 23
CSE 100, UCSD: LEC 10

C++ ifstream and ofstream

• The ifstream class introduces functions specialized for doing input from files:

void open (const char * filename,
ios_base::openmode mode = ios_base::in);

• Opens a file whose name is filename.

void close ();

• Closes the file associated with the stream. The stream is flushed first

• The ofstream class introduces functions specialized for doing output to files:

void open (const char * filename,
ios_base::openmode mode = ios_base::out);

• Opens a file whose name is filename.

void close ();

• Closes the file associated with the stream.
Page 7 of 23
CSE 100, UCSD: LEC 10

Binary and nonbinary file streams

• Ultimately, all streams are sequences of bytes: input streams, output streams... text
streams, multimedia streams, TCP/IP socket streams...

• However, for some purposes, on some operating systems, text files are handled
differently from binary files

• Line termination characters for a particular platform may be inserted or removed
automatically

• Conversion to or from a Unicode encoding scheme might be performed

• If you don’t want those extra manipulations to occur, use the flag ios::binary when
you open it, to specify that the file stream is a binary stream
Page 8 of 23
CSE 100, UCSD: LEC 10

Reading binary data from a file: an example

#include <fstream>
using namespace std;
/** Count and output the number of times char ’a’ occurs in
 * a file named by the first command line argument. */
int main(int argc, char** argv) {

ifstream in;
in.open(argv[1], ios::binary);
int count = 0;
char ch;
while(1) {

ch = in.get(); // or: in.read(&ch,1);
if(! in.good()) break; // failure, or eof
if(ch == ’a’) count++; // read an ’a’, count it

}

if(! in.eof()) { // loop stopped for some bad reason...
cerr << "There was a problem, sorry." << endl; return -1;

}
cerr << "There were " << count << " ’a’ chars." << endl;
return 0;
Page 9 of 23
CSE 100, UCSD: LEC 10

Reading formatted data from a file: an example

#include <fstream>
using namespace std;
/** Given a file containing whitespace delimited decimal integers
 * named by the first command line argument, output their sum */
int main(int argc, char** argv) {

ifstream in;
in.open(argv[1]);
int sum = 0, n;
while(1) {

in >> n; // read the next integer from the ifstream
if(! in.good()) break; // failure, or eof
sum += n; // accumulate it in the sum

}

if(! in.eof()) { // loop stopped for some bad reason...
cerr << "There was a problem, sorry." << endl; return -1;

}
cerr << "The sum is: " << sum << endl;
return 0;
Page 10 of 23
CSE 100, UCSD: LEC 10

Formatted vs unformatted file output: an example

#include <fstream>
#include <iomanip>
int main() {

 double d = 3.1415926535;
 ofstream of1;

 of1.open("out1",ios::binary); // to force 1 byte per char
 of1 << setw(12) << d;
 of1.close();

 ofstream of2;
 of2.open("out2",ios::binary);
 of2.write((char*)&d, sizeof(d));
 of2.close();

• What is the resulting size of file out1? ______ bytes

• What does it contain?

• What is the resulting size of file out2? ______ bytes

• What does it contain?
Page 11 of 23
CSE 100, UCSD: LEC 10

Buffering

• The C++ I/O classes ofstream, ifstream, and fstream use buffering

• I/O buffering is the use of an intermediate data structure (called the buffer; usually an
array used with FIFO behavior) to hold data items

• Output buffering: the buffer holds items destined for output until there are enough of
them to send to the destination; then they are sent in one large chunk

• Input buffering: the buffer holds items that have been received from the source in
one large chunk, until the user needs them

• The reason for buffering is that it is often much faster per byte to receive data from a
source, or to send data to a destination, in large chunks, instead of one byte at at time

• This is true, for example, of disk files and internet sockets; even small buffers (512 or
1K bytes), can make a big difference in performance

• Also, operating system I/O calls and disk drives themselves typically perform buffering
Page 12 of 23
CSE 100, UCSD: LEC 10

Buffering and bit-by-bit I/O

• The standard C++ I/O classes do not have any methods for doing I/O a bit at a time

• The smallest unit of input or output is one byte (8 bits)

• This is standard not only in C++, but in just about every other language in the world

• If you want to do bit-by-bit I/O, you need to write your own methods for it

• Basic idea: use a byte as an 8-bit buffer!

• Use bitwise shift and or operators to write individual bits into the byte, or read
individual bits from it;

• flush the byte when it is full, or done with I/O

• For a nice object-oriented design, you can define a class that extends an existing
iostream class, or that delegates to an object of an existing iostream class, and that adds
writeBit or readBit methods (and a flush method which flushes the 8-bit buffer)
Page 13 of 23
CSE 100, UCSD: LEC 10

C++ bitwise operators

• C++ has bitwise logical operators &, |, ^, ~ and shift operators <<, >>,

• Operands to these operators can be of any integral type; the type of the result will be the
same as the type of the left operand

• & does bitwise logical and of its arguments;

• | does logical bitwise or of its arguments;

• ^ does logical bitwise xor of its arguments;

• ~ does bitwise logical complement of its one argument

• << shifts its left argument left by number of bit positions given by its right
argument, shifting in 0 on the right;

• >> shifts its left argument right by number of bit positions given by its right
argument, shifting in the sign bit on the left if the left argument is a signed type, else
shifts in 0
Page 14 of 23
CSE 100, UCSD: LEC 10

C++ bitwise operators: examples

unsigned char a = 5, b = 67;

a & b

a | b

~a

a << 4

b >> 1

(b >> 1) & 1

a | (1 << 5)

a: 1010 0 0 0 0

1100 1 0 0 0

1000 0 0 0 0

1110 1 0 0 0

0101 1 1 1 1

0000 1 0 1 0

1000 0 1 0 0

b:

1000 0 0 0 0

1010 0 1 0 0

one byte

most
significant

bit

least
significant

bit
Page 15 of 23
CSE 100, UCSD: LEC 10

C++ bitwise operators: an exercise

• Selecting a bit: Suppose we want to return the value --- 1 or 0 --- of the nth bit from the
right of a byte argument, and return the result. How to do that?
byte bitVal(char b, int n) {

return
}

• Setting a bit: Suppose we want to set the value --- 1 or 0 --- of the nth bit from the right
of a byte argument, leaving other bits unchanged, and return the result. How to do that?
byte setBit(char b, int bit, int n) {

return
}

Page 16 of 23
CSE 100, UCSD: LEC 10

Defining classes for bitwise I/O

• For a nice object-oriented design, let’s define a class BitOutputStream that delegates
to an object of an existing iostream class, and that adds a writeBit method (and a
flush method which flushes the 8-bit buffer)

• If instead BitOutputStream subclassed an existing class, it would inherit all the
existing methods of its parent class, and so they become part of the subclass’s interface
also

• some of these methods might be useful, but...

• in general it will complicate the interface

• Otherwise the two design approaches are very similar to implement, except that:

• with inheritance, BitOutputStream uses superclass methods to perform operations

• with delegation, BitOutputStream uses methods of a contained object to perform
operations

• We will also consider a BitInputStream class, for bitwise input
Page 17 of 23
CSE 100, UCSD: LEC 10

Outline of a BitOutputStream class, using delegation

#include <iostream>
class BitOutputStream {
private:

char buf; // one byte buffer of bits
int nbits; // how many bits have been written to buf
std::ostream & out; // reference to the output stream to use

public:

/** Initialize a BitOutputStream that will use
 * the given ostream for output.
 */
BitOutputStream(std::ostream & os) : out(os) {

buf = nbits = 0; // clear buffer and bit counter
}

/** Send the buffer to the output, and clear it */
void flush() {

os.put(buf);
os.flush();
bit_buf = nbits = 0;

}

Page 18 of 23
CSE 100, UCSD: LEC 10

Outline of a BitOutputStream class, using delegation (cont’d)

/** Write the least significant bit of the argument to
 * the bit buffer, and increment the bit buffer index.

 * But flush the buffer first, if it is full.
 */
void writeBit(int i) {

// Is the bit buffer full? Then flush it

// Write the least significant bit of i into the buffer
// at the current index

// Increment the index

}

Page 19 of 23
CSE 100, UCSD: LEC 10

Outline of a BitInputStream class, using delegation

#include <iostream>
class BitInputStream {
private:

char buf; // one byte buffer of bits
int nbits; // how many bits have been read from buf
std::istream & in; // the input stream to use

public:

/** Initialize a BitInputStream that will use
 * the given istream for input.
 */
BitOutputStream(std::istream & is) : in(is) {

buf = 0; // clear buffer
nbits = ?? // initialize bit index

}

/** Fill the buffer from the input */
void fill() {

buf = in.get();
nbits = 0;

}

Page 20 of 23
CSE 100, UCSD: LEC 10

Outline of a BitInputStream class, using delegation (cont’d)

/** Read the next bit from the bit buffer.
 * Fill the buffer from the input stream first if needed.
 * Return 1 if the bit read is 1;
 * return 0 if the bit read is 0.
 *
 */
int readBit() {

// If all bits in the buffer are read, fill the buffer first

// Get the bit at the appriopriate location in the bit
// buffer, and return the appropriate int

// Increment the index

}

Page 21 of 23
CSE 100, UCSD: LEC 10

The std::bitset class template

• The STL provides the bitset class template that can be useful when needing to
manipulate individual bits

• #include <bitset> to access the relevant declarations

• The bitset class template takes one template parameter: an integer, specifying how
many bits the bitset contains. So to create a bitset containing 8 bits:

bitset<8> buf;

• By default, a bitset is created with all its bits 0. But the class template overloads the
array indexing operator[] to enable reading and writing individual bits in the bitset
as if they were elements of an array:

buf[0] = 1; // set least-significant bit to 1
buf[2] = 1; // set bit indexed 2 to 1
int b = buf[7]; // access bit indexed 7 as an int

• See the documentation of bitset for more information about its API
Page 22 of 23
CSE 100, UCSD: LEC 10

Next time

• Graphs

• Vertices, edges, paths, cycles

• Sparse and dense graphs

• Representations: adjacency matrices and adjacency lists

• Implementation notes

Reading: Weiss, Chapter 9
Page 23 of 23
CSE 100, UCSD: LEC 10

	Lecture 10
	• C++ I/O
	• Some useful classes in <iostream>
	• I/O buffering
	• Bit-by-bit I/O Reading: online documentation on C++ streams

	A quick tour of the C++ I/O classes
	• The C++ standard library defines classes used for I/O
	• We will look at some of the most important classes in that package, to understand how and why to use them
	• (For more details, see the online documentation)

	• All C++ I/O class names are in the std namespace
	• All C++ I/O classes inherit from the class std::ios_base
	• We will mainly concetrate on the classes used for file I/O...

	Class inheritance hierarchy for the C++ I/O classes
	• (At the top of each column is shown the system header file that should be included in order to use the classes in that column)
	• Note that cout, cerr are instances of ostream; and cin is an instance of istream
	• In fact, the << operator for output, and the >> operator for input, work for any ostream or istream object, respectively
	• However, these operators do “formatted” I/O. What if you want to do raw binary I/O?

	C++ iostream object error conditions
	• When dealing with streams, various errors and exceptional conditions can happen (good things happen too, hopefully)
	• The stream might be corrupted or incapable of working, in some unrecoverable way
	• A particular operation might have failed, but the stream is recoverable
	• On input, the end of stream (EOF) might be reached

	• With these C++ classes, these conditions are signaled by setting flags on the stream object, which can be inspected with member functions
	• These functions are defined in the ios class, so are inherited by all I/O stream objects:
	bool bad () const; // return true if "bad" flag is set
	bool fail () const; // return true "bad" or "fail" flag is set
	bool eof () const; // return true if "eof" flag is set
	bool good () const; // return true if no flag is set
	void clear (); // clear (i.e. unset) all flags
	• (It is also possible to have the stream object throw an exception instead of setting a flag; see documentation for details)

	C++ istream
	• The istream class introduces member functions in common to all input streams (that is, streams used for input into your program)
	• Some important ones are:
	istream& operator>> (type & val);
	• This is the stream extraction operator. It is overloaded for many primitive types type. It performs an input operation on an istream generally involving some sort of interpretation of the data (like translating a sequence of numerical characters ...

	int get();
	• Perform basic unformatted input. Extracts a single byte from the stream and returns its value (cast to an integer).

	istream& read (char* s, streamsize n);
	• Perform unformatted input on a block of data. Reads a block of data of n bytes and stores it in the array pointed to by s.

	C++ ostream
	• The ostream class introduces member functions in common to all output streams (that is, streams used for output from your program)
	• Some important ones are:
	ostream & operator<< (type & val);
	• This is the stream insertion operator. It is overloaded for many primitive types type. It performs an output operation on an ostream generally involving some formatting of the data (like for example writing a numerical value as a sequence of char...

	ostream & put(char c);
	• Perform basic unformatted output. Writes a single byte to the stream and returns a reference to the stream.

	ostream & write (const char* s , streamsize n);
	• Perform unformatted output on a block of data. Write a block of data of n bytes starting at address s.

	ostream & flush ();
	• Any unwritten characters in the ostream’s buffer are written to its output destination as soon as possible ("flushed").

	C++ ifstream and ofstream
	• The ifstream class introduces functions specialized for doing input from files:
	void open (const char * filename,
	ios_base::openmode mode = ios_base::in);
	• Opens a file whose name is filename.

	void close ();
	• Closes the file associated with the stream. The stream is flushed first
	• The ofstream class introduces functions specialized for doing output to files:

	void open (const char * filename,
	ios_base::openmode mode = ios_base::out);
	• Opens a file whose name is filename.

	void close ();
	• Closes the file associated with the stream.

	Binary and nonbinary file streams
	• Ultimately, all streams are sequences of bytes: input streams, output streams... text streams, multimedia streams, TCP/IP socket streams...
	• However, for some purposes, on some operating systems, text files are handled differently from binary files
	• Line termination characters for a particular platform may be inserted or removed automatically
	• Conversion to or from a Unicode encoding scheme might be performed

	• If you don’t want those extra manipulations to occur, use the flag ios::binary when you open it, to specify that the file stream is a binary stream

	Reading binary data from a file: an example
	#include <fstream>
	using namespace std;
	/** Count and output the number of times char ’a’ occurs in
	* a file named by the first command line argument. */
	int main(int argc, char** argv) {
	ifstream in;
	in.open(argv[1], ios::binary);
	int count = 0;
	char ch;
	while(1) {
	ch = in.get(); // or: in.read(&ch,1);
	if(! in.good()) break; // failure, or eof
	if(ch == ’a’) count++; // read an ’a’, count it
	}
	if(! in.eof()) { // loop stopped for some bad reason...
	cerr << "There was a problem, sorry." << endl; return -1;
	}
	cerr << "There were " << count << " ’a’ chars." << endl;
	return 0;

	Reading formatted data from a file: an example
	#include <fstream>
	using namespace std;
	/** Given a file containing whitespace delimited decimal integers
	* named by the first command line argument, output their sum */
	int main(int argc, char** argv) {
	ifstream in;
	in.open(argv[1]);
	int sum = 0, n;
	while(1) {
	in >> n; // read the next integer from the ifstream
	if(! in.good()) break; // failure, or eof
	sum += n; // accumulate it in the sum
	}
	if(! in.eof()) { // loop stopped for some bad reason...
	cerr << "There was a problem, sorry." << endl; return -1;
	}
	cerr << "The sum is: " << sum << endl;
	return 0;

	Formatted vs unformatted file output: an example
	#include <fstream>
	#include <iomanip>
	int main() {
	double d = 3.1415926535;
	ofstream of1;
	of1.open("out1",ios::binary); // to force 1 byte per char
	of1 << setw(12) << d;
	of1.close();
	ofstream of2;
	of2.open("out2",ios::binary);
	of2.write((char*)&d, sizeof(d));
	of2.close();
	• What is the resulting size of file out1? ______ bytes
	• What does it contain?

	• What is the resulting size of file out2? ______ bytes
	• What does it contain?

	Buffering
	• The C++ I/O classes ofstream, ifstream, and fstream use buffering
	• I/O buffering is the use of an intermediate data structure (called the buffer; usually an array used with FIFO behavior) to hold data items
	• Output buffering: the buffer holds items destined for output until there are enough of them to send to the destination; then they are sent in one large chunk
	• Input buffering: the buffer holds items that have been received from the source in one large chunk, until the user needs them

	• The reason for buffering is that it is often much faster per byte to receive data from a source, or to send data to a destination, in large chunks, instead of one byte at at time
	• This is true, for example, of disk files and internet sockets; even small buffers (512 or 1K bytes), can make a big difference in performance
	• Also, operating system I/O calls and disk drives themselves typically perform buffering

	Buffering and bit-by-bit I/O
	• The standard C++ I/O classes do not have any methods for doing I/O a bit at a time
	• The smallest unit of input or output is one byte (8 bits)
	• This is standard not only in C++, but in just about every other language in the world
	• If you want to do bit-by-bit I/O, you need to write your own methods for it
	• Basic idea: use a byte as an 8-bit buffer!
	• Use bitwise shift and or operators to write individual bits into the byte, or read individual bits from it;
	• flush the byte when it is full, or done with I/O

	• For a nice object-oriented design, you can define a class that extends an existing iostream class, or that delegates to an object of an existing iostream class, and that adds writeBit or readBit methods (and a flush method which flushes the 8-bit...

	C++ bitwise operators
	• C++ has bitwise logical operators &, |, ^, ~ and shift operators <<, >>,
	• Operands to these operators can be of any integral type; the type of the result will be the same as the type of the left operand
	• & does bitwise logical and of its arguments;
	• | does logical bitwise or of its arguments;
	• ^ does logical bitwise xor of its arguments;
	• ~ does bitwise logical complement of its one argument
	• << shifts its left argument left by number of bit positions given by its right argument, shifting in 0 on the right;
	• >> shifts its left argument right by number of bit positions given by its right argument, shifting in the sign bit on the left if the left argument is a signed type, else shifts in 0

	C++ bitwise operators: examples
	unsigned char a = 5, b = 67;
	a & b
	a | b
	~a
	a << 4
	b >> 1
	(b >> 1) & 1
	a | (1 << 5)

	C++ bitwise operators: an exercise
	• Selecting a bit: Suppose we want to return the value --- 1 or 0 --- of the nth bit from the right of a byte argument, and return the result. How to do that?
	byte bitVal(char b, int n) {
	return
	}
	• Setting a bit: Suppose we want to set the value --- 1 or 0 --- of the nth bit from the right of a byte argument, leaving other bits unchanged, and return the result. How to do that?

	byte setBit(char b, int bit, int n) {
	return
	}

	Defining classes for bitwise I/O
	• For a nice object-oriented design, let’s define a class BitOutputStream that delegates to an object of an existing iostream class, and that adds a writeBit method (and a flush method which flushes the 8-bit buffer)
	• If instead BitOutputStream subclassed an existing class, it would inherit all the existing methods of its parent class, and so they become part of the subclass’s interface also
	• some of these methods might be useful, but...
	• in general it will complicate the interface

	• Otherwise the two design approaches are very similar to implement, except that:
	• with inheritance, BitOutputStream uses superclass methods to perform operations
	• with delegation, BitOutputStream uses methods of a contained object to perform operations

	• We will also consider a BitInputStream class, for bitwise input

	Outline of a BitOutputStream class, using delegation
	#include <iostream>
	class BitOutputStream { private:
	char buf; // one byte buffer of bits
	int nbits; // how many bits have been written to buf
	std::ostream & out; // reference to the output stream to use
	public:
	/** Initialize a BitOutputStream that will use
	* the given ostream for output.
	*/
	BitOutputStream(std::ostream & os) : out(os) {
	buf = nbits = 0; // clear buffer and bit counter
	}
	/** Send the buffer to the output, and clear it */
	void flush() {
	os.put(buf);
	os.flush();
	bit_buf = nbits = 0; }

	Outline of a BitOutputStream class, using delegation (cont’d)
	/** Write the least significant bit of the argument to
	* the bit buffer, and increment the bit buffer index.
	* But flush the buffer first, if it is full.
	*/
	void writeBit(int i) {
	// Is the bit buffer full? Then flush it
	// Write the least significant bit of i into the buffer
	// at the current index
	// Increment the index
	}

	Outline of a BitInputStream class, using delegation
	#include <iostream>
	class BitInputStream { private:
	char buf; // one byte buffer of bits
	int nbits; // how many bits have been read from buf
	std::istream & in; // the input stream to use
	public:
	/** Initialize a BitInputStream that will use
	* the given istream for input.
	*/
	BitOutputStream(std::istream & is) : in(is) {
	buf = 0; // clear buffer
	nbits = ?? // initialize bit index
	}
	/** Fill the buffer from the input */
	void fill() {
	buf = in.get();
	nbits = 0; }

	Outline of a BitInputStream class, using delegation (cont’d)
	/** Read the next bit from the bit buffer.
	* Fill the buffer from the input stream first if needed.
	* Return 1 if the bit read is 1;
	* return 0 if the bit read is 0.
	*
	*/
	int readBit() {
	// If all bits in the buffer are read, fill the buffer first
	// Get the bit at the appriopriate location in the bit
	// buffer, and return the appropriate int
	// Increment the index
	}

	The std::bitset class template
	• The STL provides the bitset class template that can be useful when needing to manipulate individual bits
	• #include <bitset> to access the relevant declarations

	• The bitset class template takes one template parameter: an integer, specifying how many bits the bitset contains. So to create a bitset containing 8 bits:
	bitset<8> buf;
	• By default, a bitset is created with all its bits 0. But the class template overloads the array indexing operator[] to enable reading and writing individual bits in the bitset as if they were elements of an array:

	buf[0] = 1; // set least-significant bit to 1
	buf[2] = 1; // set bit indexed 2 to 1
	int b = buf[7]; // access bit indexed 7 as an int
	• See the documentation of bitset for more information about its API

	Next time
	• Graphs
	• Vertices, edges, paths, cycles
	• Sparse and dense graphs
	• Representations: adjacency matrices and adjacency lists
	• Implementation notes Reading: Weiss, Chapter 9

