
CSE 100
Advanced Data Structures

• Overview of course requirements

• Outline of CSE 100 topics

• Review of trees

• Helpful hints for team programming

• Information about computer accounts
Page 1 of 25
CSE 100, UCSD: LEC 1

CSE 100 web pages

• All information related to the course is available in the textbook or online, following
links from the class home page:

http://ieng6.ucsd.edu/~cs100f

• You’re responsible for knowing that information, so make a note of that URL and read
what’s there
Page 2 of 25
CSE 100, UCSD: LEC 1

http://ieng6.ucsd.edu/~cs100w

Topics for the course!

• In CSE 100, we will build on what you have already learned about programming:
procedural and data abstraction, object-oriented programming, and elementary data
structure and algorithm design, implementation, and analysis

• We will build on that, and go beyond it, to learn about more advanced, high-
performance data structures and algorithms:

• Balanced search trees: AVL, red-black, B-trees

• Binary tries and Huffman codes for compression

• Graphs as data structures, and graph algorithms

• Data structures for disjoint-subset and union-find algorithms

• More about hash functions and hashing techniques

• Randomized data structures: skip lists, treaps

• Amortized cost analysis

• The C++ standard template library (STL)
Page 3 of 25
CSE 100, UCSD: LEC 1

Data structures, in general

• A data structure is... a structure that holds data

• A data structure is an object that offers certain useful operations (its “Application
Programmer Interface”, or API), for example storing, retrieving, and deleting data of a
certain type

• A data structure may offer certain performance guarantees on its operations, for
example certain best-, worst-, or average-case time or space costs

• To meet those performance guarantees, a data structure may need to be implemented in
a particular way

• In CSE 100 we will study the performance guarantees that are permitted by various data
structure implementations

• We will begin by reviewing trees...
Page 4 of 25
CSE 100, UCSD: LEC 1

A review of trees

• A tree is a hierarchical (not just linear, and not unstructured!) data structure

• A tree is a set of elements called nodes, structured by a "parent" relation:

• If the tree is nonempty, exactly one node in the set is the root of the tree

• The root of a tree is the unique node that has no parent

• Every node in the set except the root has exactly one other node that is its parent
Page 5 of 25
CSE 100, UCSD: LEC 1

Drawing trees

• The root goes at the top: here node A is the root of the tree (in Computerscienceland,
trees grow upside down)

• The parent of a node is drawn above that node, with a "link" or "edge" from the node to
its parent: here node A is the parent of nodes B,C ; and B,C are called the children of A

• Some nodes have no children, and are called leaves of the tree: here nodes D, G, I, J, L
are leaves

A

B C

D E F

G H I J

K

L

Page 6 of 25
CSE 100, UCSD: LEC 1

Tree terminology: some definitions

• Children of a node P: the set of nodes that have P as parent

• Descendant of a node P:

• If a node C is a child of P, then C is a descendant of P

• If a node C is a child of a descendant of P, then C is a descendant of P

• Ancestor of a node C: if C is a descendant of P, then P is an ancestor of C

• Root of a tree: the unique node in the tree with no parent

• Leaves of a tree: the set of nodes with no children

• Subtree:

• The empty tree is a subtree of every tree

• Any node of a tree together with its descendants is a subtree of the tree

• Level or depth of a node (using ‘zero-based’ counting):

• The level of the root is 0.

• The level of any non-root node is 1 + the level of its parent (this is equal to the
number of edges on the path from the root to the node)

• Height of a node: the height of a node is the number of edges on the longest path from
the node to a leaf

• Height of a tree: the height of the root of the tree
Page 7 of 25
CSE 100, UCSD: LEC 1

Binary trees

• A binary tree is a tree in which every node has at most two children

• A particular child of a binary tree node is either a “left child” or a “right child”

• Recursive definition of "binary tree": either the empty tree, or a node together with left
and right subtrees which are both binary trees

• Examples:
Page 8 of 25
CSE 100, UCSD: LEC 1

Important binary tree properties

• Consider a “completely filled” binary tree (every level that has any nodes at all has as
many nodes as possible):

• Generalizing, how many nodes at level L? ___________

• And so, how many nodes in a completely filled binary tree of height H? __________

• And so, what is the height of a completely filled binary tree with N nodes?________

How many nodes at level 0?

How many nodes at level 1?

How many nodes at level 2?

How many nodes at level 3?
Page 9 of 25
CSE 100, UCSD: LEC 1

In a completely filled binary tree with N nodes...

• Generalizing, how many nodes at level L?

• And so, how many nodes in a completely filled binary tree of height H?

• And so, what is the height of a completely filled binary tree with N nodes?

2L

N 2L

L 0=

H

 2H 1+ 1–= =

2H 1+ N 1+=

H 1+ log2 N 1+() so=

H O Nlog() and H Nlog() and so H Nlog()===
Page 10 of 25
CSE 100, UCSD: LEC 1

Reviewing “big-O” notation

• Write:

• And say: " is ‘big-O’ of " if there are positive constants c, such that for
all ,

... that is, g eventually grows no faster than f (times a constant).

... f gives an asymptotic upper bound on the rate of growth of g.

... the order of g is at most the order of f

g N O f N () =

g N f N n0
N n0

g N cf N
Page 11 of 25
CSE 100, UCSD: LEC 1

Reviewing “big-omega” notation

• Write:

• And say: " is ‘big-omega’ of " if there are positive constants c, such that
for all ,

... that is, g eventually grows at least as fast as f (times a constant).

... f gives an asymptotic lower bound on the rate of growth of g.

... the order of g is at least the order of f

g N f N ()=

g N f N n0
N n0

g N cf N
Page 12 of 25
CSE 100, UCSD: LEC 1

Reviewing “big-theta” notation

• Write:

• And say: " is ‘big-theta’ of " if is both ‘big-O’ and ‘big-omega’ of
.

... f gives a good qualitative estimate -- a “tight bound” -- on the rate of growth of g

... the order of g is the same as the order of f

g N f N ()=

g N f N g N
f N
Page 13 of 25
CSE 100, UCSD: LEC 1

Genaralizing binary trees: K-ary trees

• An K-ary tree is a tree in which every node has at most K children

• K=2 gives binary trees, K=3 gives ternary trees, etc.

• Possible children of a node in a K-ary tree are sequentially ordered, left-to-right

• Recursive definition of "K-ary tree": either the empty tree, or a node together with at
most K subtrees which are all K-ary trees

• Examples of useful K-ary (K>2) trees we will cover later: 2-3 trees, B-trees, alphabet
tries

• Basic properties of binary trees generalize to properties of K-ary trees...
Page 14 of 25
CSE 100, UCSD: LEC 1

In a completely filled K-ary tree with M nodes...

• Generalizing, how many nodes at level L?

• And so, how many nodes in a completely filled K-ary tree of height H?

• And so, what is the height of a completely filled K-ary tree with N nodes?

KL

N KL

L 0=

H

KH 1+ 1–

K 1–
-----------------------= =

KH 1+ N K 1– 1+=

H 1+ logK N K 1– 1+() so=

H O Nlog() and H Nlog() and so H Nlog()===
Page 15 of 25
CSE 100, UCSD: LEC 1

Tree properties, continued

• A completely filled K-ary tree with N nodes has the minimum height possible of any
K-ary tree with N nodes... In fact for any K-ary tree,

and so

• But what is the maximum height possible for a K-ary tree with N nodes? __________

H logK N K 1– 1+ 1–

H logKN 2–
Page 16 of 25
CSE 100, UCSD: LEC 1

Tree properties, good and bad

• Many interesting operations on tree data structures have a time cost that, in the worst
case, is proportional to the height of the tree

• Find, insert, and delete operations in search trees,

• Insert and delete-root operations in heaps, etc.

• For a completely filled tree, that means that these operations have a worst-case time
cost that is a logarithmic function of the number of nodes N in the tree

• log(N) grows very slowly as a function of N, which is good!

• This fact is one of the main reasons that trees are an important data structure

• But for a “worst-case” tree, that means that these operations have a worst-case time
cost that is a linear function of the number of nodes N in the tree

• This means the time cost grows proportionally to N, which is not very good!

• This fact is a major problem with using trees in many applications, but it can be
overcome, as we will see
Page 17 of 25
CSE 100, UCSD: LEC 1

The importance of being balanced

• A binary tree of N nodes is considered “balanced” if its height is close to log2(N)

• The usual simple algorithm for inserting nodes in a search tree can produce unbalanced
trees, which lead to poor performance

• ... and this is can easily happen in practice: for example, it will happen if the keys to
be inserted are sorted or almost sorted

• With cleverer insert operations, you can make sure the tree is always balanced no matter
what, and guarantee excellent worst-case performance... at the cost of a more
complicated implementation

• We will first look at implementation issues for binary search trees in general

• Then later we will look at a few approaches to improving performance of binary search
trees:

• AVL trees, red-black trees, B-trees, splay trees, randomized search trees
Page 18 of 25
CSE 100, UCSD: LEC 1

Working in teams

• In CSE 100 this quarter, you are allowed and encouraged to write your programming
assignments in teams of 2

• This can work out very well, if members of the team have compatible skills, schedules,
and personalities, and if you follow some basic software engineering principles

• (Otherwise, it won’t work well, and you will be better off working on your own)

• I will sketch two approaches that you can use:

• The standard software life cycle

• Extreme programming

• (More information is available on the web and elsewhere)
Page 19 of 25
CSE 100, UCSD: LEC 1

The standard software life cycle

• Some variant of this is used in most software projects. Basic steps:

• Requirements

• Get the requirements for the software from the customer (or in CSE 100 from the
assignment README...)

• Make sure they are clear and that you understand them!

• Design

• Before coding, create a design for a software system that will meet the requirements

• Use good design principles: top-down decomposition, abstraction, modularity,
information hiding, etc.

• Code

• Divide the coding task among members of the team, and code according to a
common standard (including style and comments)

• Test

• Thoroughly test each “unit” (block, method, class, package) and the entire system

• Deploy

• Deliver the completed system (or in CSE 100, turn in your assignment)
Page 20 of 25
CSE 100, UCSD: LEC 1

Extreme programming (“XP”)

• A new and somewhat different software engineering approach, very successful when
used for small software projects (say, less than 16 programmers). Some XP practices:

• The planning process

• Rank desired system features by importance, determined by need and cost

• Pair programming

• Write all code in pairs, two programmers working together at one machine

• “Driver” controls the keyboard and mouse and types code; “Observer” makes
suggestions, identifies problems, thinks strategically. Both brainstorm as needed.

• Switch roles often

• Small releases

• Put a simple system into production early, and update it frequently on a short cycle

• Test first and often

• XP teams focus on validation of the software at all times. Write unit tests first, then
write code that fulfills the requirements reflected in the tests

• Refactoring

• XP teams improve the design of the system throughout the entire development. This
is done by keeping the software clean: without duplication, simple yet complete
Page 21 of 25
CSE 100, UCSD: LEC 1

Basic software principles

• Whether you use XP or a more traditional approach, some things to keep in mind:

• Top-down, divide-and-conquer design strategies are useful; break the overall
problem down into small, manageable subproblems

• Using object-oriented design, think of solving the problem using objects that have
certain properties (instance variables) and behaviors (instance methods)

• In your design, be clear about what is the interface to each piece of your solution

• In object-oriented design, the interface to a piece of the solution consists of the
public (static or instance) methods of a class; be clear about PRE and POST
conditions, and what arguments, return values, and side effects each method has

• With a good design, each member of the team can, in principle, work on the
implementation of a piece of the solution separately; as long as the implementation
meets the interface specification, the system will work

• A strategy: at first, use implementations that are fast and easy to write, but that
work. Later, improve the implementation for better performance, while keeping the
interface the same

• Be sure to test and debug your solution! This may lead to a redesign, but hopefully
it involves only small changes to the implementation
Page 22 of 25
CSE 100, UCSD: LEC 1

Getting started

• Read chapter 1 of the required textbook for a review of some mathematical concepts,
and an introduction to C++

• Read chapter 2 for a review of asymptotic analysis and big-O notation

• Read chapter 4 for a review of trees

• We will then start with a C++ implementation of a binary search tree class template
Page 23 of 25
CSE 100, UCSD: LEC 1

Class accounts

• If you are using your UCSD email account user name for CSE 100:

• password is your UCSD email account password

• be sure to run the command “prep cs100f” each time you log in to ieng6, to
access course-specific paths, etc.

• If you are using a cs100 account for CSE 100:

• password is your UCSD email account password

• also be sure to “prep cs100f” after logging in

• If you don’t know which accounts you have, use the ACS account lookup tool!

• For the Moodle discussion board:

• use your UCSD email account user name, with your email password
Page 24 of 25
CSE 100, UCSD: LEC 1

Next time...

• An introduction to C++

• Comparing Java and C++

• Basic C++ programming

• C++ primitive types and operators

• Arrays, pointers and pointer arithmetic

• The interface/implementation distinction in C++

• C++ class templates

Reading: Weiss Ch 1
Page 25 of 25
CSE 100, UCSD: LEC 1

	CSE 100 Advanced Data Structures
	• Overview of course requirements
	• Outline of CSE 100 topics
	• Review of trees
	• Helpful hints for team programming
	• Information about computer accounts

	CSE 100 web pages
	• All information related to the course is available in the textbook or online, following links from the class home page: http://ieng6.ucsd.edu/~cs100f
	• You’re responsible for knowing that information, so make a note of that URL and read what’s there

	Topics for the course!
	• In CSE 100, we will build on what you have already learned about programming: procedural and data abstraction, object-oriented programming, and elementary data structure and algorithm design, implementation, and analysis
	• We will build on that, and go beyond it, to learn about more advanced, high- performance data structures and algorithms:
	• Balanced search trees: AVL, red-black, B-trees
	• Binary tries and Huffman codes for compression
	• Graphs as data structures, and graph algorithms
	• Data structures for disjoint-subset and union-find algorithms
	• More about hash functions and hashing techniques
	• Randomized data structures: skip lists, treaps
	• Amortized cost analysis
	• The C++ standard template library (STL)

	Data structures, in general
	• A data structure is... a structure that holds data
	• A data structure is an object that offers certain useful operations (its “Application Programmer Interface”, or API), for example storing, retrieving, and deleting data of a certain type
	• A data structure may offer certain performance guarantees on its operations, for example certain best-, worst-, or average-case time or space costs
	• To meet those performance guarantees, a data structure may need to be implemented in a particular way
	• In CSE 100 we will study the performance guarantees that are permitted by various data structure implementations
	• We will begin by reviewing trees...

	A review of trees
	• A tree is a hierarchical (not just linear, and not unstructured!) data structure
	• A tree is a set of elements called nodes, structured by a "parent" relation:
	• If the tree is nonempty, exactly one node in the set is the root of the tree
	• The root of a tree is the unique node that has no parent
	• Every node in the set except the root has exactly one other node that is its parent

	Drawing trees
	• The root goes at the top: here node A is the root of the tree (in Computerscienceland, trees grow upside down)
	• The parent of a node is drawn above that node, with a "link" or "edge" from the node to its parent: here node A is the parent of nodes B,C ; and B,C are called the children of A
	• Some nodes have no children, and are called leaves of the tree: here nodes D, G, I, J, L are leaves

	Tree terminology: some definitions
	• Children of a node P: the set of nodes that have P as parent
	• Descendant of a node P:
	• If a node C is a child of P, then C is a descendant of P
	• If a node C is a child of a descendant of P, then C is a descendant of P

	• Ancestor of a node C: if C is a descendant of P, then P is an ancestor of C
	• Root of a tree: the unique node in the tree with no parent
	• Leaves of a tree: the set of nodes with no children
	• Subtree:
	• The empty tree is a subtree of every tree
	• Any node of a tree together with its descendants is a subtree of the tree

	• Level or depth of a node (using ‘zero-based’ counting):
	• The level of the root is 0.
	• The level of any non-root node is 1 + the level of its parent (this is equal to the number of edges on the path from the root to the node)

	• Height of a node: the height of a node is the number of edges on the longest path from the node to a leaf
	• Height of a tree: the height of the root of the tree

	Binary trees
	• A binary tree is a tree in which every node has at most two children
	• A particular child of a binary tree node is either a “left child” or a “right child”
	• Recursive definition of "binary tree": either the empty tree, or a node together with left and right subtrees which are both binary trees
	• Examples:

	Important binary tree properties
	• Consider a “completely filled” binary tree (every level that has any nodes at all has as many nodes as possible):
	• Generalizing, how many nodes at level L? ___________
	• And so, how many nodes in a completely filled binary tree of height H? __________
	• And so, what is the height of a completely filled binary tree with N nodes?________

	In a completely filled binary tree with N nodes...
	• Generalizing, how many nodes at level L?
	• And so, how many nodes in a completely filled binary tree of height H?
	• And so, what is the height of a completely filled binary tree with N nodes?

	Reviewing “big-O” notation
	• Write:
	• And say: " is ‘big-O’ of " if there are positive constants c, such that for all , ... that is, g eventually grows no faster than f (times a constant). ... f gives an asymptotic upper bound on the rate of growth of g. ... the order of g is at ...

	Reviewing “big-omega” notation
	• Write:
	• And say: " is ‘big-omega’ of " if there are positive constants c, such that for all , ... that is, g eventually grows at least as fast as f (times a constant). ... f gives an asymptotic lower bound on the rate of growth of g. ... the order of...

	Reviewing “big-theta” notation
	• Write:
	• And say: " is ‘big-theta’ of " if is both ‘big-O’ and ‘big-omega’ of f gives a good qualitative estimate -- a “tight bound” -- on the rate of growth of g ... the order of g is the same as the order of f

	Genaralizing binary trees: K-ary trees
	• An K-ary tree is a tree in which every node has at most K children
	• K=2 gives binary trees, K=3 gives ternary trees, etc.
	• Possible children of a node in a K-ary tree are sequentially ordered, left-to-right
	• Recursive definition of "K-ary tree": either the empty tree, or a node together with at most K subtrees which are all K-ary trees
	• Examples of useful K-ary (K>2) trees we will cover later: 2-3 trees, B-trees, alphabet tries
	• Basic properties of binary trees generalize to properties of K-ary trees...

	In a completely filled K-ary tree with M nodes...
	• Generalizing, how many nodes at level L?
	• And so, how many nodes in a completely filled K-ary tree of height H?
	• And so, what is the height of a completely filled K-ary tree with N nodes?

	Tree properties, continued
	• A completely filled K-ary tree with N nodes has the minimum height possible of any K-ary tree with N nodes... In fact for any K-ary tree, and so
	• But what is the maximum height possible for a K-ary tree with N nodes? __________

	Tree properties, good and bad
	• Many interesting operations on tree data structures have a time cost that, in the worst case, is proportional to the height of the tree
	• Find, insert, and delete operations in search trees,
	• Insert and delete-root operations in heaps, etc.

	• For a completely filled tree, that means that these operations have a worst-case time cost that is a logarithmic function of the number of nodes N in the tree
	• log(N) grows very slowly as a function of N, which is good!
	• This fact is one of the main reasons that trees are an important data structure

	• But for a “worst-case” tree, that means that these operations have a worst-case time cost that is a linear function of the number of nodes N in the tree
	• This means the time cost grows proportionally to N, which is not very good!
	• This fact is a major problem with using trees in many applications, but it can be overcome, as we will see

	The importance of being balanced
	• A binary tree of N nodes is considered “balanced” if its height is close to log2(N)
	• The usual simple algorithm for inserting nodes in a search tree can produce unbalanced trees, which lead to poor performance
	• ... and this is can easily happen in practice: for example, it will happen if the keys to be inserted are sorted or almost sorted

	• With cleverer insert operations, you can make sure the tree is always balanced no matter what, and guarantee excellent worst-case performance... at the cost of a more complicated implementation
	• We will first look at implementation issues for binary search trees in general
	• Then later we will look at a few approaches to improving performance of binary search trees:
	• AVL trees, red-black trees, B-trees, splay trees, randomized search trees

	Working in teams
	• In CSE 100 this quarter, you are allowed and encouraged to write your programming assignments in teams of 2
	• This can work out very well, if members of the team have compatible skills, schedules, and personalities, and if you follow some basic software engineering principles
	• (Otherwise, it won’t work well, and you will be better off working on your own)
	• I will sketch two approaches that you can use:
	• The standard software life cycle
	• Extreme programming

	• (More information is available on the web and elsewhere)

	The standard software life cycle
	• Some variant of this is used in most software projects. Basic steps:
	• Requirements
	• Get the requirements for the software from the customer (or in CSE 100 from the assignment README...)
	• Make sure they are clear and that you understand them!

	• Design
	• Before coding, create a design for a software system that will meet the requirements
	• Use good design principles: top-down decomposition, abstraction, modularity, information hiding, etc.

	• Code
	• Divide the coding task among members of the team, and code according to a common standard (including style and comments)

	• Test
	• Thoroughly test each “unit” (block, method, class, package) and the entire system

	• Deploy
	• Deliver the completed system (or in CSE 100, turn in your assignment)

	Extreme programming (“XP”)
	• A new and somewhat different software engineering approach, very successful when used for small software projects (say, less than 16 programmers). Some XP practices:
	• The planning process
	• Rank desired system features by importance, determined by need and cost

	• Pair programming
	• Write all code in pairs, two programmers working together at one machine
	• “Driver” controls the keyboard and mouse and types code; “Observer” makes suggestions, identifies problems, thinks strategically. Both brainstorm as needed.
	• Switch roles often

	• Small releases
	• Put a simple system into production early, and update it frequently on a short cycle

	• Test first and often
	• XP teams focus on validation of the software at all times. Write unit tests first, then write code that fulfills the requirements reflected in the tests

	• Refactoring
	• XP teams improve the design of the system throughout the entire development. This is done by keeping the software clean: without duplication, simple yet complete

	Basic software principles
	• Whether you use XP or a more traditional approach, some things to keep in mind:
	• Top-down, divide-and-conquer design strategies are useful; break the overall problem down into small, manageable subproblems
	• Using object-oriented design, think of solving the problem using objects that have certain properties (instance variables) and behaviors (instance methods)
	• In your design, be clear about what is the interface to each piece of your solution
	• In object-oriented design, the interface to a piece of the solution consists of the public (static or instance) methods of a class; be clear about PRE and POST conditions, and what arguments, return values, and side effects each method has
	• With a good design, each member of the team can, in principle, work on the implementation of a piece of the solution separately; as long as the implementation meets the interface specification, the system will work
	• A strategy: at first, use implementations that are fast and easy to write, but that work. Later, improve the implementation for better performance, while keeping the interface the same
	• Be sure to test and debug your solution! This may lead to a redesign, but hopefully it involves only small changes to the implementation

	Getting started
	• Read chapter 1 of the required textbook for a review of some mathematical concepts, and an introduction to C++
	• Read chapter 2 for a review of asymptotic analysis and big-O notation
	• Read chapter 4 for a review of trees
	• We will then start with a C++ implementation of a binary search tree class template

	Class accounts
	• If you are using your UCSD email account user name for CSE 100:
	• password is your UCSD email account password
	• be sure to run the command “prep cs100f” each time you log in to ieng6, to access course-specific paths, etc.

	• If you are using a cs100 account for CSE 100:
	• password is your UCSD email account password
	• also be sure to “prep cs100f” after logging in

	• If you don’t know which accounts you have, use the ACS account lookup tool!
	• For the Moodle discussion board:
	• use your UCSD email account user name, with your email password

	Next time...
	• An introduction to C++
	• Comparing Java and C++
	• Basic C++ programming
	• C++ primitive types and operators
	• Arrays, pointers and pointer arithmetic
	• The interface/implementation distinction in C++
	• C++ class templates Reading: Weiss Ch 1

