The Finite Fast Fourier Transform

Kirill Levchenko

Let \(n \) be a power of two, and let \(\vec{u} \) and \(\vec{v} \) be two vectors in \(\text{GF}(q)^n \), where \(q = an + 1 \) for some integer \(a > 1 \), and \(\text{GF}(q) \) has characteristic greater than \(n \). Define \(\vec{w} \in \text{GF}(q)^n \) as

\[
 w_k = \sum_{i+j \equiv k \pmod{n}} u_i v_j.
\]

It is easy to see that we can compute \(\vec{w} \) in quadratic time: what is remarkable is that it can be done in \(O(n \log n) \) time using the Fast Fourier Transform, which we describe shortly. We will need an algebraic fact first.

Let \(\beta \) be a non-zero element of order \(m \) in \(\text{GF}(q) \), where \(1 < m < n \). Note that \(2\mid m \), and furthermore,

Lemma 1. \(\beta^{m/2} = -1 \).

Proof. Note that \((\beta^{m/2})^2 = \beta^m = 1 \), so

\[
0 = (\beta^{m/2})^2 - 1 = (\beta^{m/2})^2 - 1^2 = (\beta^{m/2} + 1)(\beta^{m/2} - 1).
\]

From \(\beta^{m/2} \neq 1 \), it follows that \(\beta^{m/2} = -1 \). \(\square \)

Let \(\alpha \in \text{GF}(q) \) have order \(n \), and consider the vectors \(\vec{x}, \vec{y} \in \text{GF}(q)^n \) defined as follows.

\[
 x_\ell = \sum_i u_i \alpha^{i \ell} \quad \text{and} \quad y_\ell = \sum_i v_i \alpha^{i \ell}.
\]

Now let \(z_\ell = x_\ell y_\ell \), equivalently

\[
 z_\ell = \sum_{i,j} u_i v_j \alpha^{(i+j)\ell}.
\]

Now consider

\[
 \sum_{\ell} z_\ell \alpha^{-k\ell}
\]

for some \(k \). We can re-arrange the summation to obtain

\[
 \sum_{\ell} z_\ell \alpha^{-k\ell} = \sum_{\ell} \sum_{i,j} u_i v_j \alpha^{(i+j-k)\ell}
\]

\[
 = \sum_{i,j} \sum_{\ell} u_i v_j \alpha^{(i+j-k)\ell} = \sum_{i,j} u_i v_j \sum_{\ell} \alpha^{(i+j-k)\ell}.
\]
If \(i + j \equiv k \pmod{n} \) then \(\alpha^{(i+j-k)} = 1 \). Otherwise, let \(\beta = \alpha^{(i+j-k)} \neq 1 \) and let \(m > 1 \) be the order of \(\beta \). We now write the sum as

\[
\sum_{i,j} u_{i}v_{j} \sum_{\ell} \alpha^{(i+j-k)\ell} = \sum_{i+j \equiv k \pmod{n}} u_{i}v_{j} \sum_{\ell} 1 + \sum_{i+j \not\equiv k \pmod{n}} u_{i}v_{j} \sum_{\ell} \beta^{\ell}
\]

\[
= n \sum_{i+j \equiv k \pmod{n}} u_{i}v_{j} + \sum_{i+j \not\equiv k \pmod{n}} u_{i}v_{j} \cdot \frac{n}{m} \sum_{\ell=0}^{m-1} \beta^{\ell}
\]

\[
= n \sum_{i+j \equiv k \pmod{n}} u_{i}v_{j} + \sum_{i+j \not\equiv k \pmod{n}} u_{i}v_{j} \cdot \frac{n}{m} \left(\sum_{\ell=0}^{m/2-1} \beta^{\ell} + \sum_{\ell=0}^{m/2-1} \beta^{m/2+\ell} \right)
\]

\[
= n \sum_{i+j \equiv k \pmod{n}} u_{i}v_{j} + \sum_{i+j \not\equiv k \pmod{n}} u_{i}v_{j} \cdot \frac{n}{m} \left(\sum_{\ell=0}^{m/2-1} \beta^{\ell} - \sum_{\ell=0}^{m/2-1} \beta^{m/2+\ell} \right)
\]

\[
= n \sum_{i+j \equiv k \pmod{n}} u_{i}v_{j} + \sum_{i+j \not\equiv k \pmod{n}} u_{i}v_{j} \cdot \frac{n}{m} \cdot 0
\]

\[
= n \sum_{i+j \equiv k \pmod{n}} u_{i}v_{j}
\]

The field \(GF(q) \) has characteristic greater than \(n \), so \(n \cdot 1 \neq 0 \). Writing \(n^{-1} \) for \(\left(\sum_{i=0}^{n-1} 1 \right)^{-1} \), we have

\[
w_{k} = n^{-1} \sum_{\ell} x_{\ell}y_{\ell}\alpha^{-k\ell}.
\]

On the surface of it, the above still requires quadratic time. However we can do better by observing that

\[
x_{\ell} = \sum_{i=0}^{n-1} u_{i}\alpha^{i\ell} = \sum_{i=0}^{n/2-1} u_{2i}\alpha^{2i\ell} + \alpha^{\ell} \sum_{i=0}^{n/2-1} u_{2i+1}\alpha^{2i\ell}
\]

and

\[
x_{n/2+\ell} = \sum_{i=0}^{n-1} u_{i}\alpha^{i(n/2+\ell)} = \sum_{i=0}^{n/2-1} u_{2i}\alpha^{2i(n/2+\ell)} + \alpha^{n/2+\ell} \sum_{i=0}^{n/2-1} u_{2i+1}\alpha^{2i(n/2+\ell)}
\]

\[
= \sum_{i=0}^{n/2-1} u_{2i}\alpha^{2i\ell} + \alpha^{n/2+\ell} \sum_{i=0}^{n/2-1} u_{2i+1}\alpha^{2i\ell}
\]

\[
= \sum_{i=0}^{n/2-1} u_{2i}\alpha^{2i\ell} - \alpha^{\ell} \sum_{i=0}^{n/2-1} u_{2i+1}\alpha^{2i\ell}.
\]
Define \(f(\vec{u}, n, \alpha) \) to return the vector \(\vec{\phi} \) whose \(\ell \)th entry is
\[
\sum_{i=0}^{n-1} u_i \alpha^i.
\]

Let \(\vec{u}^e \) be the even-indexed entries of \(\vec{u} \) and let \(\vec{u}^o \) be the odd-indexed entries of \(\vec{u} \). Then \(f(\vec{u}, n, \alpha) \) can be computed by first computing \(\vec{\phi}^e = f(\vec{u}^e, n/2, \alpha^2) \) and \(\vec{\phi}^o = f(\vec{u}^o, n/2, \alpha^2) \). Then the \(\ell \)th entry of \(f(\vec{u}, n, \alpha) \) is
\[
\phi_\ell = \begin{cases}
\phi_\ell^e + \alpha^\ell \phi_\ell^o & \ell < n/2 \\
\phi_\ell^e - \alpha^\ell \phi_\ell^o & \ell \geq n/2.
\end{cases}
\]

This gives running time \(O(n \log n) \) as desired.