Consider the following problem. We are given three independent, uniformly distributed Bernoulli random variables Y_1, Y_2, and Y_3. From these, we would like to generate seven pair-wise independent, uniformly distributed Bernoulli random variables. That is, we would like a set X_1, \ldots, X_7 of uniformly distributed Bernoulli random variables such that any two are independent.

We can do this as follows. With each i from 1 to 7, associate different a non-empty subset of $\{1, 2, 3\}$. Then form X_i by taking the exclusive-or of the random variables Y picked out by the corresponding set. For example, if we map $3 \mapsto \{1, 2\}$, then $X_3 = Y_1 \oplus Y_2$.

It is not difficult to see that each X_i is distributed uniformly on $\{0, 1\}$. Moreover, since each X_i is generated from a different set of Y, any two distinct X_i and X_j must be independent. For example, if we also map $2 \mapsto \{2\}$, then $X_3 = Y_1 \oplus Y_2 = Y_1 \oplus X_2$, so whatever value X_2 assumes, X_3 assumes the opposite value with probability $\frac{1}{2}$.

We can create such a mapping by taking the binary representation of i. That is, we map i to a subset $S \subseteq \{1, 2, 3\}$ such that $i = \sum_{s \in S} 2^{s-1}$.

Another way of looking at this is to consider a binary matrix H whose columns are all the non-zero vectors of size 3. That is,

$$H = \begin{pmatrix} 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{pmatrix}.$$

Then each i maps to the set characterized by the ith column of H. The matrix H is called the Hamming matrix of order three. We will consider this approach again shortly, but first, we prove a generalization of the above.

Theorem 1. Given m independent random variables uniformly distributed on $\GF(q)$, a finite field of order q, and a mapping $f : [n] \to \GF(q)^m$ such that any k vectors $f(i_1), f(i_2), \ldots, f(i_k)$ are linearly independent, we can generate n random variables uniformly distributed on $\GF(q)$ such that any k are independent.

Proof. Let $\vec{y} \in \GF(q)^m$ be the vector of m independent random variables uniformly distributed on $\GF(q)$. Then form $\vec{x} \in \GF(q)^n$ using $x_i = f(i)^T \vec{y}$. It is trivial to verify that the entries of \vec{x} are uniformly distributed on $\GF(q)$. We will now show that any k entries x_{i_1}, \ldots, x_{i_k} of \vec{x} are independent.

Let $z_j = x_{i_j} = f(i_j)^T \vec{y}$. We will compute the probability

$$\Pr[z_1 = b_1 \land z_2 = b_2 \land \cdots \land z_k = b_k],$$

Toward this end, form matrix $A \in \GF(q)^{k \times m}$ by taking the $f(i_j)^T$ as it’s rows. Then $\vec{z} = A \vec{y}$, and we are interested in

$$\Pr[A \vec{y} = \vec{b}],$$
over all the choices of \vec{y}. Because A has full rank, we know, from linear algebra, that there are q^{m-k} choices of \vec{y} for every \vec{b}, so

$$\Pr[z_1 = b_1 \land z_2 = b_2 \land \cdots \land z_k = b_k] = \frac{q^{m-k}}{q^m} = \frac{1}{q^k} = \left(\frac{1}{q}\right)^k$$

$$= \Pr[z_1 = b_1] \Pr[z_2 = b_2] \cdots \Pr[z_k = b_k].$$

One way to find such mappings f is to let $f(i)$ be the i^{th} column of the parity check matrix for an error correcting code. Then k is one less than the minimum distance of the code. For example, the Hamming matrix used in the example above is the parity check matrix of a Hamming code with block length 7, which has distance 3. Using a BCH code, we can design a mapping for any k and n such that $m = \Theta(k \log n)$.

\[\square \]