
Improved Range-Summable Random Variable Construction

Algorithms

A. R. Calderbank∗ A. Gilbert† K. Levchenko‡ S. Muthukrishnan§

M. Strauss¶

January 19, 2005

Abstract

Range-summable universal hash functions, also
known as range-summable random variables, are
binary-valued hash functions which can effi-
ciently hash single values as well as ranges of val-
ues from the domain. They have found several
applications in the area of data stream process-
ing where they are used to construct sketches—
small-space summaries of the input sequence.

We present two new constructions of range-
summable universal hash functions on n-bit
strings, one based on Reed-Muller codes which
gives k-universal hashing using O(nlog k) space
and time for point operations and O(n2 log k) for
range operations, and another based on a new
subcode of the second-order Reed-Muller code,
which gives 5-universal hashing using O(n) space,
O(n log3 n) time for point operations, and O(n3)
time for range operations.

We also present a new sketch data structure
using the new hash functions which improves
several previous results.

∗Princeton University, Princeton, New Jersey. E-mail:
calderbk@math.princeton.edu.

†University of Michigan, Ann Arbor, Michigan. Most
of this work was done while the author was at AT&T Labs,
Florham Park, New Jersey. E-mail: annacg@umich.edu.

‡University of California San Diego, La Jolla, Cali-
fornia. Most of this work was done while the author
was at AT&T Labs, Florham Park, New Jersey. E-mail:
klevchen@cs.ucsd.edu.

§Rutgers University, Piscataway, New Jersey. E-mail:
muthu@cs.rutgers.edu. Work supported by NSF ITR
0220280.

¶University of Michigan, Ann Arbor, Michigan.
Most of this work was done while the author was
at AT&T Labs, Florham Park, New Jersey. E-mail:
martinjs@eecs.umich.edu.

1 Introduction

The role of hashing in Computer Science needs
little introduction, for it can be seen in many
areas from the practical considerations of com-
piler design to our latest understanding of ran-
domness in the theory of complexity. After the
early advancements, described, for example, in
Knuth [12], the seminal work of Carter and Weg-
man deserves special mention. In [4], they in-
troduced the concept of universal hashing, show-
ing that pair-wise independence of hash values
suffices for most practical applications, allowing
efficient implementations with strong probabilis-
tic guarantees. Since then, pair-wise, and more
generally, exact and approximate k-wise indepen-
dent hashing has found many applications (see,
e.g., [13, 21]).

In this paper, we study exact k-wise
independent—also known as k-universal—hash
functions with added resource constraints mo-
tivated by data stream algorithmics. In addi-
tion to efficiently computing a hash value at a
point, we also want to be able to compute the
distribution of hash values for a given range of
points in the domain and a fixed choice of the
underlying randomness. These range-summable
universal hash functions were first introduced in
the work of Feigenbaum et al. [8] in the con-
text of data stream algorithms, where they gave
a polylogarithmic (in the size of the domain)
time and space construction. Since then, k-
universal hashing has been used to solve a va-
riety of problems in the stream setting, includ-
ing: estimating norms [6, 10, 3, 8], comput-
ing approximate wavelet summaries [9] and his-
tograms [16, 10, 17], and estimating subgraph
counts in graphs [3]. Other applications are yet
to be explored, eg., maintaining statistics on ge-
ometric such as intervals and boxes in spatial

databases. Of special interest is the work of Bar-
Yossef et al. [3] which uses range-summable hash
functions extensively, and introduces a general
framework of “list reductions” for reducing new
data stream problems to known ones and applies
it to counting triangles in a graph in the data
stream setting, which is of interest in Web graph
analysis.

Our contributions are:

1. We present a new range-summable construc-
tion of k-universal hash functions based on
Reed-Muller error-correcting codes, which
use polylogarithmic in time and space for
any fixed k, whereas previously known con-
structions were only available in flavors of
3-universal and 7-universal. In other words,
applications that deal with, say, finding
large frequency moments (F3 and higher)
range-efficiently or counting constant-sized
cliques (of size more than 3) in graph data
streams needed k-universal range-summable
constructions for k > 7. So even though in
principle the use of range-summable random
variables is clear, there were no known effi-
cient solutions prior to this work.

2. We present a new, near-optimal range-
summable 5-universal construction which
immediately improves existing algorithms
using the previously known, but more ex-
pensive, 7-universal construction, bringing
range-summable hashing within the realm of
practical implementation. Our result uses
a new subcode of the second-order Reed-
Muller error-correcting code, and may be of
independent interest.

The rest of the paper is organized as follows.
In Section 2 we formally define range-summable
hash functions with a brief and more technical
survey of related work. In Section 3 we present
our first result, a k-universal range-summable
construction based on Reed-Muller codes. In
Section 4 we present the Hankel code and the
corresponding range-summable 5-universal hash
function. In Section 5 we describe a data stream
sketch—a kind of synopsis data structure—using
the results of Section 4, which improves several
existing algorithms. Section 6 concludes the
paper.

2 Definitions and Preliminaries

Range-summable hash functions were first intro-
duced by Feigenbaum et al. [8] under the name

of range-summable random variables. In this pa-
per, we use the equivalent formulation using hash
functions.

Universal Hashing. Recall that a k-
universal family of hash functions is a set H of
functions h : A → B such that for all distinct
x1, . . . , xk ∈ A and all (not necessarily distinct)
b1, . . . , bk ∈ B,

Pr
h∈H

[h(x1) = b1 ∧ · · · ∧ h(xk) = bk] = |B|−k.

The original definition of Carter and Wegman [4]
differs slightly from the above, which is what
they call strongly k-universal in [20]. In this
paper, we use a uniform definition and restrict
the domain to fixed-size binary strings and the
range to {0, 1}. Thus, a k-universal hash function
is a function h : {0, 1}n × {0, 1}s → {0, 1} such
that for all distinct x1, . . . , xk ∈ {0, 1}n and all
(not necessarily distinct) b1, . . . , bk ∈ {0, 1},

Pr
σ∈{0,1}s

[h(x1; σ) = b1∧· · ·∧h(xk; σ) = bk] = 2−k.

We call the parameter σ, chosen uniformly at
random, the seed of the function.

The Range-Summable Property. We
are interested in one more property of hash
functions, which has appeared in several forms
in [3, 9, 8]. We will give our definition first,
and then the prior definitions, which it subsumes.
Call a hash function bitwise range-summable, if
there is a polynomial-time (in n) function g that
given a pair of vectors α and β in the domain
{0, 1}n, and a seed σ,

(2.1) g(α, β; σ) =
∑

α≤x≤β

h(x; σ).

Note that α, β, and x are binary vectors, so the
bitwise restriction α ≤ x ≤ β has the effect
of fixing some coordinate positions and leaving
others to range over {0, 1}. Certainly the range-
sum 2.1 can be evaluated directly (in Ω(2n)
time), however we would like to compute g more
efficiently, using time polynomial in n.

The notion “range-summable” first appeared
in the work of Feigenbaum et al. [8], which here
we call numerically range-summable. Their def-
inition has the restriction α ≤ x < β, where
α, β, and x are natural numbers. However
since every such numeric interval can be decom-
posed into a union of O(n) dyadic intervals1,

1An interval [α, β) is dyadic if α = i2j and β = (i+1)2j

for some non-negative integers i and j.

which in turn, can be expressed as our restric-
tion on binary vectors, fixing some number of
consecutive high-order coordinates and letting
the remaining (low-order) coordinates range over
{0, 1}. Bitwise range-summable includes numer-
ically range-summable. Their construction was
based on the extended Hamming error-correcting
code and gave 3-wise independence. In a follow-
up, Gilbert et al. [9] give a 7-universal construc-
tion based on the second-order Reed-Muller code.
These hash functions were used to support point
updates and range queries on a sketch data struc-
ture (see Sec. 5).

The concept of “range-summable” also ap-
pears under the name of “range-efficient” in the
work of Bar-Yossef, Kumar, and Sivakumar [3]
where it has the meaning of numerically range-
summable described in the preceding paragraph.
They also consider a multi-dimensional extension
of this idea, where the domain is bounded inte-
ger tuples, and the sum is taken over all vectors
where all but one of the coordinates are fixed, and
the remaining coordinate is restricted to a given
interval. They call such a construction “range-
efficient in every coordinate,” which we call nu-
merically range-summable in every coordinate. It
is easy to verify that bitwise range-summable also
includes this definition. Bar-Yossef et al. used
the 7-universal hash function to support range
updates on sketches (again, see Sec. 5).

Reingold and Naor have also constructed a
range-summable family of hash functions; for
description, see [10]. However their construction,
while conceptually elegant and of theoretical
interest, is computationally costly, as it requires
strong pseudo-random generators and sampling
Gaussian random variables. Also see [11] for
range-summable hash functions in Complexity
Theory.

It is worth noting that our definition is not
technically new, as it appears implicitly in [8],
where the less general “range-summable” was
more in line with the paper’s application. Finally,
we note that the most general notion of “range-
summable” achieved by our constructions is what
we call range-summable over affine spaces, which
is a restriction on x of the form Ax = b, for
A ∈ F

m×n
2 and b ∈ F

m
2 for some integer m. How-

ever this seems too general for practical applica-
tions, and we only use this stronger property in
Section 5.

3 Reed-Muller Hash Functions

In this section, we give explicit constructions of
range-summable universal hash functions based
on Reed-Muller codes.

An order-r Reed-Muller code with block
length 2n consists of all n-variable binary poly-
nomials of degree at most r. The binary code-
word corresponding to a polynomial is the binary
2n-vector resulting from evaluating the polyno-
mial at all 2n possible values. For example, the
second-order Reed-Muller code with block length
23 is consists of all linear combinations of poly-
nomials 1, x1, x2, x3, x1x2, x1x3, and x2x3.
The codeword corresponding to the polynomial
1 + x3 + x1x2 is

x1 = 0 0 0 0 1 1 1 1
x2 = 0 0 1 1 0 0 1 1
x3 = 0 1 0 1 0 1 0 1

1 + x3 + x1x2 1 0 1 0 1 0 0 1

The generator matrix for the above code is

1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1
0 0 0 0 0 0 1 1
0 0 0 0 0 1 0 1
0 0 0 1 0 0 0 1

,

where the rows correspond to the basis polyno-
mials above. The dual of a code C is the set of
vectors y such that xT y = 0 for all x ∈ C. The
following is known about the Reed-Muller family
of codes, and can be found in, for example [14]:

Lemma 3.1. The order-r Reed-Muller code has
distance 2n−r and its dual is the order-(n−r−1)
Reed-Muller Code.

We can naturally construct a hash function
from a linear code by choosing a random code-
word and mapping x to bit x of the codeword.
The resulting hash function has independence
properties given by the following Lemma.

Lemma 3.2. Let C be a linear code whose dual
has distance k + 1. Then the hash function
constructed using C as above is k-universal.

Thus, the hash function based on the order-r
Reed-Muller code, given by an n-variable degree-
r polynomial over F

2 chosen uniformly at ran-
dom, is (2r − 1)-universal. Specifically,

(3.2) h(x; σ) =
⊕

I⊂[n]
|I|≤r

σI

∏

i∈I

xi,

where σI ∈ {0, 1} is the seed vector indexed by
subsets of [n] = {1, . . . , n}. We use ⊕ to denote
modulo-2 summation where there is a possibility
of ambiguity. It follows that |σ| =

∑r

i=0

(
n
i

)
=

O(nr).
We now give an algorithm for evaluating the

range-sum function g defined earlier as

g(α, β; σ) =
∑

α≤x≤β

h(x; σ),

where α, β, and x are binary vectors. We begin
by showing how the restriction α ≤ x ≤ β
reduces to the case where x ranges over {0, 1}n

′

,
for some n′ ≤ n.

Reduction to the Unrestricted Case.

Given a restriction of the form α ≤ x ≤ β, we
note that because α and β are binary vectors,
the restriction effectively fixes some positions
i (where αi = βi) and leaves the remaining
positions free to range over {0, 1}. Let R be the
set of fixed (restricted) positions and U be the
set of free (unrestricted) positions. That is,

R = {i : αi = βi} and U = {i : αi < βi}.

We can reduce the restricted instance to a smaller
unrestricted instance where the sum is over
all x in {0, 1}|U| by making the substitution
xi ← αi for every i ∈ R. Thus, every term
xi1 · · ·xik

· · ·xiℓ
in h(x; σ) where i1, . . . , ik ∈ R and

ik+1, . . . , iℓ ∈ U becomes αi1 · · ·αik
· xk+1· · ·xk;

equivalently σ{i1,...,iℓ} becomes 0, and σ{i1,...,ik}

becomes σ{i1,...,ik} + αi1 · · ·αik
. From now on,

because the sum restricted to α ≤ x ≤ β can
be reduced to an unrestricted sum, we will only
consider unrestricted sums.

Seed Sparsification. Intuitively, comput-
ing the range-sum efficiently is complicated by
that fact that the value of the hash function may
depend on arbitrary combinations of variables
x1, . . . , xn. If we could limit the dependence to
small groups of variables, such that one group is
independent of another, we would be able to per-
form the range-sum of each small group indepen-
dently by brute force, and then combine it with
the result of range-summing other blocks. We
show how to convert an arbitrary Reed-Muller
seed (corresponding to an instance of the hash
function) into a seed which has the aforemen-
tioned type of independence, called a sparse seed,
and then how to perform the range-sum effi-
ciently using such a seed.

Later we will show how to efficiently compute
the unrestricted range-sum for a certain class of

seeds σ we call sparse, to be defined shortly; here,
we will show how to transform a seed into a sparse
seed.

For this procedure, it is more convenient to
think of σ as a characteristic function for a set Σ.
Therefore, let Σ be a family of subsets of [n] such
that I ∈ Σ if σI = 1. Call a set I maximal (with
respect to a given seed) if for all J ⊃ I, J /∈ Σ.
A seed is sparse if every maximal set of the seed
is disjoint. For example, let Σ = {{1, 2}, {2, 3}},
corresponding to h(x) = x1x2+x2x3. Then {1, 2}
and {2, 3} are both maximal, but the seed is not
sparse because they intersect.

Making a seed sparse crucially depends on
the following observation. Because we are sum-
ming over all x in {0, 1}n (after the reduction in
the previous section), we can change the order of
summation, which includes any invertible linear
transformation such as a change of variables of
the form xi ← xi + xj for i 6= j or xi ← xi + 1.
Furthermore, we can view this as a way to in-
troduce a set J into Σ, given a set I ∈ Σ no
smaller than J . Let Σ = {I}, then: pair each
element i in I\J with an element j in J\I, and
make the substitution xi ← xi + xj . For each
unpaired element i in I\J , make the substitution
xi ← xi + 1. It is easy to verify, via the corre-
sponding polynomials, that I, J ∈ Σ. (Note that
Σ now also contains additional sets, equivalently,
h(x) contains additional terms, as a result of the
substitutions.) Define a function ∆(I, J) to be
the number of variable changes, as above, neces-
sary to introduce J starting with Σ = {I}, or ∞
if |I| < |J |.

Lemma 3.3. Fix I ∈ Σ, and J /∈ Σ. If ∆(I, J) 6=
∞ then there is a sequence of ∆(I, J) or fewer
variable changes of the form xi ← xi + xj and
xi ← xi + 1 where i ∈ I and j ∈ J that results in
I, J ∈ Σ.

Proof. The proof is by induction on ∆(I, J).
Consider the sequence of ∆(I, J) variable
changes described above (for the case when Σ =
{I}). The k-th change of variables introduces a
set Ik such that ∆(Ik, J) = ∆(I, J)−k; i.e., we’re
getting “closer” to J . This process only fails if
Ik is already in Σ, for then the introduced set Ik

cancels with the existing Ik, since arithmetic is
over F2. But then, we can omit the first k variable
changes and, by induction, start from Ik ∈ Σ.

We are now ready to sparsify a seed using
a sequence of variable changes as above. The
algorithm follows.

1. Set i = n.

2. Let I = {i− r + 1, . . . , i}; note that |I| = r.
If I /∈ Σ, introduce I as described above via
a set J ⊆ [i− r] already in Σ, unless all such
sets in Σ are smaller then r, in which case,
decrease r and start over from step 2.

3. Arrange the elements of Σ in the follow-
ing order. For a set J ∈ Σ, consider
{j1, . . . , jk} = J as an r-tuple where j1 >
j2 > · · · > jk, padding with 0 as necces-
sary. E.g., if I = {1, 2, 3} (thus r = 3),
then {3, 5} ∈ Σ becomes (5, 3, 0). Now ar-
range the sets and corresponding tuples in
decreasing lexicographic order of the tuples.
So (5, 3, 0) comes before (5, 2, 1) which comes
before (4, 3, 0).

4. Let Π = {J : J ∈ Σ and I ∩ J 6= ∅ and I \
J 6= ∅}, the set of all elements of Σ that
intersect with I but are not a subset of I.
Note that for all J ∈ Π, we have |J | ≥ 2.
Informally, these are the sets that stand in
the way of “sparseness” with respect to the
maximal set I.

5. Pick the first (in the order of step 3) set in
Π; call it J . Choose I ′ ∈ Σ that minimizes
∆(I ′, J). (Note that I ′ may be I.) Now
perform the variable changes of Lemma 3.3.
Repeat steps 4 and 5 until Π = ∅.

6. Set i← i− r. If i < r, we’re almost done, so
set i and r so that I is the remaining interval.
Go to step 2.

We now establish the correctness of the algo-
rithm.

Lemma 3.4. The algorithm above makes an ar-
bitrary seed sparse.

Proof. There are two parts to the proof: We
show that once a set J is eliminated in step 5, it
does not reappear, and therefore the algorithm
terminates. We then argue that the resulting
seed is sparse.

We argue by induction. First, we assert that
in steps 4 and 5, for all j ∈ J ∈ Π, it is the
case that j ≤ i. Clearly this is true the first
time steps 4 and 5 are completed (i = n). In
subsequent executions of steps 4 and 5, if j > i,
then by induction J was either the set I in a
prior iteration of the outer loop (step 6) or was
eliminated in a prior iteration, and by induction,
did not reappear.

Now note that in the change of variables
xi ← xi + xj , we have that j < i by the
claim above and that j /∈ I (by construction
of the sequence of variable changes). But any
sets introduced as a result of these variable
changes must occur after J in our ordering.
This is because if J ′ is a counterexample, with
corresponding tuple (j′1, j

′
2, . . . , j

′
k), then there

must be some ℓ such that j′ℓ > jℓ; let it be the
first such. But j′ℓ must result from a variable
change of the form xi ← xi + xj′

ℓ
, which implies

j′ℓ ∈ J , a contradiction.
Since in step 6 i is decremented so that the

maximal sets I do not overlap, it is easy to verify
that after termination the sets I are mutually
disjoint.

Lemma 3.5. An order-r Reed-Muller seed can be
made sparse in time O(rn2r−1).

Proof. The seed has
∑r

i=0

(
n

i

)
= O(nr) elements,

each of which requires up to r variable substitu-
tions to eliminate, with each variable substitution
affecting up to

∑r−1
i=0

(
n
i

)
= O(nr−1) terms.

Range-Sum with Sparse Seeds. Let Σ be
a sparse seed, and, without loss of generality, let
[k] = {1, . . . , k} be a maximal set. Since [k] is
mutually disjoint with respect to the other max-
imal sets, we can consider all 2k possible assign-
ments to the variables x1, . . . , xk independently
of the remaining variables:

g(σ) =
∑

x∈{0,1}n

⊕

I⊆[n]
|I|≤r

σI

∏

i∈I

xi

=
∑

x∈{0,1}n

[⊕

I⊆[1,k]
|I|≤r

σI

∏

i∈I

xi ⊕
⊕

I⊆[k+1,n]
|I|≤r

σI

∏

i∈I

xi

]

=
[∑

x∈{0,1}k

⊕

I⊆[1,k]
|I|≤r

σI

∏

i∈I

xi

]

︸ ︷︷ ︸

A

×

[∑

x∈{0,1}n−k

⊕

I⊆[k+1,n]
|I|≤r

σI

∏

i∈I

xk+i

]

.

︸ ︷︷ ︸

B

The second equality follows by the sparseness.
Now A can be evaluated directly, and B recur-
sively as a smaller range-sum instance.

Theorem 3.1. Given k and n > k, there is
a k-universal binary hash function with a seed

of length
∑r

i=0

(
n
i

)
, where r = ⌈lg(k + 1)⌉ − 1,

that takes O(nr) time to compute the value at a
point and O(rn2r−1) time to compute the bitwise
range-sum.

Proof. The time to compute the hash function
follows directly from the seed length. The range-
sum cost follows from Lemma 3.5, since the
sparsification dominates the computation.

Theorem 3.1 extends the bitwise range-
summable property to arbitrary degrees of inde-
pendence. Since for r = 1 and r = 2 the construc-
tions are effectively the same as existing ones, it
matches the running time for these cases. How-
ever when r = 2 and the set of free positions U
is known a priori, we can do slightly better:

Proposition 3.1. Let r = 2, and fix n as well
a set U of free positions (but not the assignments
to the fixed positions); that is, for all i ∈ U
and all range-sum restrictions α ≤ x ≤ β, we
have 0 = αi < βi = 1, but for i /∈ U , either
αi = βi = 0 or αi = βi = 1. Then the bit-wise
range-sum can be computed in time O(n2) after
a one-time per-seed O(n3) preprocessing step for
each seed.

Proof. The idea is to compute the sparsification
transformation before applying the restriction,
allowing the sparsification step to be done once
for each seed. However applying the restriction
changes the seed, so we must take care to ensure
that we can still apply the precomputed sparsi-
fication after we do learn the restriction. For-
tunately, for r = 2, this is not a problem, for
then the seed Σ contains sets of size 0, 1, and 2,
corresponding to coefficients of the polynomial 1,
coefficients of linear terms, and quadratic terms,
respectively. Furthermore, note that the set Π
formed in the sparsification procedure contains
only sets of size 2, since a singleton or the empty
set cannot both intersect with I and contain an
element not in I. Since applying the restriction
will leave unchanged only those sets of size 2 in
Σ whose elements are both in U , the set Π is
unaffected by applying the restriction. It follows
that we can compute the sparsification, storing
the variable changes as an affine transformation
of size O(n2). After applying the restriction, we
can apply the precomputed sparsification trans-
formation in time O(n2).

Note that both the numeric range-sum oper-
ation and the numeric range-sum operation in all

0 q1 q2 q3 q4

0 0 q3 q4 q5

0 0 0 q5 q6

0 0 0 0 q7

0 0 0 0 0

Figure 1: A 5×5 strictly upper triangular Hankel
matrix. The matrix entries (i, j) is 0 if i < j
and identical on the skew diagonals. The portion
of the corresponding polynomial made up of
quadratic terms is q1x1x2 + q2x1x3 + q3(x1x4 +
x2x3) + q4(x1x5 + x2x4) + q5(x2x5 + x3x4) +
q6x3x5 + q7x4x5.

coordinates have a small number of possible free
positions for which the seed can be pre-processed.
Therefore, these two operations can be performed
in time O(n2) compared to the O(n3) used pre-
viously.

4 Hankel Hash Functions

The second-order Reed-Muller code consists of all
n-variable degree-2 polynomials over F2, which
can be written as xT Qx+wT x+c (over F2), where
the upper-triangular matrix Q ∈ {0, 1}n×n, the
vector w ∈ {0, 1}n and the scalar c ∈ {0, 1}
together define the codeword. We introduce a
new code we call the Hankel code (because of
the form of the matrix), which is a subcode of
the second-order Reed-Muller code where Q is a
strictly upper-triangular binary Hankel matrix,
that is, a matrix identical on the skew-diagonal
(see Fig. 1). We show that the dual of the Han-
kel code defined above has distance 5 (see the
Appendix), so the hash function h(x; Q, w, c) =
xT Qx + wT x + c mod 2, where Q is strictly
upper-triangular Hankel and Q, w, and c are cho-
sen uniformly at random, is 5-universal, using the
construction of Lemma 3.2. Because the Han-
kel code is a special subcode of the second-order
Reed-Muller code, we can use it as we would a
Reed-Muller-based hash function. However be-
cause of its special structure, we can evaluate it
more efficiently than by straight matrix-vector
multiplication suggested by xT Qx + wT x + c.

Evaluation. It turns out that the product
xT Qx, which dominates the cost of evaluation,
can be computed as a convolution using the Fast
Fourier Transform. Recall that a convolution of
two n-vectors x and y, denoted x ∗ y, is a 2n-
vector z where zi =

∑

j xjxi−j+1.

Lemma 4.1. There is an evaluation algorithm
for Hankel dual hash functions that runs in time
O(n log3 n).

Proof. Let q′ be the (2n − 1)-vector of the
2n − 3 unique entries of the upper-triangular
Hankel matrix Q, prefixed with a zero en-
try and suffixed with a zero entry. Let
x′ = (x1, x2, . . . , xn, 0, . . . , 0)T and x′′ =
(x1, 0, x2, 0, . . . , xn−1, 0, xn)T . Now it can be ver-
ified via direct calculation that xT Qx = 1

2 (x′ ∗
x′ − x′′)T q′. The convolution x′ ∗ x′ can be com-
puted using the Fast Fourier Transform over a
properly-chosen finite field of size O(n), giving
the desired result.

Range-Sum. The range-sum for a Hankel
hash function can be computed using the algo-
rithm in Section 3 for the second-order Reed-
Muller code, because the Hankel code is a sub-
code of the Reed-Muller code.

Theorem 4.1. Given n, there is a 5-wise inde-
pendent hash function with seed length 3n − 2
that takes O(n log n log log n) time to compute the
value at a point and O(n3) time to compute the
bitwise range-sum.

Theorem 4.1 gives a more efficient way to
achieve the 4-wise independence needed in many
applications in stream processing. In the next
section, we describe one such case.

5 Applications

In this section, we describe a sketch, a kind
of synopsis data structure (see, for example,
Muthukrishnan [15]) which supports queries and
updates of ranges and points, as well as dot
product estimation, including second-frequency
moment estimation (due to space constraints, an
analysis of the latter is omitted). Our sketch
first appeared in [5], however it can be used
in [1, 2, 3, 5, 7, 9], among others. Table 1
summarizes the improvements realized as a result
of the new data structure.

The sketch consists of an array of integer
counters, initially zero. A point update consists
of hashing the input point x to one of 2m coun-
ters using a 2-universal hash function, then hash-
ing x to {1,−1} using a 4-universal hash func-
tion and adding the result to the counter. Point
queries/updates then follow as in [5]; however,
using the analysis of [7] yields somewhat better
error bounds. Range operations generally need

to update every counter, however careful analysis
reveals that some parts of the range-sum compu-
tation need only be performed once, rather than
for each counter:

Theorem 5.1. For the sketch described above,
using a 2-universal hash function to hash to coun-
ters and a 4-universal sign hash function, a point
query/update can be computed in O(n log3 n), a
bitwise range query/update in O(n3+2mn2) time.

Proof. We need to specify two hash functions:
h1 for hashing an element to a counter, and h2

for hashing an element to {1,−1}. Hashing to
a counter need only be 2-universal, so choose it
to be a concatenation of first-order Reed-Muller
hash functions: h1(x) = Px + q mod 2 where P
is a binary m×n matrix and q is a binary vector
of size m, both chosen uniformly at random.
Choose h2 to be a Hankel hash function, with the
range suitably remapped to {1,−1}. This gives
the desired complexity for the point operations.
We now turn to the range operations.

For each counter, we would like to compute
the bitwise range-sum of all points that hashed to
that counter. The additional restriction that the
points hash to a given bucket b (expressed as a
binary m-vector) is just a restriction Px = q + b.
Through Gaussian elimination, we can compute
binary G and d such that Gy+d enumerates all x
satisfying the above. Substituting Gy+d in for x
in xT Qx+wT x+ c gives the desired unrestricted
hash function, which we can then evaluate as
before. This would require performing the above
computation for every counter, however we notice
that in the above, only the vector b changes
between counters, and this does not affect the
quadratic form xT Qx, so we can compute the
sparsification of Q once, and then apply the
transformation to the linear and constant parts,
which has cost O(n2) per counter.

Remark. The above construction achieves
the desired error with some constant failure prob-
ability. In typical applications, the sketch is
duplicated O(log δ−1) times (using independent
hash function seeds) to bring the failure proba-
bility down to δ. Since the convolution computa-
tion, which dominates the cost of the point opera-
tions, does not depend on the seed, it can be done
once, bringing the total point update/query cost
down to O(n log3 n + nm log δ−1). However, the
same optimization does not apply to range oper-
ations because their cost is dominated by com-

Previous New

Estimating F2 (Prop. 7 of [3]):
Range update time∗ O(log δ−1ǫ−2dn4) O

`

log δ−1(ǫ−2 + n3)
´

Wavelet decomposition ([9]):
Point update time O(log δ−1ǫ−2n2) O(n log3 n + log δ−1n)
Range query time O(log δ−1ǫ−2n3) O

`

log δ−1(n3 + ǫ−2n2)
´

Table 1: Improvements to previous work realized by our 5-universal hash function
(Sec. 4), where operations on integers up to the size of the data stream in magnitude
have unit cost. ∗Here, d is the dimension of the input tuple; the improved update
time for F2 yields an improved update time for the triangle counting algorithms
of [3].

putations involving the independent seeds them-
selves.

6 Conclusion

We introduced two new constructions of range-
summable hash functions: a general k-universal
construction using Reed-Muller codes, and a 5-
universal one using a subcode of the second-order
Reed-Muller code we call a Hankel code. The
general construction gives O(nr) point operation
time complexity and O(n2r−1) range operation
time complexity using O(nr) space, where r =
⌈log(k + 1)⌉ − 1. The Hankel code construction
gives O(n log3 n) point operation time complex-
ity and O(n3) range operation time complexity,
using O(n) space. Because only 3-universal and
7-universal range-summable constructions were
available previously, our contributions advance
the development of range-summable hash func-
tions, leading to immediate improvements to ex-
isting algorithms by using the sketch presented
in Section 5 (see Table 1). Our more gen-
eral construction for arbitrary k makes possi-
ble sublinear algorithms for many other problems
such as estimating F3 and higher frequency mo-
ments range-efficiently, counting subgraphs on 4
or more nodes in massive graphs, and so on.

Future Work. We note that our Hankel
range-sum computation defers to the generic
Reed-Muller range-sum algorithm; however it
seems natural that the special structure of the
Hankel code could be exploited to improve the
time complexity of this operation.

More broadly, the full potential of range-
summable universal hashing is yet to be fully
explored, and we hope our work will stimulate
further research in this area.

References

[1] N. Alon, P. Gibbons, Y. Matias, and M.
Szegedy. Tracking Join and Self-Join Sizes in
Limited Storage. ACM Principles of Database

Systems conference, 10–20 (1999).
[2] N. Alon, Y. Matias, and M. Szegedy. The

Space Complexity of Approximating the
Frequency Moments. Proc. of the 28th Annual

ACM Symposium on the Theory of

Computing, 20–29 (1996).
[3] Z. Bar-Yossef, R. Kumar, and D. Sivakumar.

Reductions in Streaming Algorithms, with an
Application to Counting Triangles in Graphs.
SODA 2002.

[4] J. L. Carter and M. N. Wegman. Universal
Classes of Hash Functions. J. of Comp. and

Syst. Sci. 18, 143–154 (1979).
[5] M. Charikar, K. Chen, and M. Farach-Colton.

Finding Frequent Items in Data Streams.
Proc. of the 29th International Colloquium on

Automata Languages and Programming

(2002).
[6] G. Cormode, S. Muthukrishnan. Estimating

Dominance Norms of Multiple Data Streams.
ESA 2003: 148-160.

[7] G. Cormode and S. Muthukrishnan. Improved
Data Stream Summary: The Count-Min
Sketch and its Applications. DIMACS

Technical Report 2003-20, June 2003. LATIN
2004. To appear in J. Algorithms.

[8] J. Feigenbaum, S. Kannan, M. Strauss, and M.
Viswanathan. An Approximate L

1-Difference
Algorithm for Massive Data Streams. IEEE

Symp. on Foundations of Computer Science,
1999.

[9] A. C. Gilbert, Y. Kotidis, S. Muthukrishnan,
and M. J. Strauss. One-Pass Wavelet
Decompositions of Data Streams. IEEE

Transactions on Knowledge and Data

Engineering, 15 (3), 2003.
[10] A. C. Gilbert, S. Guha, P. Indyk, Y. Kotidis,

S. Muthukrishnan, M. Strauss. Fast,

small-space algorithms for approximate
histogram maintenance. STOC 2002: 389-398.

[11] O. Goldreich, S. Goldwasser and A. Nussboim.
On the implementation of huge random
objects. ECCC eport TR03-045.

[12] D. Knuth. Art of computer programming:

Sorting and Searching. Vol3. Addison Wesley.
1st Edition.

[13] M. Luby and A. Wigderson. Pairwise
independence and derandomization. Survey.
ICSI TR-95-035 UC Berkeley
UCB/CSD-95-880 Ecole Normale Superieure
LIENS-95-22. 1995.

[14] F. J. MacWilliams and N. J. A. Sloane. The

Theory of Error-Correcting Codes.
North-Holland, Amsterdam, 1977.

[15] S. Muthukrishnan. Data stream algorithms.
http://www.cs.rutgers.edu/∼muthu/

stream-1-1.ps

[16] S. Muthukrishnan, M. Strauss. Maintenance of
Multidimensional Histograms. FSTTCS 2003:
352-362

[17] S. Muthukrishnan, M. Strauss. Rangesum
histograms. SODA 2003: 233-242.

[18] J. Naor, M. Naor. Small-Bias Probability
Spaces: Efficient Constructions and
Applications, SIAM J. Comput. 22(4): 838-856
(1993).

[19] M. Sipser. A Complexity Theoretic Approach
to Randomness. Proc. of the 15th Annual

ACM Symposium on the Theory of

Computing. 330–335 (1983).
[20] M. N. Wegman and J. L. Carter. New Hash

Functions and Their Use in Authentication
and Set Equality. J. of Comp. and Syst. Sci.

22, 265–279 (1981).
[21] A. Wigderson. The amazing power of pairwise

independence (abstract). STOC 1994: 645-647

Appendix

The Hankel code consists of all n-variables poly-
nomials in of the form xT Qx+wT x+ c, where Q
is a strictly upper-triangular binary Hankel ma-
trix, w is a binary vector, and c is a binary scalar.
A Hankel matrix that is identical on the skew di-
agonals (see Fig. 1). Note that all arithmetic is
modulo 2.

Theorem 6.1. The dual of the Hankel code has
minimum distance 5.

Proof. Recall that the generator matrix for the
second-order Reed-Muller code consists of the
basis monomials 1, xi for all i between 1 and
n, and xixj for all i < j between 1 and n,
evaluated at values {0, 1}n. (Note that this
corresponds to the form xT Qx + wT x + c where

Q are the coefficients of the terms xixj , w are the
coefficients of the xi, and c is the coefficient of 1.)
From the form of the Hankel matrix, the basis of
the Hankel code is given by the monomial 1, xi

for all i between 1 and n, and

∑

i<j
i+j=k

xixj ,

for k between 2 and 2n; each of the basis elements
corresponds to a row of the generator matrix of
the code consisting of the basis function evalu-
ated at the 2n possible inputs. The generator
matrix of the Hankel code forms the parity check
matrix of its dual, and we will show that every set
of 5 columns of this matrix is linearly indepen-
dent, so the distance of the corresponding code,
namely the dual of the Hankel code, is 5.

First, note that the rows corresponding to
the linear terms xi for all i ∈ [n] are exactly
the rows of parity check matrix for the Hamming
code, which has distance 3, and therefore, any
two columns are linearly independent. The first
row, a row of all ones, makes any odd number
of columns linearly independent, so it remains to
show that any four columns of this matrix are
linearly independent, or, because we are working
in F2, that the sum of any four distinct columns
is non-zero.

Assume to the contrary, that is, that some
four distinct vectors x(1), x(2), x(3), and x(4),
such that the corresponding columns, consisting
of the basis polynomials evaluated at those vec-
tors, sum to zero. Consider the parity check ma-
trix restricted to these columns. Since the rows
sum to zero, each row must have an even num-
ber of ones. Now since x(1) and x(3) are distinct,
they must differ in some position, say ı̂, and let it
be the first such. Without loss of generality, say

x
(1)
ı̂ = 0 and x

(1)
ı̂ = 1. Since the sum of the row

corresponding to the basis monomial xı̂ is zero,

either x
(2)
ı̂ = 1 or x

(4)
ı̂ = 1, but not both (be-

cause the number of ones must be even). Again,

without loss of generality, say x
(4)
ı̂ = 1. But x(1)

and x(2) must also differ, say at position ̂ > ı̂,
and let ̂ be the first such. At the same position,
x(3) and x(4) must also differ. Without loss of
generality, say x

(1)
̂ = 0, x

(2)
̂ = 1, x

(3)
̂ = 0, and

x
(4)
̂ = 1. Thus we have

x(1) x(2) x(3) x(4)

: : : :
ı̂ → 0 0 1 1

: : : :
̂ → 0 1 0 1

: : : :

Now consider the row corresponding to the basis
polynomial

∑

i<j
i+j=k

xixj

where k = ı̂ + ̂. Since the rows sum to zero, we
must have (modulo 2),

∑

i<j
i+j=k

x
(1)
i x

(1)
j + x

(2)
i x

(2)
j + x

(3)
i x

(3)
j + x

(4)
i x

(4)
j = 0.

The rows before row ı̂ are either all zero or all
one, the rows between row ı̂ and row ̂ may be all
zero, all one, or like row ı̂. When ı̂ < i < j < ̂,
all rows have the form of row ı̂, so the terms of
the summation cancel modulo 2. Similarly, when

i < ı̂ < ̂ < j, the entries x
(1)
i , x(2)i , x

(3)
i , and

x
(4)
i are either all zero or all one, and an even

number of the entries x
(1)
j , x(2)j , x

(3)
j , and x

(4)
j

are one, so those terms of the summation cancel.

This leaves x
(1)
ı̂ x

(1)
̂ +x

(2)
ı̂ x

(2)
̂ +x

(3)
ı̂ x

(3)
̂ +x

(4)
ı̂ x

(4)
̂ ,

of which x
(1)
i x

(1)
j = x

(2)
i x

(2)
j = x

(3)
i x

(3)
j = 0, and

x
(1)
ı̂ x

(1)
̂ = 1, so the corresponding row sums to

1, a contradiction.

