Storage Assignment and Memory Optimizations during High-level Synthesis for Configurable Architectures

Wenrui Gong, Gang Wang, and Ryan Kastner
University of California, Santa Barbara.

Abstract

Modern, high performance configurable architectures integrate on-chip, distributed block RAM modules to provide ample data storage. Synthesizing applications to these complex systems requires an effective and efficient approach for data partitioning and storage assignment. In this paper, we formally describe this problem and show how it is much different than the traditional data partitioning problem for compilation to parallel processing systems. We present a data and iteration space partitioning solution that focuses on minimizing remote memory accesses or, equivalently, maximizing the local computation. Using the same code but different data partitionings, we can achieve up to 50% increase in frequency, without increasing the number of cycles, by simply minimizing remote accesses. Other optimization techniques like buffer insertion can further minimize remote accesses and lead to 46x speedup in overall runtime.
Storage Assignment and Memory Optimizations during High-level Synthesis for Configurable Architectures

I. Introduction

Typical configurable computing systems consist of arrays of reconfigurable logic blocks and flexible interconnect. In order to offer greater computing capabilities, high-performance commercial configurable architectures provide ample configurable logic, and have integrated a number of fixed components, including digital signal processing (DSP) and microprocessor cores, custom hardware, and distributed block RAM modules. For instance, the Xilinx Virtex-II Pro Platform FPGA series provides 3K to 125K logic cells, up to four PowerPC processor cores and 1,738 kilobytes of distributed, embedded block RAM.

These configurable architectures, integrated with ample distributed block RAM modules, exhibit superior computing abilities, storage capacities, and flexibilities over traditional FPGAs. However, they currently lack the tools necessary to provide the application designer efficient synthesis onto these complex architectures. In particular, there is a pressing need for memory optimization techniques in the early stages of the design flow as modern configurable architectures have a complex memory hierarchy, and earlier architectural-level decisions greatly affect the final design qualities.

In traditional design flow of configurable devices, synthesis of block RAM modules are generally handled as a physical problem. They are directly inferred from arrays, or instantiated using vendor macros. They are packed a single component in placement, and only partitioned when it is difficult to fit into the device. In most situations, the memory bandwidth and storage capacities are not well utilized, and hence the generated designs are not efficient in terms of latencies, throughput, and achieved frequencies.

This paper focuses on seeking a partitioning-based solution to the storage assignment problem at the earliest stages of the design flow. We also show how other memory optimizations can achieve design goals, such as increase throughputs and reduce latencies, i.e. reduce the number of clock cycles and increase the achievable clock frequencies.
The central contribution of this paper is a novel integrated approach of deriving an appropriate data partitioning, and synthesizing the program behavior to configurable devices. Through intensive research on the interplay between the data partitions and architectural synthesis decisions, such as scheduling and binding, we show that designs that minimize the number of global memory accesses and exhibit local computation can meet the design goals, and minimize the execution time (or maximize the system throughput) under resource constraints. Other optimization techniques, including buffer insertion, are applied to improve maximum achieved clock frequencies and therefore improve the overall performance. In particular, these optimizations further reduce latencies, and improve the achieve clock frequencies.

This work is organized as follows. The next section gives details on the target configurable architecture and the following section presents a motivating example. Section IV discusses related work. Section V formally describes the data partitioning and storage assignment problem and provides techniques to minimize the number of remote data memory accesses. Section VI presents our experimental results and we conclude in Section VII.

II. TARGET CONFIGURABLE ARCHITECTURE

Many modern reconfigurable architectures incorporate a distributed memory module, amongst their configurable logic blocks (CLBs). These architectures can be divided into homogeneous and heterogeneous architectures according to the capacities and distribution of the RAM blocks.

![FPGA with distributed Block RAMs](image)

Fig. 1. FPGA with distributed Block RAMs

Figure I presents an example of a homogeneous architecture. This roughly corresponds to...
Xilinx Virtex II FPGA [1]. The block RAMs are evenly distributed on the chip and connected with CLBs using reprogrammable interconnect. Every block RAM has the same capacity. Additionally, there is an embedded multiplier located beside each block RAM. A large Virtex II chip contains 168 blocks of 18 Kbits block RAM modules, providing 3,024 Kbits of on-chip memory.

The heterogeneous architecture contains a variety of block RAM modules with different capacities. For example, the TriMatrix memory on an Altera Stratix II FPGA chip [2] consists of three types of on-chip block RAM modules: M512, M4K, and M-RAM. Their capacities are 576 bits, 4 Kbits, and 512 Kbits, respectively. A Stratix II chip may contain a large number of M512 and M4K modules, but generally only a few M-RAM modules. Currently our work only considers homogeneous architectures. However, if a design assigns a particular part of such a device, which contains only one kind of RAM blocks. Under this circumstance, it is possible to handle it as a homogeneous device.

The access latency of the on-chip block RAM is equal to the propagation delay to the memory port after the positive edge of the clock signal. This delay is usually a fixed number α for a specific FPGA architecture. For example, α is 3.7 ns for Xilinx XC2V3000 FPGA. Additionally it takes an extra ϵ ns to transfer data from the memory port to the accessing CLB. Hence, a design running at 200MHz could take one clock cycle to retrieve data close to the accessing CLB, but two or even more clock cycles to access data far away from the CLB. On the other hand, it is often difficult to distinguish whether the data access is near or far before placement and routing.

In addition to block RAM modules, CLBs can be configured as local memory, which is convenient for storing intermediate results. When CLBs are configured as distributed memory, the access latency, i.e. the logic access time, is quite small. However, if a data array is assigned to CLBs, an access involves extra delay for MUX selecting the addressed element.
For example, the delay for a 512 bit CLB memory is around 3.5 ns for Xilinx XC2V3000 FPGA; the delay for a 16 Kbit CLB memory increases to 6.2 ns.

The FPGA can be complimented by an external, global memory for storing large amounts of data. Access latencies to the external memory depend on the bus protocol and type of memory. The access latencies usually are an order of magnitude slower than those of on-chip block RAM.

In this paper, we develop a methodology for partitioning data to distributed block RAM modules. When compared to off-chip global memory and using CLBs as distributed RAM, this approach is an effective and efficient solution for most applications.

III. MOTIVATING EXAMPLE: CORRELATION

In order to give the reader a understanding of the problem, we consider the synthesis of a bank of correlators as a motivating example. This is a commonly occurring operation in DSP applications, e.g. Kalman filters, matching pursuit (MP), recursive least squares (RLS), and minimum mean-square error estimation (MMSE) [3].

The bank of correlators multiplies each sample of a received vector r with the corresponding sample of a column in an S matrix, i.e. $C_i = \sum_{j=1}^{l} r_j \times S_{j,i}$, where r is a vector of l complex numbers, and S is a $m \times l$ real numbers. l and m will vary based on the application. For instance, if we wish to perform radiolocation in the ISM band (i.e. 802.11x) using the matching pursuit algorithm, both l and m are equal to 88 [4].

We assume a large enough memory module could be embedded in our chip, and assign the S matrix on this memory module. The commercial high-level synthesis tool, such as Catapult C, may generates a design with an extremely slow execution time of about 77,440 ns. Some other tools may fail to synthesize this design due to the huge S matrix. On the other hand, distributing the data accesses to block RAM modules results in designs that executes in up to 80 times faster. Obviously the partitioning of the S matrix to the block RAM modules greatly affects the system overall performance.

The data space is intuitively partitioned by column or by row. By simple analysis, column-wise partition results in a communication-free partitioning. Figure 3 suggests several candidates column-wise partitionings. Figure 3(a), (b), and (c) assign one block RAM to one column, four columns, and eight columns, respectively.
Figure 4(1) presents the control and computations of the column-wise data partitioning. The S matrix is partitioned to a number of portions by the column-wise direction, and each portion is assigned to a block RAM module. Computations of correlators are conducted using the embedded multipliers beside the block RAM in a multiplication and accumulation (MAC) manner. For each correlator, the control logic and computational resources are local to the block RAM module.

Figure 4(2) presented area and timing trends of different granularity for the column-wise scheme. When assigning one block RAM to one column, the design takes approximate 1000 nano second, but occupies lower 90% of available block RAM modules and embedded multipliers, and approximate 25% of available LUTs. When more columns are packed into one block RAM, there are less data partitions and less correlators. The hardware requirements hence decrease. However, because each correlator needs to process more data, the execution time increases linearly to the granularity of partitions. When assigning one block RAM to two columns, the execution time doubled. When assigning one block RAM to eight columns, the executions are approximate 8 times longer than that of one column per block RAM.

To evaluate different partitioning schemes, we also obtained performance results for row-
wise partitions.

![Row-wise model](image1)

![Results](image2)

Fig. 5. Row-wise partitioning

Figure 5(1) illustrates the parallel computation scheme, or the by-row scheme, where one block RAM is assigned to one or multiple rows. Data at the same column is read and multiplied using a multiplier. A pipelined adder-tree is used for the summation of the products. This pipelined multiplier-adder-tree requires accesses to each of the block RAM modules. Therefore, this multiplier-adder-tree can be placed over the whole chip, which involves a large amount of global data communications. On the other side, this scheme parallelizes each correlator, and therefore requires a global control on the pipelined multipliers-adder-tree. Figure 5(2) presented area and timing trends of different granularity for both schemes, respectively.

TABLE I

Comparison between the same granularity

<table>
<thead>
<tr>
<th>Data per BRAM</th>
<th># of cycles</th>
<th>Pre-layout Timing</th>
<th>Post-layout Timing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>F(MHz)</td>
<td>L(ns)</td>
</tr>
<tr>
<td>1 column</td>
<td>178</td>
<td>214.7</td>
<td>829</td>
</tr>
<tr>
<td>1 row</td>
<td>184</td>
<td>140.5</td>
<td>1309</td>
</tr>
<tr>
<td>4 columns</td>
<td>706</td>
<td>205.0</td>
<td>3436</td>
</tr>
<tr>
<td>4 rows</td>
<td>710</td>
<td>157.0</td>
<td>4520</td>
</tr>
<tr>
<td>8 columns</td>
<td>1410</td>
<td>198.6</td>
<td>7099</td>
</tr>
<tr>
<td>8 rows</td>
<td>1413</td>
<td>147.1</td>
<td>9602</td>
</tr>
</tbody>
</table>

Table I compares the row-wise and column-wise schemes with the same granularity (i.e. same number of rows/columns). In the term of numbers of clock cycles, the difference is
minimal. However, if we check the maximal achieved frequencies, designs of the column-wise partitioning scheme are 20-50% faster than those of the row-wise partitioning scheme. Deeper analysis showed that the performance gaps are mainly due to the increased amount of global communications needed for the control logic and global memory accesses to block RAM modules. Pre-layout timing results are always better than those of the post-layout results, which shows that, in both schemes, the Precision RTL Synthesis tool under-estimates the interconnect delays.

It is nature to argue that using multi-cycle for lengthier remote memory accesses can avoid slowing down the entire circuit. However, when we conduct architectural-level synthesis, we don’t know which block RAM these data portions are going to map to, and where the accessing logics are placed. Therefore, it is impossible to determine which memory access is local or which memory access are remote at this stage. What we can do is to either use multi-cycle for all memory accesses or hope the placement and routing tool can generate a very good results which minimizes the lengthy memory accesses.

In summary, different partitions of the array S deliver a wide variety of candidate solutions. Synthesized designs showed that data partitioning and storage assignment not only affect the number of clock cycles, but also affect the achieved clock frequencies. Therefore, it is very important to consider both the number of clock cycles and the achievable clock frequencies when looking for a data partitioning solution.

IV. RELATED WORK

High-level synthesis can dramatically reduce the design time, and deliver high performance designs, with less clock cycles, higher clock frequencies, less area, and even less power [5] [6]. Most of early efforts on the high-level synthesis are focussed on resource allocation, scheduling, and binding. Different approaches were proposed to synthesize memory modules. Early efforts usually map data arrays into a single memory modules [7] [8]. Thomas et al [9] assiged each data array a memory module. Comprehensive storage exploration and memory optimizations technologies are presented in IMEC’s DTSE work [10]. In most of their work, they assumed that the memory module is large enough for those data arrays and didn’t consider memory capacity constraints.

Panda et al. [11] investigated architectural-level exploration techniques for embedded processors with complicate hierarchical memory systems. Based on the PICO method [12],
Kurdur et al. [13] presented an ILP formulation to solve the storage arrangement problem. They assume every data array can fit into one of the local memory, and they use an extra move operation to access remote data. These works are more like a processor-based data exploration and memory optimization works.

Early efforts on utilizing multiple memory modules on FPGA [14] allocated an entire array to a single memory module rather than partitioning data arrays. Furthermore, they assumed that the latencies differences had little effect on system throughput. As to memory optimization in synthesis to configurable platforms, Budiu et al. [15], and Diniz et al. [16], respectively, presented some effective techniques to reduce memory accesses and benefit high-level synthesis.

Huang et al. [17] presented their work in high-level synthesis with integrated data partitioning for ASIC design flow. Their work is quite similar to our work as they adapt code analysis techniques from traditional parallelizing compilation field. However, their work was more like in an ASIC flow and are not limited by the capacities of available memory modules. They start from a fixed number of partitioning. Our proposed work starts from the program cores and the resource constraints, and uses granularity adjustment to find out how many partitions are reasonable for the design.

The data partitioning and storage assignment problem is well studied in the field of parallelizing compilation [18] [19] [20]. Early efforts developed effective analysis techniques and program transformations to reduce global communications and improve system performance. Shih and Sheu [21] and Ramanujam and Sadayappan [22] addressed the methodology to achieve communication-free iteration space and data partitioning problem. Pande [23] presented an communication-efficient data partitioning solution when it is impossible to get a communication-free partitioning.

The following differences make it impossible to directly migrate these approaches into a system compiler for configurable architectures with distributed block RAM modules.

- The target architectures are different. Multiprocessor systems have a fixed number of microprocessors. Each microprocessor has its own local memory, and is connected with a different remote memory modules that exhibit non uniform memory access (NUMA) attributes.

- Configurable architectures execute programs using CLBs rather than microprocessors. The number of block RAM modules are fixed. There is not fixed number of CLBs as-
associated with a particular block RAM. Hence the boundaries between local and remote memory are indistinct.

Our problem is distinguished from the previous studies as follows. First of all, these differences violate a fundamental assumption held in the previous research. Most of the previous efforts assumed that global communications or latencies to remote memory are an order of magnitude slower than access latencies to local memory. This makes it reasonable to simplify the objective function to simply reduce the amount of global communications.

This assumption is not true in the context of data partitioning for configurable architectures. As previously described, the boundaries between local and remote memory are indistinct. Access latencies to block RAM modules depends on the distance between the accessing CLBs and the memory ports. There is no way to determine the exact delay before performing placement and routing.

Second, data partition and storage assignment have more compound effects on system performance. In parallelizing compilation for multiprocessor architectures, once computations and data are partitioned, it will be relatively easy to estimate the execution time since the clock period is fixed, and the number of clock cycles consists of the communication overheads and computation latencies for each instruction. However, it is extremely difficult to determine the execution time in configurable systems before physical synthesis. Our results in Section VI show that even though number of clock cycles are almost the same, there can be 30-50% deviations in execution time due to variation in frequency. Therefore, the control logic and computation times are effected, and not just the memory access delays.

Moreover, the flexibility to configure block RAM modules make this problem even more difficult. Block RAM modules could be configured with a variety of width x depth schemes, and as described before, even CLBs could be used to store small data arrays.

In summary, configurable architectures are drastically different from traditional NUMA machines, making it difficult to estimate candidate solutions during the early stages of synthesis. Flexibilities in configuring block RAM modules greatly enlarge the solution space, making the problem even more challenging.

V. DATA PARTITIONING AND STORAGE ASSIGNMENT

This section formally describes the data partitioning and storage assignment problem, and proposes an approach to computing the number of memory accesses for a given partition.
Then, we discuss some of the techniques that we use to reduce memory accesses and improve system performance for FPGA-based configurable architectures with distributed block RAM modules.

A. Problem formulation

We focus on data-intensive applications in digital signal processing. These applications usually contain nested loops and multiple data arrays.

In order to simplify our problem, we assume that

(a) the input programs are nested loops;

(b) index expressions of array references are affine functions of loop indices;

(c) there is no indirect array references, or other similar pointer operations;

(d) all data arrays are assigned to block RAM modules; and

(e) each data element is assigned one and only one single block RAM modules, i.e. no duplicate data. Furthermore, we assume that all data types are fixed-point numbers due to the current capability of our system compiler. If there are conditional constructs, such as branch, transformation techniques, such as speculative execution and loop normalization, could be applied to pre-process the input programs.

The inputs to this data partitioning and storage assignment problem are as follows:

- A program d contains an l-level perfectly nested loop $L = \{L_1, L_2, \ldots, L_l\}$
- The program d accesses a set of n data arrays $N = \{N_1, N_2, \ldots, N_n\}$.
- A specific target architecture, i.e. an FPGA, contains a set of m block RAM modules $M = \{M_1, M_2, \ldots, M_m\}$. This FPGA also contains A CLBs.
- We set our desired frequency to F, and the maximum execution time to L.

The problem of data partitioning and storage assignment is to partition N into a set of p data portions $P = \{P_1, P_2, \ldots, P_p\}$, where $p \leq m$, and seek an assignment $\{P \rightarrow M\}$ subject to the following constraints

- $\bigcup_{i=1}^{p} P_i = N$, and $P_i \cap P_j = \emptyset$, i.e. that all data arrays are assigned to block RAM and each data element is assigned to one and only one block RAM module.
- $\forall (P_i, M_j) \in \{P \rightarrow M\}$, the memory requirement of P_i is less than the capacity of M_j

After obtaining data partitions and storage assignment, we reconstruct the input program d, and conduct behavioral-level synthesis. After RTL and physical synthesis, the synthesized design must satisfy the following constraint:

- The slices of CLBs occupied by synthesized design d is less than A.
The objective is to minimize the total execution time (or maximize the system throughput) under the resource constraints of specific configurable architectures. The desired frequency F and the maximum execution time T are used as target metrics during compilation and synthesis.

B. Overview of the proposed approach

Our proposed approach is based on our current efforts on synthesizing C programs into RTL designs. Our system compiler takes C programs, performs necessary transformations and optimizations. By specifying target architecture, and desired performance (throughput), this compiler performs resource allocation, scheduling, and binding tasks, and generates Verilog RTL designs, which can then be synthesized or simulated using commercial tools.

As discussed before, in configurable architectures, the boundaries between local and remote accesses are indistinct. In our preliminary experiments, we found that, given the same datapath with memory accesses to block RAM modules with different locations, the lengths of critical path achieved after placement and routing can have a 30-50% variation. And a limited number of functional units could be placed near the block RAM modules which they access.

Therefore, we could still assume that, once the data space is partitioned, we can obtain a corresponding partitioning of the iteration space, or a partitioning of the computations. Each portion of the data space can be mapped to one portion of the iteration space. Then we divide all memory accesses into local accesses and remote ones. However, these local and remote memory accesses are different from those in parallel multiprocessor systems in that the access latencies are usually on the same order of magnitude.

Based on this further assumption, we adapt some concepts and analysis techniques in tradition parallelizing compilation. A *Communication-free* partitioning refers to a situation when each partition of the iteration space only accesses the associated partition of the data space. If we can not find a communication-free partitioning, we look for a *communication-efficient* partitioning to minimize the execution time.

Our proposed approach integrates traditional program test and transformation techniques in parallelizing compilation into our system compiler framework. In order to tackle the performance estimation during data space partitioning, we use our behavioral-level synthesis techniques, i.e. resource allocation, scheduling and binding.
C. Data and iteration space partitioning

This section discusses our data and iteration space partitioning algorithm in detail. Our approach is illustrated in Algorithm 1. Before line 7, we adapt existing analysis techniques in parallelizing compilation to determine a set of directions to partition. In line 7 and 8, we call our behavioral-synthesis algorithms to synthesize the innermost iteration body. After that, we evaluate every candidate partitioning, and return the one with the most likelihood achieving the short execution time subject to the resource constraints.

1) Program analysis: Given a \(l \)-level nested loops, the iteration space is an \(l \)-dimensional integer space. The loop bounds of each nested level set the bounds of the iteration space. An integer point in this iteration space solely refers to an iteration, which includes all statements in the innermost iteration body. Each \(m \)-dimension data array has a corresponding \(m \)-dimensional integer space. An integer point refers to a data element with that data index.

\[
\begin{align*}
&\text{for (i=1; i<ROW-1; i++)} \\
&\quad \text{for (j=1; j<COL-1; j++)} \\
&\quad \quad d[i][j]=(s[i][j-1]+(s[i][j]<<1)+s[i][j+1])>>2;
\end{align*}
\]

Fig. 6. 1-dimensional mean filter

For example, Figure 6 shows the kernel of a 1-dimensional mean filter. This simplest mean filter blurs the image and removes speckles of high frequency noise in the row direction. The corresponding iteration space is shown in Figure 7(a).

In each iteration, data elements in the data space are accessed. Since we assume that index expressions of array references are affine functions of loop indices, a footprint of each
iteration can be calculated using the affine functions, i.e. each iteration is mapped to a set of data points in the data space by means of specified array reference. In the above mean filter example, given an iteration (2,3), we can easily obtain the access footprints in the $DS((S))$ as $\{(2,2),(2,3),(2,4)\}$ (as shown in the rectangle box in Figure 7(b)).

With the iteration space $IS(L)$ and the reference footprints F, we can determine a set of directions to partition the iteration space. The direction can be represented by a multi-dimensional vector. For example, if we have a 2-level nested loop, we usually do row-wise or column-wise partitioning, or in the (col, row) vector form, (0,1) or (1,0), respectively. Figure 8(a) shows a row-wise bi-partitioning of the iteration space of the above mean filter example, and the corresponding data space partitioning is shown in Figure 8(b).

Fig. 8. Data spaces are correspondingly partitioned when the iteration space is partitioned.

In the row-wise partitioning of the mean filter example, the data access footprints of any iteration are in one of the data space portions. This could mean that, after synthesis and
physical design, all data accesses can be local memory accesses. However, in some cases,
data access footprints may be broken. Hence, some iterations may access data from more
than one data space partitions. As shown in Figure 9(b), the data in the rectangle boxes
are overlapped with the dashed box, i.e. data are required by iterations in both iteration
partitions. This is the reason why we have non-local or remote data accesses. Although we
could not achieve communication-free partitioning, we could evenly partition the overlapped
data spaces. For instance, this arrays are partitioned like these boxes shown in Figure 9(c).

As to some applications, there may be other partitioning directions, such as a vector (1,1).
There could be a number of feasible partitioning solutions. However, it is possible to limit
our design spaces by seeking partitioning directions which result the least overlapped data
access footprints.

Above shows how we can partition the data and iteration space when the dimension of
itration space equals to that of the data space. If the dimension of the data space is higher
than that of the iteration space, then a sub-space of the data space are accessed during
exeuction, and other parts of the data space do not affect the synthesized circuits. We can
apply similar approach to determine the data space partitioning. When the dimension of the
itration space is higher than that of the data spaces, except some simple cases, it is very
hard to partition the data space and map those portions to block RAM modules.

2) Synthesis of iteration bodies: In order to evaluate our candidate solutions, their perfor-
mance on target configurable architectures should be determined. Since most design prob-
lems in behavior synthesis are NP-complete, and time-consuming, it is extremely inefficient
to perform synthesis on each candidate solutions.

In our approach, we first synthesize the innermost iteration body with proper resource
constraint, obtain performance results for the single iteration, and then use them to evaluate
our cost function in line 17 of Algorithm 1.

The innermost iteration body is scheduled and pipelined using allocated resources, including
1 block RAM modules, 1 embedded multipliers, and a portion of CLBs, which, by our
assumption, are associated with a specific block RAM module. The design is pipelined using
allocated resources. The execution time and achieved throughput are reported. For a large
itration space IS(L), the pipelined iteration body gives the shortest execution time, or the
highest throughput, and the best resource utilization. After synthesis, we return the resource
utilization for the block RAM, multiplier, and the CLBs, respectively. We also output the
number of total clock cycles, and the initial interval (II), which determines the maximum system throughput. In case that there are true data dependencies between iterations, no additional transformations are applied to solve these dependencies since our goal is to gather performance information, mainly the resource utilization, which .

3) Granularity adjustment: For each partitioning direction, we evaluate every possible partition granularity. Given a specific nested loop and data arrays, and a specific architecture, we can determine the finest and coarsest grain for a homogeneous partitioning. As shown in line 9 of Algorithm 1, the finest partition granularity partitions the iteration space (and the data space) into as many portions as possible. It hence depends on the number of block RAM modules. The coarsest grained partition requires that each block RAM store as much data as possible. It depends on the capacity of a block RAM module.

Our cost function, $C \leftarrow \tau \times (\max\{u_{mem}, u_{mul}, u_a\} \times II \times g_j + (T))$, as shown in line 17, give us a good idea how long the execution time will be. It consists of two parts. The first one is the τ, a ratio factor of the global memory accesses over all memory accesses, which is greater than or equal to 1, as shown in line 16. This τ includes effects of remote memory accesses. When there is no remote memory access, $\tau = 1$, and we can achieve a communication-free partitioning; otherwise, we want to minimize it, which reduces the execution time. The second part is an experiential formula estimating the total clock cycles for a pipelined design under resource constraints. Since the iteration body is pipelined, the most utilized components determines the performance (or throughput) when more than one iterations are assigned to this block.

For example, after pipelining, $II = 1$, $T = 10$, $\max\{u_{mem}, u_{mul}, u_a\} = u_{mul} = 1$. All multipliers are busy at all time. If there are ten iterations in one partition, then the execution time will be $1 \times II \times 10 + (T - II) = 19$ clock cycles, without considering effects of remote memory accesses. Another example could be, after pipelining, $II = 1$, $T = 10$, $\max\{u_{mem}, u_{mul}, u_a\} = u_{mul} = 0.5$, there are still ten iterations in one partition, then the execution time will be $0.5 \times II \times 10 + (T - II) = 14$ clock cycles, without considering effects of remote memory accesses. The reason why the second one is faster is that the half of multipliers and more of other resources are free, which allow more operations are scheduled and executed at the same time.
D. Improving Clock Frequencies

The maximum achieved clock frequency greatly affects the overall performance of the generated design. However, it is very difficult to accurately estimate the clock frequency before placement and routing.

The motivating example shows up to 25% differences between the pre-layout and post-layout timing results. When the granularities of the data partitions decrease, the differences between the pre-layout and the post-layout timing results increase since that, the finer the partition granularity is, the more partitions there are and the more complicated designs are generated.

![Buffer Insertion Diagram](image)

Fig. 10. Buffer insertion

In order to improve the maximum achieved clock frequencies of synthesized designs, the buffer insertion technique is integrated in our high-level synthesis flow. Data accesses are scheduled one cycle earlier, and insert registers on the data paths. Hence the lengths of critical paths are reduced and the data can be available on time. For example, in Figure 10(a), it is faster for CLB (c) to access block RAM (a) than to access block RAM (b). Figure 10(b) shows a design in which the data in block RAM (b) is fetched one clock cycle earlier. Although we don't where the inserted register will be placed, we assume the downstream physical design tools are smart enough to place it between the accessing CLB and the block RAM module to reduce the length of critical path, just as shown in Figure 10(b).

This technique can be applied in the early stage of the design flow with little layout information, and can be easily integrated into the architectural-level synthesis flow as an automatic optimization. Compared with ASIC designs, registers in FPGA-based configurable architectures are virtually free, which allow this optimization effectively improve the system.
performance with little cost.

VI. EXPERIMENTAL RESULTS

This section presents our experimental setup and results.

A. Experimental Setup

Our benchmark suite consist of several DSP and image processing applications. SOBEL edge detection, which applies horizontal and vertical detection masks to an input image. Bilinear filtering is a suitable way to eliminate blocky textures in 3-D image engine. 2D_Gauss applies lowpass filtering to 2D arrays aka blurring 2D images, and 1D_Gauss is more general lowpass filter. A number of DSP and image applications have the similar control structure and memory access patterns, such as texture smoothing and convolution [24]. Except the SOBEL ones, all other four algorithm cores have the same input size and resource constraints.

The target architecture is Xilinx Virtex II FPGA series, which contains evenly distributed block RAM modules. The target frequency was set to 150 MHz for our benchmark suite. This frequency represents a typical clock frequencies of high-speed designs for the specific target Virtex II FPGA. There is no other special reason for us to select this particular clock frequency.

We partitioned the arrays using the algorithm proposed in Section 4.2, and performed program transformations, and generate RTL hardware designs. We then used Precision RTL Synthesis and Xilinx physical design tools to obtain area and timing results. Experiments results are collected after RTL synthesis and placement and routing.

Table II presents detailed results of these benchmarks. For each benchmark, there is an original design, of where the iteration space and data spaces are not partitioned, a partitioned design, of which the iteration space and data spaces are partitioned under the resource constraints, and an optimized design, on which more memory optimizations, scalar replacement and buffer insertions, are applied. There are timing and area results for both pre-layout and post-layout designs. For each design, the number of clock cycles are reported. With the reported clock frequencies, we can calculated the execution time before actual physical synthesis. After placement and routing, the achieved clock frequencies are collected, and the execution time are calculated.
B. Experimental Results

![Normalized Latencies](image)

Fig. 11. Normalized latencies

Figure 11 shows latencies of all designs normalized to the original un-partitioned designs. We found that the execution time of the partitioned designs are significantly smaller than the original ones. (Since the SOBEL applications have different input size and resource constraints, their results will be discussed in the later sections.)

![Maximum Achievable Frequencies](image)

Fig. 12. Maximum achievable frequencies

Figure 12 presents the maximum achievable clock frequencies. In most cases, the partitioned designs are about 10 percent slower than the original ones. However, after applying those optimization techniques, the achievable frequencies are about 7 percent faster than those of partitioned ones. Considering the area of partitioned designs and optimized designs
are much larger than the original ones and with more complicated control, these results are quite good.

If we only partition the data arrays, the number of clock cycles is reduced, and the maximal frequencies after placement and routing are slower than our desired frequencies. In order to reduce memory accesses, optimization techniques such as buffer insertion and scalar replacement are utilized.

After partitioning, the average speedup over the original ones is 2.75 times faster, and after further optimizations, the average speedup is 4.80 times faster.

The buffer insertion is an effective optimization to improve the achieved clock frequencies. Comparing optimized designs with partitioned designs, clock frequencies after placement and routing are improved 8% in average, and up to 20% percent. Among half of those designs, the optimized designs could finally achieve the 150 MHz goals design target. These improvements on achieved clock frequencies are considered more important than the decreases of the numbers of clock cycles since that the improvements on clock frequencies can speed up the execution of the whole design, if other modules can run at higher clock frequencies.

C. Performance effects of partitioning decisions

Tables II(1) and II(2) show timing results for SOBEL edge detection with two different input image sizes. In the smaller design, we achieve the 150 MHz design goal, and with a 46x speedup compared to the original design. However, we could not achieve the design goal in the larger SOBEL design. The constraints on the block RAM modules results the original design partitioned into up to 16 portions, which is hard for later stages of placement and routing. This points to the fact that as the number of partitions increases, the effects of physical designs on performance also increases, hence the clock frequencies decrease.

D. Summary

Architectural-level decision on data partition and storage assignment in the early stage could affect the final result greatly. In general, a partitioned design will decrease execution time, but occupies more memory and hardware resources. Different optimization techniques can be utilized to reduce memory access, and improve the overall performance. When the size of designs increase, it becomes more difficult to achieve design goals since it lacks the support from down-stream tools, especially physical design tools.
VII. Conclusion

Modern configurable computing systems offer enormous computing capacities, and continue to integrate on-chip computation and storage components. Advanced synthesis tools are required to map large applications to these increasingly complicated chips. More importantly, these tools must be powerful and smart enough to conduct memory optimizations to effectively utilize on-chip distributed block RAM modules.

This work showed that a data and iteration space partitioning approach integrated with existing architectural-level synthesis techniques can parallelize input designs, and dramatically improve system performance. Experimental results indicated that partitioned designs achieve much better performance.

In future work, we plan to investigate analysis and transformation techniques to deal with configurable architectures with heterogeneous memory arrangement. It will also be interesting to have better buffer insertion techniques for different design complexities.

Acknowledgment

The authors would like to thank...
REFERENCES

Algorithm 1 Partitioning

Input: nested loop L, data arrays N, RAM modules mem, and the number of CLBs c

Output: data partitioning P, and iteration partitioning I_p, represented by the direction d and granularity g.

Ensure: $\bigcup_{i=1}^{P} P_i = N$, and $P_i \cap P_j = \emptyset$

Ensure: $|P| \leq |M|$

1: procedure **PARTITIONING**
2: Calculate the iteration space $IS(L)$
3: for each $N_i \in N$ calculate the data space $DS(N_i)$
4: $B \leftarrow$ Innermost iteration body
5: Calculate the reference footprints, F, for B using reference functions
6: Analyze $IS(L)$ and F, and obtain a set of partitioning direction D
7: $a \leftarrow A/|M|$ \hspace{1cm} \# of CLBs associated to each RAM
8: Synthesis($B, 1, 1, a, u_{\text{ram}}, u_{\text{mul}}, u_a, T, II$) \hspace{1cm} Called only once to gather information
9: $g_{\text{min}} \leftarrow \text{size of} IS(L)/|M|$ \hspace{1cm} the finest partition
10: $g_{\text{max}} \leftarrow \frac{\text{size of } \sum DS(N_i)}{\text{size of each block RAM}}$ \hspace{1cm} the coarsest partition
11: $d_{\text{cur}} \leftarrow d_0, g_{\text{cur}} \leftarrow g_{\text{min}}$ \hspace{1cm} Record the current design options
12: $C_{\text{cur}} \leftarrow \infty$
13: for each $d_i \in D$ do
14: \hspace{1cm} for $g_j \leftarrow g_{\text{min}}, g_{\text{max}}$ do \hspace{1cm} foreach feasible granularity
15: \hspace{2cm} Partition $DS(N)$ following d_i and g_j
16: \hspace{2cm} Calculate the number of memory accesses using reference functions
17: \hspace{3cm} $m_r \leftarrow$ \# of remote accesses
18: \hspace{3cm} $m_t \leftarrow$ \# of total accesses
19: \hspace{3cm} $\tau = 2^\frac{m_t}{m_r}$ \hspace{1cm} the choice of 2 depends on the chip size
20: \hspace{2cm} $C \leftarrow \tau \times (\max \{u_{\text{mem}}, u_{\text{mul}}, u_a\} \times II \times g_j + (T))$ \hspace{1cm} Cost function to evaluate the current partitioning solution
21: \hspace{2cm} $u_{\text{mem}}, u_{\text{mul}}, u_a$ are utilization of RAMs, multipliers, and CLBs
22: \hspace{2cm} II is the initial interval, and T is the estimated time of the innermost iteration body
23: \hspace{2cm} if $C < C_{\text{cur}}$ then
24: \hspace{3cm} $d_{\text{cur}} \leftarrow d_i, g_{\text{cur}} \leftarrow g_j$ \hspace{1cm} Update the current best solution.
25: \hspace{3cm} $C_{\text{cur}} \leftarrow C$

Output d_{cur} and g_{cur}
Algorithm 2 Synthesis

Input: innermost iteration body B, # of block RAMs mem, # of multipliers mul, # of CLBs c

Output: Resource utilization of multipliers u_{mem}, CLBs u_c, and block RAMs u_{mem}, execution time T and initial interval II.

1: procedure SYNTHESIS(B, mem, mul, c, u_{mem}, u_{mul}, u_c, T, II)
2: Generate DFG g from B
3: Schedule and pipeline g to minimize the initial interval, subject to allocated resources, including mem block RAMs, mul multipliers, and c CLBs.
4: Output resource utilization u_{mem}, u_{mul}, and u_c.
5: Output execution time T, and the initial interval II
<table>
<thead>
<tr>
<th>Algorithm</th>
<th># of cycles</th>
<th>Pre-layout Timing/Area</th>
<th>Post-layout Timing/Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOBEL (small)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>original</td>
<td>12,196</td>
<td>159.52</td>
<td>76.5</td>
</tr>
<tr>
<td>partitioned</td>
<td>2,032</td>
<td>150.60</td>
<td>13.5</td>
</tr>
<tr>
<td>optimized</td>
<td>263</td>
<td>185.19</td>
<td>1.4</td>
</tr>
<tr>
<td>(1) SOBEL (small)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOBEL (large)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>original</td>
<td>29,718</td>
<td>160.9</td>
<td>184.7</td>
</tr>
<tr>
<td>partitioned</td>
<td>2,032</td>
<td>145.92</td>
<td>13.9</td>
</tr>
<tr>
<td>optimized</td>
<td>263</td>
<td>185.19</td>
<td>1.4</td>
</tr>
<tr>
<td>(2) SOBEL (large)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUSAN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>original</td>
<td>41,769</td>
<td>145.56</td>
<td>286.9</td>
</tr>
<tr>
<td>partitioned</td>
<td>17,409</td>
<td>173.28</td>
<td>100.5</td>
</tr>
<tr>
<td>optimized</td>
<td>9,293</td>
<td>127.50</td>
<td>72.9</td>
</tr>
<tr>
<td>(3) susan_principle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bilinear Filtering</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>original</td>
<td>32,771</td>
<td>188.68</td>
<td>173.9</td>
</tr>
<tr>
<td>partitioned</td>
<td>10,243</td>
<td>204.04</td>
<td>50.2</td>
</tr>
<tr>
<td>optimized</td>
<td>4,608</td>
<td>180.96</td>
<td>25.5</td>
</tr>
<tr>
<td>(4) bilinear_filtering</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-D Gauss Blurring</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>original</td>
<td>32,776</td>
<td>150.47</td>
<td>217.8</td>
</tr>
<tr>
<td>partitioned</td>
<td>12,296</td>
<td>177.53</td>
<td>69.3</td>
</tr>
<tr>
<td>optimized</td>
<td>8,896</td>
<td>150.74</td>
<td>59.0</td>
</tr>
<tr>
<td>(5) gauss_blurring_1d</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-D Gauss Blurring</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>original</td>
<td>40,963</td>
<td>155.33</td>
<td>263.7</td>
</tr>
<tr>
<td>partitioned</td>
<td>10,243</td>
<td>237.81</td>
<td>43.072</td>
</tr>
<tr>
<td>optimized</td>
<td>6,400</td>
<td>255.95</td>
<td>25.0</td>
</tr>
<tr>
<td>(6) gauss_blurring_2d</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>