
Hardware Acceleration of Multi-view Face Detection

Junguk Cho, Bridget Benson, and Ryan Kastner
Department of Computer and Science and Engineering

University of California, San Diego
La Jolla, California, USA

{jucho, b1benson, kastner}@cs.ucsd.edu

Abstract—This paper presents a parallelized architecture for
hardware acceleration of multi-view face detection. In our
architecture, the multi-view face detection system generates
rotated image windows and their integral image windows for
each classifier which perform parallel classification operations to
detect non-upright (rotated) and non-frontal (profile) faces in the
images. We use the training data from OpenCV to detect the
frontal and profile faces based on the Viola and Jones algorithm.
The proposed architecture for multi-view face detection has been
designed using Verilog HDL and implemented in a Xilinx Virtex-
5 FPGA. Its performance has been measured and compared with
a Jones' and Viola's software implementation of multi-view face
detection.

Keywords- acceleration, classifier, face detection, FPGA, multi-
view face, Verilog HDL

I. INTRODUCTION
Face detection is the act of indentifying faces of interest in

images regardless of size, position, and circumstance. A
successful algorithm will find the locations and sizes of all
faces in the image stream that belong to a given class with no
or few "false positives". Potential face detection applications
include monitoring and surveillance, human computer
interfaces, smart rooms, intelligent robots, and biomedical
image analysis. Face detection proposed by Viola and Jones is
the first approach for real-time face detection [1]. This
approach utilizes the AdaBoost algorithm [2], which identifies
a sequence of rectangle features that indicate the presence of a
face. The Viola and Jones algorithm is most often used for face
detection, e.g., in the OpenCV library [3][4], however is
applicable in other domains. This algorithm requires
considerable computational power due to the sheer number of
rectangle features that must be identified to detect a face. One
face is comprised of a substantial amount of features, which are
typically computed over a window of 24×24 pixels. To reduce
computation, the detection is performed in stages so that
windows in an image that do not contain something that looks
similar to a face do not require computation of all features.
There are many proposed approaches for face detection in a
wide variety of images. While they can successfully detect
frontal upright faces, many natural images include rotated or
profile faces that are not reliably detected in the real world.
There are only a small number of techniques that address non-
frontal or non-upright face detection [5-7]. Non-upright face
detection, proposed by Rowley et al., [5] is the first reliable
approach. They use two neural network classifiers. The first
estimates the pose of a face in the image window. The second
performs conventional face detection. Faces are detected in

three steps: the pose of the face for each image window is first
estimated; the estimated pose is then used to de-rotate the
image window; the window is then evaluated by the second
classifier. Schneiderman et al. [6] develop the algorithm that
can reliably detect human faces with out-of-plane rotation.
They develop separate detectors that are each specialized to a
specific orientation of the face. They have one detector
specialized to right profile faces and one that is specialized to
frontal faces. To detect left profile faces, they apply the right
profile detector to flipped images. Jones and Viola [7] extend
this framework [1]. They handle the detection of non-upright
faces using a two stage approach. In the first stage the pose of
each image window is estimated using a decision tree
constructed using features like those described by Viola and
Jones [1][7]. In the second stage one of N pose specific
detectors is used to classify the window. These methods need a
substantial amount of computation. Therefore, this constitutes a
bottleneck to the application of face detection in real-time.

This paper presets a parallelized architecture for the
hardware acceleration of multi-view face detection. In order to
detect profile (non-frontal) and rotated (non-upright) faces, the
multi-view face detection system generates rotated image
windows and their integral image windows for each classifier
which perform parallel classification operations to detect
profile and rotated faces in the images. The main contribution
of our work, described in this paper, is the design and
implementation of a physically feasible hardware system to
accelerate the processing speed of the operations required for
real-time multi-view face detection. Therefore, this work has
resulted in the development of a real-time multi-view face
detection system employing an FPGA implemented system
designed by Verilog HDL. Its performance has been measured
and compared with an equivalent software implementation.
This paper is organized as follows: In Section 2, we explain the
multi-view face detection algorithm. In Section 3, we describe
the hardware architecture, designed with Verilog HDL, of the
multi-view face detection system using block diagrams. We
also present the implementation of our real-time multi-view
face detection system in an FPGA. In Section 4, we show the
system's performance. We conclude in Section 5.

II. MULTI-VIEW FACE DETECTION
The Viola and Jones [1][7] face detection algorithm is used

as the basis of our design. While the input image is scanned
across location and scale, this algorithm utilizes pattern
classification to determine the presence of a face. Viola and
Jones use a boosted collection of features to classify image
windows by using the AdaBoost algorithm [2]. In the Adaboost

algorithm, a set of weak binary classifiers is learned from a
training set. Each classifier is a simple feature made up of
rectangular sums followed by a threshold as shown in Fig. 1.
The simple features are designed to easily detect an edge or a
line of the face. Viola and Jones [7] define the value of a two-
rectangle feature as the difference between the sums of the
pixels within two rectangular regions. Viola and Jones consider
the two-rectangles as having the same size and shape and being
horizontally or vertically adjacent, but we consider the two-
rectangles as one small rectangle (gray) on top of a rectangle
twice as large (covered by the white and gray areas). The
advantage of representing the rectangular regions as having
different sizes becomes apparent for the three and four
rectangle features as these features can now be represented by 2
or 3 rectangles respectively which reduce the number of
references needed to define the feature. Computation of
rectangle features can be accelerated using an intermediate
image representation called the integral image [1]. The integral
image at location (x, y) contains the sum of the pixels above
and to the left of (x, y). Using the integral image, any rectangle
feature, at any scale or location, can be evaluated in constant
time [1]. In order to improve computational efficiency and also
reduce false positive rate, classification is divided into a
cascade of classifiers. An image window is passed from one
classifier in the cascade to the next as long as each classifier
classifiers the window as a face. The threshold of each
classifier is set to yield a high detection rate. Each stage of the
cascade consists of several classifiers. Early stages have fewer
classifiers while later ones have more so that easy non-face
regions are quickly discarded. The window exits the cascade if
it passes all stages or fails any stage. A face is detected if a
window passes all stages.

Figure 1. Example rectangle features shown relative to the enclosing
detection window. The sum of the pixels which lie within the white rectnagles
are subtracted from the sum of pixels which lie within the gray rectangles.

In order to detect non-upright (rotated) faces, the space of
poses is divided into various classes and trained to create
different detectors for each pose class by Viola and Jones [7].
In order to avoid the computational expense of having to
evaluate every detector on every window in the input image,
Jones and Viola use a two stage approach which first estimates
the pose of the face in the window and then evaluates only the
detector trained on that pose. When the pose estimator is
evaluated on a non-face window, its output can be considered
random. Any detector chosen to evaluate on a non-face
window should return false. In Jones’ and Viola’s try-all-poses
approach they do not use a pose estimator and try all N pose
specific detectors. Jones and Viola [7] found their try-all-poses
approach is more accurate than their two stage approach, but is
about 5 times slower. The frontal face detector from Viola and
Jones handles approximately ±15 degrees of in-plane rotation
[7]. Given this, they trained 12 different detectors for frontal
faces in 12 different rotation classes. Each rotation class covers
30 degrees of in-plane rotation so that together, the 12 detectors

cover the full 360 degrees of possible rotations. In practice,
they only needed to train 3 detectors: one for 0 degrees (which
covers -15 degrees to 15 degrees of rotation), one for 30
degrees (which covers 15 degrees to 45 degrees), and one for
60 degrees (which covers 45 degrees to 75 degrees). Because
the features we use can be rotated 90 degrees, any detector can
also be rotated 90 degrees. So a frontal face detector trained at
0 degrees of rotation can be rotated to yield a detector for 90
degrees, 180 degrees, and 270 degrees. The same trick can be
used for the 30 degree and 60 degree detectors to cover the
remaining rotation classes. In order to detect non-frontal
(profile) faces, the same method for rotated face detection is
used. Jones and Viola [7] used the two stage approach which
first classifies an image window as left or right profile and then
evaluates only the detector trained on that pose. To create a left
profile detector, all features of the right profile detector are
simply flipped.

III. HARDWARE ARCHITECTURE / IMPLEMENTATION
We proposed a parallelized architecture of the hardware

acceleration for real-time multi-view face detection. Figure 2
shows the overview of the proposed architecture for multi-view
face detection. It consists of seven modules: image interface,
frame grabber, image store, image scaler, Haar classifier,
display, and DVI interface [8]. The image interface and DVI
interface are implemented using ASIC custom chips with the
FPGA board. The others are designed using Verilog HDL and
implemented in an FPGA in order to perform face detection in
real-time.

Frame Grabber
Controller

Image Cropper

Frame Grabber Image(8)

Image Frame
Buffer

Address
Generator

Image Store

Sync(3)

Coord(19)
Scale(23)

DVI Transmitter

DVI Interface

DVIAnalog Image

Image Display
Controller

Detected Face
Data

Display

Image Window
Buffer

Image Line
Buffers

Classifiers

Rotated Image
Window Buffer

Arbitrator

Training Data

Stage
Comparators

Coord(19)

RGB(24)

Sync Separator

A/D Converter

Image Interface

Control(2)

Sync(3)

Request(20)

Scale(23)

Scale Factor

Scale Calculator

Image Scaler

Sync(3)
Enable(1)

Camera

Sync(3)

Image(24)

Monitor

Detect(27)

Image(8)

Integral Image
Window Buffer

Stage
Accumulators

Figure 2. Block diagram of proposed multi-view face detection system.

The frame grabber module generates the control signals for
the image interface, and transfers images and sync signals from
the image interface module to all of the modules of the face
detection system. The image store module stores the image
data arriving from the frame grabber module frame by frame.
The images are scaled down based on a scale factor (1.2) by the
image scaler module. We use a nearest neighbor interpolation
algorithm with a factor of 1.2. The scaler module for 320×240
pixel images has 14 scale factors (1.20~1.213), the scaler
module for 640×480 pixel images has 18 scale factors
(1.20~1.217) [8]. The image scaler module generates and
transfers the address of the BRAMs containing a frame image
in the image store module to request image data according to a

scale factor. The image store module transfers a pixel data to
the classifier module based on the address of BRAMs required
from the image scaler module. The display module stores the
information of the detected faces obtained from the classifier
module, and displays white squares on the faces in the image
sequence. The Digital Visual Interface (DVI) specification is
applied to display the processed image sequence to the LCD
monitor through a DVI transmitter in the DVI interface
module. This module generates the sync signals and image data
for the DVI transmitter.

The classifiers module performs the classification for the
multi-view face detection. It is the critical module of the whole
multi-view face detection system. This module consists of the
image line buffers, image window buffer, rotated image
window buffers, and integral image window buffers to generate
the integral image windows for each classifier, classifiers, stage
accumulators, stage comparators, feature training data, stage
training data, and arbitrator to perform the classification as
shown in Fig. 3.

Image Line Buffer 0 (BRAM)

Integral Image
Window
Buffer 0

(nxn Register)

Image Line Buffer 1 (BRAM)

Image Line Buffer m-2 (BRAM)

Image Line Buffer m-1 (BRAM)

Classifier 1

Classifier k-2

Image(8)

Classifier k-1

Frontal Face
Stage Training

Data (RAM)

Result(12)
Enable(1)

Image(8)

Rotated
Image

Window
Buffer 0

(nxn Register)

Inter_Image(13)

Image(8m)

Rotated
Image

Window
Buffer 1

(nxn Register)

Rotated
Image

Window
Buffer k-2

(nxn Register)

Integral Image
Window
Buffer 1

(nxn Register)

Integral Image
Window

Buffer k-2
(nxn Register)

::

: :

Inter_Image(13)

Inter_Image(13)

Rotated
Image

Window
Buffer k-1

(nxn Register)

Integral Image
Window

Buffer k-1
(nxn Register)

Inter_Image(13)

Classifier 0

Classifier k

Rotated
Image

Window
Buffer k

(nxn Register)

Integral Image
Window
Buffer k

(nxn Register)

Inter_Image(13)

:

Feature(123)Feature(123)

Stage
Accumulator 0

Stage
Accumulator 1

Stage
Accumulator k-2

Stage
Accumulator k-1

Stage
Accumulator k

Rotated Frontal Face Detection

Profile Detection

Integral_Image(17)

Integral_Image(17)

Integral_Image(17)

Image(8)

Image(8)

Image(8)

Integral_Image(17)

Stage Comparator

Stage Comparator

Stage Comparator

Frontal Face
Feature Training

Data
(BRAM)

Profile
Feature Training

Data
(BRAM)

Stage Comparator

Stage Comparator

Integral_Image(17)

Result(12)

Result(12)

Result(12)

Result(12)

Sum_Stage(19)

Sum_Stage(19)

Sum_Stage(19)

Sum_Stage(19)

Profile Stage
Training Data

(RAM)

Stage(19) Stage(19)

Detect(27)Enable(1)Coord(19) Scale(23)

Image Window
Buffer

(mxm Register)

Arbitrator

Sum_Stage(19)

Detect(27)

Enable(1)

Detect(27)

Enable(1)

Detect(27)

Enable(1)

Detect(27)

Enable(1)

Detect(27)

Enable(1)

Enable(1)

Enable(1)

Enable(1)

Enable(1)

Figure 3. Block diagram of the classifiers module.

In this paper we implement the try-all-poses approach
instead of a two stage system to ensure high accuracy of
detection. In order to avoid the computational expense of
having to evaluate every detector on every window in the input
image, we design and implement a parallel architecture of
multiple detectors for multi-view face detection in real-time. In
order to detect the up-right (rotated) faces, we first de-rotate the
image window obtained from the m×m (29×29) image window,
where 2 2m n n! " , to generate the n×n (20×20) rotated
image windows about all directions, and then generate the n×n
(20×20) integral image windows using the n×n (20×20) rotated
image windows for each classifier.

The integral image generation requires substantial
computation. It may take a long latency delay every frame. In
order to reduce memory access and processing time, we

propose a specific architecture for the integral image generation
[8]. This architecture stores the necessary pixels for processing
each pixel and its neighboring pixels together. The image line
buffers store some parts of the image. The image line buffers
use dual port BRAMs where the number of BRAMs (m-1) is
the same as that of the row-1 (29-1=28) in the image window
buffer. Each dual port BRAM can store one line of an image.
Thus, the x-coordinates of the pixels can be used as the address
for the dual port BRAM.

The image window buffer stores pixel values moving from
the image line buffers. Since pixels of an image window buffer
are stored in registers, it is possible to access all pixels in the
image window buffer simultaneously to generate the rotated
image windows. Since the de-rotation of each rotated image
window is performed by using the pre-calculated pixel
mapping information, using a nearest neighbor interpolation
algorithm, the latency of the rotation of the image window
takes only one clock cycle. The pixels of a rotated image
buffers are stored in registers. The integral image window
buffers calculate the integral images of each rotated image
buffer. There are two steps to calculate the integral images. The
first calculates the accumulated values of each column of the
rotated image window buffer. It takes n/2 (20/2=10) clock
cycles using two accumulators. The second calculates the
accumulated values of each row using the accumulated values
of each column of the rotated image window buffer. It takes
another n/2 (20/2=10) clock cycles. With these operations, the
integral image windows are calculated from the rotated image
window buffers. The total latency of the integral image
generation takes n (20) clock cycles. These operations are
processed with the classifications processing in the classifiers
at the same time. Since the integral images which are currently
calculated in the rotated image window buffer are for the
classifications in the next position, it can save the latency time
of the integral image generation.

We design and implement multiple classifiers for multi-
view face detection. These classifiers work in parallel. The
classifier has its own integral image window buffer which is
generated from the rotated image buffer. In order to detect non-
upright (rotated) faces, we deal with all rotation covering [-
180, 180]. However, while standing, a person can tilt his or
her head by [-45, 45] [9]. Since the frontal face detector from
Viola and Jones handles approximately ±15 degrees of in-plane
rotation, 12 detectors cover all rotation as [-180, 180], and 3
detectors cover the rotation as [-45, 45]. Thus, to detect faces
of a standing person, 3 detectors are sufficient. Each detector
use the training data for frontal face detection and each integral
image window from the 0 degree, 30 degree, and -30 degree
rotated image window, respectively. In order to detect non-
frontal (profile) faces, we use a right profile detector with the
integral image window from the 0 degree rotated image
window. To detect a left profile faces, we simply flipped the 0
degree rotated image window to generate the integral image
window for the left profile detector. The profile detectors
handle out-of-plane rotations for about 3/4 view to full profile.
Since the frontal upright detector handles faces from about left
3/4 view to right 3/4 view, the three detectors, right profile,
frontal upright, and left profile detectors, combine to handle the
full range of upright faces from left profile to right profile.

We use the training data from OpenCV [3][4] to detect the
frontal [10] and profile [11] human faces based on the Viola
and Jones algorithm [1]. These cascades of the training data are
trained by frontal faces and profile faces of size 20×20,
respectively. The cascade for frontal face detection includes a
total of 22 stages, 2315 classifiers, and 4630 rectangle features.
The cascade for profile face detection includes a total of 26
stages, 2609 classifiers, and 5218 rectangle features. The
training data for frontal face detection are used for non-upright
(rotated) face detectors to detect rotated faces. The training data
for profile face detection are used for non-frontal (profile) face
detectors to detect left and right profile faces. All training data
for both frontal and profile faces are stored in the BRAMs.

Classifiers have rectangle features which consist of two or
three rectangles of different sizes and their weight, threshold,
and left and right values. Each rectangle presents four points, x,
y, x+width, and y+height. The integral image value of each
rectangle can be calculated using these points from the
corresponding integral image window buffer simultaneously
which reduces the memory access time. We design architecture
of the classifier for face detection [8]. This architecture is for a
classifier with only rectangular features, but can be easily
extended for other features (such as the diagonal features
described in Jones and Viola [7]) by adding a few more
computational elements. The proposed architecture of the
classifier is implemented based on a pipeline scheme. The
latency for the first result of the classifier is five clock cycles.
The arbitrator gathers the results of all classifiers and manages
each classifier to perform the classification continuously or
terminate the classification with current image window based
on the result of each classifier. The arbitrator outputs the
detection information and enable signal.

IV. EXPERIMENT / RESULT
The proposed systems for multi-view face detection are

designed using Verilog HDL, synthesized using Synplify Pro,
and implemented in a Virtex-5 LX330 FPGA using the ISE
design suite [12]. There are two implementations: 5 classifiers
to detect faces (three 0, 30, -30 rotated and two right and left
profile faces) of standing person for both 320×240 (QVGA)
resolution images and 640×480 (VGA) resolution images.

We measure the performance of the proposed parallelized
architecture of hardware acceleration for multi-view face
detection. We apply the implemented multi-view face detection
system to a camera, which produces images consisting of
640×480 pixels at 60 frames per second. Since the system
performance of face detection depends on the number of faces
in the images, we test the implemented face detection system
on several images which have various numbers of faces, and
measure the performance as the average processing time. On
320×240 pixel images, our multi-view face detection system is
capable of processing the images at speeds of an average of
68.41 ms (14.61 fps). On a 640×480 pixel images, our multi-
view face detection system is capable of processing the images
at speeds of an average of 258.24 ms (3.87 fps). In the software
implementation by Jones and Viola [7], the two stage rotated
face detector takes about 140 ms (7.14 fps) and the try-all-
rotations detector takes about 660ms (1.51 fps) to process a

320×240 pixel image on a 2.8 GHz Pentium 4. The two stage
profile detector process a 320×240 pixel image in about 120 ms
(8.33 fps) on a 2.8 GHz Pentium 4 machine. Our multi-view
face detection system has the performance improvement of
2.04 times over the Jones and Viola two stage rotated face
detector, 9.67 times over their try-all-rotations detector, and
1.75 times over their two stage profile detector software
implementation. Our system can also detect both rotated and
profile faces in a single system whereas the Jones and Viola
use a separate system for each detection. We do not compare
our results to the Rowley et al. implementation [5] because it
was implemented 10 years ago on a 200MHz R4400 SGI
Indigo 2 and thus provide results that are too slow to offer a
meaningful comparison.

V. CONCLUSION
We present a parallelized architecture of hardware

acceleration for multi-view face detection. In our architecture,
the multi-view face detection system generates rotated image
windows and their integral image windows for each classifier
which perform parallel classification operations to detect non-
upright (rotated) and non-frontal (profile) faces in the images.
We design the proposed architecture using Verilog HDL and
implement the architecture in a Xilinx Virtex-5 FPGA. The
parallelized architecture of multi-view face detection can have
about 2 times performance improvement over the Jones and
Viola two stage rotated face detector and about 9 times
performance improvement over the Jones and Viola try-all-
rotations detector software implementation.

REFERENCES
[1] P. Viola and M. Jones, “Robust Real-Time Face Detection,”

International Journal of Computer Vision, 57(2), 137-154, 2004.
[2] Y. Freund and R. E. Schapire, “A Decision-Theoretic Generaliztion of

On-Line Learning and an Application to Boosting,” Journal of
Computer and System Sciences, no. 55, pp. 119-139, 1997.

[3] Open Computer Vision Library, Sourceforge.net, January 2009.
DOI=http://sourceforge.net/projects/opencvlibrary/.

[4] G. Bradski and A. Kaehler, Learning OpenCV: Computer Vision with
the OpenCV Library, O'Reilly Media, Inc., 2008.

[5] H. Rowley, S. Baluja, and T. Kanade, “Rotation Invariant Neural
Network-Based Face Detection,” IEEE Conference on Computer Vision
and Pattern Recognition, pp. 38-44, 1998.

[6] H. Schneiderman and T. Kanade, “A Statistical Method for 3D Object
Detection Applied to Faces and Cars,” IEEE Conference on Computer
Vision and Pattern Recognition, pp. 746-751, 2000.

[7] M. Jones and P. Viola, “Fast Multi-view Face Detection,” Mitsubishi
Electric Research Laboratories, TR2003-096, 2003.

[8] J. Cho, S. Mirzaei, J. Oberg, and R. Kastner, “FPGA-Based Face
Detection System Using Haar Classifiers,” ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, pp. 103-112, 2009.

[9] J. Kim, S. Kee, and J. Kim, “Fast Detection of Multi-View Face and Eye
Based on Cascaded Classifier,” IEEE Conference on Machine Vision
Applications, pp. 116-119, 2005.

[10] R. Lienhart and J. Maydt, “An Extended Set of Haar-like Features for
Rapid Object Detection,” IEEE Conference on Image Processing, vol. 1,
pp. 900-903, 2002.

[11] D. Bradley, “Profile Face Detection,” Intel Research Award Contest,
2003.

[12] Xilinx Inc., “Virtex-5 Family Overview,” February 2009.
DOI=http://www.xilinx.com/.

