
UNIVERSITY OF CALIFORNIA

Santa Barbara

Ant Colony Metaheuristics for Fundamental Architectural Design Problems

A Dissertation submitted in partial satisfaction of the

requirements for the degree Doctor of Philosophy

in Electrical and Computer Engineering

by

Gang Wang

Committee in charge:

Professor Ryan Kastner, Chair

Professor Malgorzata Marek-Sadowska

Professor Steve Butner

Professor Elaheh Bozorgzadeh

Professor Timothy Sherwood

September 2007

The dissertation of Gang Wang is approved:

Chair Date

Date

Date

Date

Date

University of California, Santa Barbara

September 2007

Ant Colony Metaheuristics for Fundamental Architectural Design Problems

Copyright 2007

by

Gang Wang

iii

To my wife Fang Liu,

my children James, Justin, Jocelyn,

and my parents Tihao Wang and Shuchun Li.

iv

Abstract

Ant Colony Metaheuristics for Fundamental Architectural Design Problems

by

Gang Wang

Doctor of Philosophy in Electrical and Computer Engineering

University of California, Santa Barbara

Professor Ryan Kastner, Chair

As the fabrication technology advances, the number of transistors in modern computer

systems keeps growing exponentially. This growth creates tremendous potential while

imposing big challenges to the electronic design automation community on how to con-

struct such complicated systems. In order to effectively utilize the computing resources,

a number of fundamental problems need to be addressed. As thescale and complexity

of these problems grow, we must look towards new optimizations methods, rather than

simply perform iterative improvements on existing techniques.

In this dissertation, I will report our research work on constructing new heuristic

algorithms using the Ant Colony metaheuristic for effectively and efficiently solving a

range of difficult architectural design problems. We investigate threeN P -hard prob-

lems in this context, namely system partitioning, operation scheduling and design space

exploration. Results show that Ant Colony metaheuristic isa very promising approach

for solving these problems, and the algorithms we propose generally achieve better

quality solutions with much improved stability compared toconventional methods.

v

Moreover, by establishing the theoretical link between timing and resource constrained

scheduling, we propose an effective design exploration framework that leverages du-

ality between the scheduling problems. To our best knowledge, our work is the first

extensive study on applying the Ant Colony metaheuristics to the architectural design

field.

vi

Acknowledgments

I would like to show my sincerest gratitude to my advisor Professor Ryan Kastner for

giving me copious amounts of insightful guidance, constantencouragement, construc-

tive criticism, and expertise on every subject that arose throughout all these years. His

enthusiasm and dedication to his students are truly inspiring; it is my very privilege

to have been one of them. I would also like to thank Professor Malgorzata Marek-

Sadowska, Professor Elaheh Bozorgzadeh, Professor StevenButner, and Professor Tim

Sherwood for being on my Ph.D. committee and for all their helps along the way.

I am very thankful for the many friends and fellow students I have had at UCSB,

including Anup Hosangadi, Yen Meng, Brian DeRenzi, for their many stimulating dis-

cussions and warm friendship. Particularly, I want to thankWenrui Gong, who I collab-

orated with on numerous research efforts and became close friend with over the years.

Without them, my experience at UCSB won’t be as rewarding as it is.

Finally, I want to thank my wife, Fang Liu, for her love, support, encouragement,

sense of humor, and for being an intelligent partner on my research journey as well. I

could not have accomplished this without her. Very special thanks to my parents for

their selfless love and support, and to my lovely children James, Justin and Jocelyn.

vii

Curriculum Vitæ

Gang Wang was born in Shaanxi, China in 1971. He received the Bachelor of Electrical

Engineering degree from Xian Jiaotong University in 1992, and Master of Computer

Science degree from Chinese Academy of Sciences in 1995, both in China. From 1995

to 1997, he conducted research work at Michigan State University (East Lansing, MI,

US), and Carnegie Mellon University (Pittsburgh, PA, US), focusing on speech and im-

age understanding. Since 1997, Mr. Wang held positions as software architect and tech-

nical manager in different leading companies of medical industry, including Computer

Motion, Intuitive Surgical and Karl Storz Endoscope. His work focused on the research

and development of complex surgical robotics systems, multi-modal human-computer

interaction and intelligent operating room. His current research interests include re-

configurable and embedded computing, optimization algorithms and their applications,

novel architectural design for FPGA and nanocomputing platforms, ubiquitous comput-

ing and its applications in medical/healthcare systems. Hehas authored or co-authored

more than 20 technical papers in different journals and conferences on related topics.

Related Publications:

BOOKS/BOOK CHAPTERS

[B1] Gang Wang, Wenrui Gong, and Ryan Kastner.Operation Scheduling: Al-

gorithms and Design Space Exploration, to appear inHigh Level Synthesis

Handbook: The State of Artspublished by Springer.

JOURNAL ARTICLES

viii

[J1] Gang Wang, Wenrui Gong, Brian DeRenzi, and Ryan Kastner.Exploring

Time/Resource Tradeoffs by Solving Dual Scheduling Problems with the Ant

Colony Optimization, accepted byACM Transactions on Design Automation

of Electronic Systems(TODAES).

[J2] Gang Wang, Wenrui Gong, Brian DeRenzi, and Ryan Kastner.Ant Schedul-

ing Algorithms for Resource and Timing Constrained Operation Scheduling,

IEEE Transactions of Computer-Aided Design of Integrated Circuits and Sys-

tems(TCAD), Vol 26, Issue 6, pp 1010-1029, 2006.

[J3] Gang Wang, Satish Sivaswamy, Cristinel Ababei, Kia Bazargan, Ryan Kast-

ner and Eli Bozorgzadeh.Statistical Analysis and Design of HARP Routing

Pattern FPGAs, IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems(TCAD), Vol 25, Issue 10, pp 2088-2102, October 2006.

[J4] Gang Wang, Wenrui Gong and Ryan Kastner,Application Partitioning on

Programmable Platforms Using the Ant Colony Optimization, Journal of Em-

bedded Computing(JEC), Vol 2, Issue 1, pp 119-136, 2006.

PEER-REVIEWED CONFERENCE/WORKSHOPPAPERS

[C1] Ted Huffmire, Brett Brotherton,Gang Wang, Ryan Kastner, and Tim Sher-

wood. Moats and Drawbridges: An Isolation Primitive for Reconfigurable

Hardware Based Systems, IEEE Symposium on Security and Privacy, 2007.

[C2] Gang Wang, Wenrui Gong, and Ryan Kastner,On the Use of Bloom Fil-

ters for Defect Maps in Nanocomputing, In International Conference on

ix

Computer-Aided Design(ICCAD), 2006.

[C3] Gang Wang, Wenrui Gong, Brian DeRenzi and Ryan Kastner,Design Space

Exploration using Time and Resource Duality with the Ant Colony Optimiza-

tion, In 43rd Design Automation Conference(DAC), 2006.

[C4] Gang Wang, Wenrui Gong, and Ryan Kastner,Defect-Tolerant Nanocom-

puting Using Bloom Filters for Defect Mapping, In IEEE Symposium on

Field-Programmable Custom Computing Machines(FCCM), pp 277-278,

2006.

[C5] Wenrui Gong,Gang Wangand Ryan Kastner.Storage Assignment During

High-level Synthesis for Configurable Achitectures, In International Confer-

ence on Computer Aided Design(ICCAD), 2005.

[C6] Gang Wang, Wenrui Gong and Ryan Kastner,Instruction Scheduling us-

ing MAX-MIN Ant Optimization, In ACM Great Lakes Symposium on VLSI

(GLSVLSI), 2005.

[C7] Satish Sivaswamy,Gang Wang, Cristinel Ababei, Kia Bazargan, Ryan Kast-

ner, Eli Bozorgzadeh.HARP: hard-wired routing pattern FPGAs, In Pro-

ceedings of the ACM/SIGDA 13th International Symposium on Field Pro-

grammable Gate Arrays(FPGA), 2005.

[C8] Wenrui Gong, Yan Meng,Gang Wang, Ryan Kastner, and Timothy Sher-

wood, Data Partitioning for Reconfigurable Architectures with Distributed

Block RAM, In International Conference on Engineering of Reconfigurable

x

Systems and Algorithms(ERSA), 2005.

[C9] Wenrui Gong,Gang Wang, and Ryan Kastner.Data Partitioning for Re-

configurable Architectures with Distributed Block Ram, In The Fourteenth

International Workshop on Logic and Synthesis(IWLS), 2005.

[C10] Gang Wang, Wenrui Gong and Ryan Kastner.System Level Partitioning

for Programmable Platforms Using the Ant Colony Optimization, In 13th

International Workshop on Logic and Synthesis(IWLS), 2004.

[C11] Wenrui Gong,Gang Wangand Ryan Kastner.A High Performance Appli-

cation Representation for Reconfigurable Systems, In the International Con-

ference on Engineering of Reconfigurable Systems and Algorithms(ERSA),

2004.

[C12] Gang Wang, Wenrui Gong and Ryan Kastner,A New Approach for

Task Level Computational Resource Bi-Partitioning, In 15th IASTED

International Conference on Parallel and Distributed Computing and

System(PDCS), 2003. (Best paper nomination.)

xi

Contents

List of Figures xv

List of Tables xvii

List of Algorithms xviii

1 Introduction 1
1.1 Motivation . 1
1.2 Research Overview . 6
1.3 Organization of Dissertation .. 10

2 Ant Colony Metaheuristic 12
2.1 Nature Inspired Metaheuristics .. . 12
2.2 ACO for Travel Salesman Problem . 17
2.3 ACO for Other Combinatory Problems19
2.4 Convergency of ACO Method . 21
2.5 MAX-MIN Ant System (MMAS) . 23

3 System Partitioning 26
3.1 Introduction . 27
3.2 ACO for System Partitioning . 31

3.2.1 Problem Definition . 31
3.2.2 Augmented Task Graph . 34
3.2.3 ACO Formulation for System Partitioning 36
3.2.4 Complexity Analysis . 42
3.2.5 Extending the ACO/ATG method 42
3.2.6 Comparing with the Original ACO 44

3.3 Experimental Results and Performance Analysis 46
3.3.1 Target Architecture and Benchmarks46
3.3.2 Absolute Quality Assessment 50
3.3.3 Comparing with Simulated Annealing 57

xii

3.3.4 Hybrid ACO with Simulated Annealing 60
3.4 Application: Quick Design Parameter Estimation 62
3.5 Summary . 66

4 Operation Scheduling 67
4.1 Introduction . 68
4.2 Preliminaries . 72

4.2.1 Operation Scheduling Problem Definition 72
4.2.2 Related Work . 74

4.3 ACO for Timing Constrained Scheduling 77
4.3.1 Force-Directed Scheduling . 77
4.3.2 Algorithm Formulation . 80
4.3.3 Refinements . 86
4.3.4 Extensions . 88
4.3.5 Complexity Analysis . 91

4.4 ACO for Resource Constrained Scheduling 91
4.4.1 List Scheduling . 91
4.4.2 Algorithm Formulation . 93
4.4.3 Refinements . 97
4.4.4 Extensions . 99
4.4.5 Complexity Analysis . 100

4.5 ExpressDFG Benchmarks . 101
4.6 Experimental Results . 108

4.6.1 Time Constrained Scheduling 108
4.6.2 Resource Constrained Scheduling 116
4.6.3 Comparison with Simulated Annealing 125
4.6.4 Parameter Sensitivity . 131

4.7 Summary . 133

5 Design Space Exploration 136
5.1 Introduction . 137
5.2 Related Work . 139
5.3 Exploration Using Time and Resource Constrained Duality 142

5.3.1 Iterative Design Space Exploration Leveraging Duality 142
5.3.2 Integrate with ACO-based Scheduling Algorithms 147

5.4 Experiments and Analysis . 149
5.4.1 Benchmarks and Setup . 149
5.4.2 Quality Assessment . 150

5.5 Summary . 159

6 Conclusions and Future Work 160
6.1 Conclusions . 160
6.2 Future Work . 163

xiii

Bibliography 165

xiv

List of Figures

1.1 A simplified representation of an FPGA fabric is on the left. Con-
figurable Logic Blocks (CLBs) perform logic level computation using
Lookup Tables (LUTs) for bit manipulations and flipflops for storage.
The switch boxes and routing channels provide connections between
the CLBs. SRAM configuration bits are used throughout the FPGA
(e.g., to program the logical function of the LUTs and connect a seg-
ment in one routing channel to a segment in an adjacent routing chan-
nel).The FPGA floor plan on the right illustratively shows a physical
layout of FPGA after routing. 4

2.1 (a) A laboratory nest of a Leptothorax ant colony; (b) Experiment set-
tings used in [25]. 15

2.2 An illustration on how ACO-TSP works.
(1) Single ant constructs a solution; (2) Multiple solutions are con-
structed by all the ants individually;
(3) The pheromone trails adaptively adjust their values during the iter-
ations; (4) The optimal solution emerges as the search learns from its
experience. 20

3.1 ATG for 3-way Partitioning . 35
3.2 Target architecture . 47
3.3 Example Task Graph . 49
3.4 A typical run of ant search . 51
3.5 Result quality measured by top percentage 52
3.6 Execution time distribution .. 56
3.7 Comparing ACO with SA . 59
3.8 ACO, SA and ACO-SA on big size problems 60
3.9 Estimate Design Parameters with ACO application partitioner on de-

sign choice with incremented resources65

xv

4.1 Data Flow Graph (DFG) of thecosine2benchmark
(‘r’ is for memory read and ‘w’ for memory write). 74

4.2 Pheromone update windows . 87
4.3 Distribution of DFG size for MediaBench 105
4.4 Execution Time for Timing-Constrained Scheduling.

(Ratio is MMAS time / FDS time) . 114
4.5 Data Flow Graph of AR Filter.

(The number by the node is the index assigned for the operation.) 123
4.6 Pheromone Heuristic Distribution for ARF 124

5.1 Design Space Exploration Using Duality between Schedule Problems
(CurveL gives the optimal time/cost tradeoffs.) 142

5.2 Distribution of the TCS ACO solution quality on idctcol benchmark
with a deadline set to its ASAP time. Each line shows a different phase
of the algorithm execution where each point gives the numberof solu-
tions of a particular resource cost. The line “1-200” denotes the first
200 solutions found by the ACO algorithm, while the line “1801-2000”
gives last 200 solutions. 152

5.3 Solution quality of the TCS ACO on the idctcol benchmark.We run
the TCS ACO algorithm at each deadline ranging from its ASAP time
(19) to (32). The size of the dot indicates the proportion of solutions
with a specific resource cost found at each deadline. 153

5.4
Design Space Exploration results: MMAS-D, FDS-D and FDS 155

5.5 Timing Performance Comparison .158

xvi

List of Tables

2.1 Applications of ACO method and their qualitative performance 21

3.1 Comparing ACO results with the random sampling 54
3.2 Average Result Quality Comparison 62

4.1 ExpressDFG benchmark suite
(Benchmarks with † are extracted from MediaBench.)
(Benchmark node and edge count with the operation depth (OD)as-
suming unit delay.) . 107

4.2 Effect of Look-ahead Mechanism in FDS
(Result shown in MUL/ALU number pair. Deadline is in cycles.) 109

4.3 Partial detailed results for Timing-Constrained Scheduling
(Size is given as DFG’s node/edge number pair. Virtual nodesand
edges are not counted.
Average and standard deviationσ are computed over 5 runs. Saving is
computed based on FDS results. No weight applied.) 111

4.4 Result Summary for Timing-Constrained Scheduling
Data in parenthesis shows the results obtained using Simulated Anneal-
ing.
Deadline shows the tested range. Averageσ is computed over the tested
range.
Saving is computed based on FDS results. No weight applied. 112

4.5 Result Summary for Homogenous Resource-Constrained Scheduling
(Heuristic Labels: OM=Operation Mobility OD=Operation Depth,
LWOD=Latency Weighted Operation Depth, SN=Successor Number) . 117

xvii

4.6 Result Summary for Heterogenous Resource-ConstrainedScheduling
Schedule latency is in cycles; Runtime is in seconds; † indicates
CPLEX failed to provide final result before running out of memory.
(Resource Labels: a=alu, fm=faster multiplier, m=mutiplier, i=input,
o=output)
(Heuristic Labels: OM=Operation Mobility OD=Operation Depth,
LWOD=Latency Weighted Operation Depth, SN=Successor Number) . 119

5.1 Summary for Design Space Exploration Results. Each linegives
the benchmark name, the tested time range and the results of each
design space exploration algorithm (FDS-D, MMAS-TCS, MMAS-D
compared to the exhaustive FDS result. (A negative result indicates a
smaller resource allocation, which is desired.) 156

xviii

List of Algorithms

1 ACO Algorithm for System Partitioning37

2 Force-Directed Scheduling for Time-Constrained Optimization 81

3 MMAS for Timing Constrained Scheduling 85

4 Resource-Constrained List Scheduling 92

5 MMAS for Resource-Constrained Scheduling 96

6 Simulated Annealing for Timing-Constrained Scheduling 128

7 Iterative Design Space Exploration Algorithm 146

xix

Chapter 1

Introduction

1.1 Motivation

Due to the rapid advances in VLSI fabrication technology, modern computer sys-

tems continue to provide better performance by effectivelyutilizing an increasing num-

ber of transistors on a chip. The well-known Moore’s law [73], which predicts that the

number of transistors on a single chip would grow exponentially over a relative short

period of time, has been very accurate so far. Over the past 30years, the transistor den-

sity has doubled every 18-24 months. ITRS estimates that we will be able to integrate

more than half billion transistors on a 468 mm2 chip by the year of 2009[85]. This

creates tremendous potential for future computing systems.

This also imposes big challenges to the Electronic Design Automation (EDA) com-

munity on how to effectively build such complicated systems. As the complexity of

1

digital systems increases, so does the complexity of the underlying EDA problems. One

critical question we need to address is: as computing resources become abundant, how

can we effectively utilize these resources so that we can fully exploit the technology

advances to solve future computing problem? For example, recent studies by Profes-

sor Cong’s group at UCLA [20, 21], indicate that the results obtained over a benchmark

circuits with known optimal wire lengths using the current commercially available rout-

ing and placement tools are far from the optimal. They arguedthat just by improving

these results we are potentially able to move today’s technology one generation ahead.

While these examples are contrived, and follow-up study [64] shows that real-world

designs are not as dire as initially suggested, this is stilla staggering difference. As we

move into smaller sub-micro technologies, there exists room for improvement for these

algorithms.

In answering this challenge, one trend that seems to be affirmed in recent years is

the shift to parallel architectural design or spatial computational model in constructing

computing systems. This differs significantly from timeplexing a single active compu-

tation among a large number of operations as we have been familiar with in traditional

single processor architectures. Spatial computational designs dedicate specific comput-

ing hardware to individual operations [24]. Operations arethen interconnected in space

rather than in time. This model will allow us to exploit the full parallelism available

in the applications. The spatial computing model trades increased area for better time

performance and effective overall usage of the computing resources.

2

The trend of shifting to spatial computing has also been evidenced by the steady

market adoption of reconfigurable computing technologies,especially the Field Pro-

grammable Gate Array (FPGA) platform. Reconfigurable hardware, such as FPGAs,

provides a programmable substrate onto which descriptionsof circuits can be loaded

and executed at very high speeds. Because they are able to provide an attractive balance

between performance, cost, and flexibility, many critical embedded systems make use

of FPGAs as their primary source of computation. Their circuit-level flexibility allows

system functionality to be updated arbitrarily and remotely. For example, the aerospace

industry relies on FPGAs to control everything from satellites to the Mars Rover.

FPGAs lie along a continuum between general-purpose processors and application-

specific integrated circuits (ASICs). They provide both high-performance and well-

defined timing behavior, but they do not require the costly fabrication of custom chips.

While general purpose processors can execute any program, this generality comes at

the cost of serialized execution. On the other hand, ASICs can achieve impressive

parallelism, but their function is literally hard wired into the device. The power of re-

configurable systems lies in their ability to flexibly customize an implementation down

at the level of individual bits and logic gates without requiring a custom piece of sili-

con. This can often result in performance improvements on the order of magnitude as

compared to, per unit silicon, a similar microprocessor [24, 14]. FPGA technology is

now the leading design driver for almost every single foundry. In fact it is estimated that

in 2005 alone there were over 80,000 different commercial FPGA design starts [67].

3

FPGA Chip Floor Plan

Soft

µP Core

AES

Core

Soft

Soft

µP Core

FPGA Fabric

Switchbox

Figure 1.1: A simplified representation of an FPGA fabric is on the left. Configurable Logic

Blocks (CLBs) perform logic level computation using LookupTables (LUTs) for bit

manipulations and flipflops for storage. The switch boxes androuting channels provide

connections between the CLBs. SRAM configuration bits are used throughout the FPGA (e.g.,

to program the logical function of the LUTs and connect a segment in one routing channel to a

segment in an adjacent routing channel).The FPGA floor plan on the right illustratively shows

a physical layout of FPGA after routing.

Figure 1.1 provides a simplified diagram of the modern FPGA architecture. FP-

GAs have very regular gate level patterns which differs fromASIC realization. Here

the CLBs (configurable with LUT) are the basic logic/computing units. By connecting

the CLBs using the interconnection resources (switchboxesand routing channels), an

FPGA can be programmed to perform virtually any computation. It is worthwhile to

note the tremendous flexibility the FPGA architecture provides to the designers. They

have the capability to implement a wide variety of custom circuits, ranging from simple

4

adder/multiplier or multiple instances of them, to an entire computational function (e.g.

digital filter, video codec), or even a complete CPU core (e.g. PowerPC 4507). This is

very appealing; however, it also brings difficult questionsregarding how to effectively

use such flexibility. For example, for a given application and a known FPGA platform,

what is the optimal configuration that achieves the best timing performance? Addition-

ally, what is the impact on the system configuration (such as the number of adders and

multipliers) if the requirements are relaxed? Moreover, isthere a systematic method

to help the designers explore the huge design decision spacecreated by such increased

flexibility?

Similar questions exist beyond the fine granularity level and the scope of pure

FPGA-based platforms. In order to find cost effective ways toget the desired per-

formance and maximize uses of resources, we often find designs that compose a hy-

brid technologies in today’s systems. The most well-known example is the hard-

ware/software co-design problem, where a system is composed of a general purpose

CPU and a hardware-based computing resource (either ASIC orFPGA). More gener-

ally, a hybrid system can be organized to haven computing units with different capabili-

ties and characteristics. How to assist the designer to effectively partition and distribute

the computing tasks of an application over various computing units remains a system

level challenge.

In general, as the complexity of digital systems increases,so does the complexity

of these underlying EDA problems. To make it more difficult, many of these problems

5

areN P -hard, which implies that finding optimal polynomial time algorithms for these

problems are very unlikely. Due to this fact, almost all existing EDA systems apply

heuristics to some extent. These heuristics were likely very successful and effective

when they were invented. However, as the complexity of the problems increases, the

conventional heuristic methods may fail in handling today’s larger problems effectively.

To face these challenges, we must look towards new optimization methods, rather than

simply perform iterative improvements on existing techniques.

1.2 Research Overview

My dissertation research work is focused on constructing effective heuristic al-

gorithms for solving difficult and fundamental design optimization problems. More

specifically, the research focuses on devising new design automation algorithms based

on the Ant Colony metaheuristics or Ant Colony Optimization(ACO) techniques. The

ACO method is a relatively new meta-heuristic approach inspired by the ecological

study of social insects (ants) and can be classified as a population based, self-organized

meta-heuristic method; it was originally formulated to solve traditionalN P -hard com-

binatory problems in late 1990’s and has been since successfully applied to solve a

number of traditionalN P -hard combinatory problems.

ACO distinguishes itself from other conventional meta-heuristic methods (e.g. sim-

ulated annealing and genetic algorithms) with the following advantages:

• It formulates an optimization problem as a collaborative search process;

6

• It provides an effective way to combine global search experience with problem

specific heuristics using pheromone sharing;

• It utilizes indirect communication in learning and employspositive feedback to

achieve fast convergence;

• It offers a new and powerful way for solving optimization problems modeled as

a graph, which is often the underlying model for various architectural problems.

Similar to other versatile meta-heuristic methods, such asStimulated Anneal-

ing(SA), Genetic Algorithm (GA) and A* algorithm, it is possible to apply the Ant

Colony metaheuristics to a slew of problems. However, careful attention has to be

paid to consider the specific characteristics of the problemat hand and effectively

integrate them in the final algorithms. In our study, we have selected to focus on

three fundamental EDA problems, namely the system level partitioning problem,

the operation scheduling problem and the design space exploration problem. These

problems cover a good range of design granularity and are traditionally considered

to be very difficult. We believe that these problems provide agood set of test cases

for verifying the effectiveness of our methods. By addressing these problems with

concretely constructed algorithms using Ant Colony metaheuristics, we hope to enrich

and make contributions to the future system design methodologies.

As our first effort of applying the Ant Colony metaheuristics, we formulate new

algorithms to address the system level task partitioning problem [102, 103, 105]. This

problem is a fundamentalN P -hard challenge in a number of fields including high-level

7

system synthesis, parallel and distributed computing, andhardware/software co-design.

It attempts to map application tasks onto multiple system resources w.r.t. the latency,

hardware cost, power and other performance metrics. We construct a novel ACO-based

algorithm to address this problem by introducing the Augmented Task Graph model.

The concept can be easily extended to handle a variety of system requirements, in-

cluding truly addressing the multi-way partitioning problem. The proposed algorithm

consistently provides near optimal partitioning results on modestly-sized tested sam-

ples with very minor computational cost. For larger size problems, our algorithm scales

well and achieves better solutions than the popularly used simulated annealing approach

with substantially less execution time. Furthermore, we propose a hybrid approach that

combines the ACO and simulated annealing together. This hybrid method leverages

the complementary behaviors of the two algorithms and yields even better results than

using them individually.

Operation scheduling is another fundamental architectural synthesis problem. An

inappropriate scheduling of the operations will fail to exploit the full potential of the

system. High quality scheduling solutions have direct impact in a number of different

fields, such as compiler design for superscalar and VLIW microprocessors, distributed

clustering computation architectures and hardware synthesis of ASICs and FPGAs. In

our work, we introduce two novel algorithms [104, 99] using the ACO approach for the

timing and resource constrained scheduling problems. We compile a comprehensive

testing benchmark set (ExpressDFG) to verify the effectiveness and efficiency of the

8

proposed algorithms. For timing constrained scheduling, our algorithm achieves better

results compared to force-directed scheduling on almost all the testing cases attaining

a 19.5% reduction of resources. For resource constrained scheduling, our algorithm

outperforms a number of list scheduling heuristics with better stability, and generates

up to a 14.7% performance improvement. Our algorithms outperform the simulated

annealing method for both scheduling problems in terms of quality, compute time and

stability.

Finally, we look into the Design Space Exploration (DSE) problem, which tries to

generate Pareto optimal tradeoffs among different system configurations. DSE is an-

other critical challenge of high level synthesis. In practice, it is often addressed through

ad-hoc probing of the solution space. This is not only time consuming but also very

dependent on the designers experience. We propose a novel design exploration method

that exploits the duality of the time and resource constrained scheduling problems

[100, 101]. Our exploration automatically constructs a high quality time/area trade-

off curve in a fast, effective manner. In order to fully benefit from the duality attribute,

we leverage the ACO-based optimization methods to solve both scheduling problems.

We switch between these two algorithms to quickly traverse the design space. Com-

pared with using force directed scheduling exhaustively atevery time step, our approach

provides a significant improvement on solution quality (average 17.3% reduction of re-

source counts) with similar run time on a comprehensive benchmark suite. It also scales

well over different applications and problem sizes.

9

To summarize our research work, we focus on the essential algorithmic issues of ap-

plying Ant Colony metaheuristics to solve fundamental architectural design problems.

We have successfully devised a series of algorithms for a number of problems across

different levels of design granularity and achieved very promising results. We believe

that Ant Colony metaheuristic is a framework of great potential in solving architec-

tural design problems, and is not limited to the ones we studied. Moreover, we have

developed a software tool, named CODES, to provide a uniformimplementation for

applying the ACO method to these architectural problems. Toour best knowledge, our

work is the first to introduce the Ant Colony metaheuristics to the architectural design

field.

1.3 Organization of Dissertation

The dissertation is organized as follows: In Chapter 2, we give a review on the

Ant Colony metaheuristic method with discussion on its characteristics. We present

our work on applying the Ant Colony metaheuristic to solve system partitioning prob-

lem by introducing the Augmented Task Graph as the basic model in handlingn-way

partitioning problem in Chapter 3. In Chapter 4, we discuss how to solve timing and

resource constrained operation scheduling problems. Alsoin this chapter, we will in-

troduce the ExpressDFG benchmark suit we constructed. The same benchmark set

will also be used in evaluating the design space explorationalgorithm. We look into

the parameter sensitivity issues experimentally. We introduce the duality based design

10

space exploration approach in Chapter 5. To lay the theoretical foundation, we will

first prove an important theorem regarding duality between timing and resource con-

strained scheduling. Moreover, we will explain why ACO-based scheduling algorithms

are favored in the proposed exploration framework. We conclude with Chapter 6.

11

Chapter 2

Ant Colony Metaheuristic

2.1 Nature Inspired Metaheuristics

As we have indicated in the previous chapter, fundamental architectural decisions

often rely on solvingN P -hard combinatory optimization problems. With increasing

complexity of these problems in today’s applications, it becomes impossible to obtain

the exact optimal solutions within a reasonable computation, and we have to use heuris-

tic methods to hopefully obtain close-to-optimal results.One important approach for

doing so is to select and utilize a metaheuristic method.

A metaheuristic is a heuristic method for solving a very general class of compu-

tational problems. It attempts to provide an efficient framework which combines user

given black-box procedures. Such procedures are usually application specific heuris-

tics themselves. The name combines the Greek prefix “meta” (“beyond”, here in the

12

sense of “higher level”) and “heuristic” (fromευρισκειν, heuriskein, “to find”). Meta-

heuristics are generally applied to problems for which there is no satisfactory problem-

specific algorithm or heuristic; or when it is not practical to implement such a method.

Most commonly used metaheuristics are targeted to combinatorial optimization prob-

lems.

The simplest and most well known metaheuristic perhaps is the Hill Climbing

method [82]. It is an optimization technique that belongs tothe family of local search

algorithms. The relative ease in implementation makes it a very popular first choice.

However, this a simple method often fails to provide high quality results since it can

easily get trapped within local minima.

In the past decades, a series of metaheuristic methods have been devised and suc-

cessfully applied to a wide range of applications. It is interesting to notice that the best

performing metaheuristics are almost inspired by nature.

Simulated annealing is a generic probabilistic meta-algorithm for finding global op-

tima in large search space [56]. It was inspired by the annealing process in met-

allurgy, a technique involving heating and controlled cooling of a material to in-

crease the size of its crystals and reduce their defects. Theheat causes the atoms

to move from their initial positions (a local minimum of the internal energy) and

wander randomly through states of higher energy; the slow cooling gives them a

chance of finding configurations with lower internal energy than the initial one.

Genetic algorithms use techniques inspired by evolutionary biology such as inheri-

13

tance, mutation, selection, and crossover (also called recombination) [70]. They

essentially solve the problems under consideration by simulating the evolutionary

process, in which a population of abstract representations(calledchromosomesor

the genotype or the genome) of candidate solutions (called individuals, creatures,

or phenotypes) evolves toward better solutions.

Artificial neural networks borrow the concept from how the human brain processes

information by using an interconnected group of artificial neurons [1]. In solv-

ing an optimization problem, artificial neural networks usea mathematical model

or computational model for information processing based ona connectionist ap-

proach, in which each processing unit is to simulate a individual neuron.

The Ant Colony Metaheuristic is a relatively new addition tothe family of nature

inspired algorithms for solvingN P -hard combinatory problems. Also known as Ant

Colony Optimization (ACO) or Ant System (AS) algorithm1 and originally introduced

by Dorigoet al. [28] in 1996, it is a cooperative heuristic searching algorithm inspired

by the ethological study on the behavior of ants. Figure 2.1(a) shows a laboratory nest

constructed by a Leptothorax ant colony. The shown laboratory nest is made of two

microscope slides separated by four 1mm thick cardboard pillars, one pillar at each

corner. It closely approximates the rock crevices these antcolonies choose as nest

sites in nature and facilitates easy observation on the ant behaviors. The blue dots are

colored sand blocks from a pile provided outside the nest site that the ants have used

1In the rest of the discussion, we may use these terms interchangeably if not otherwise indicated

14

(a) (b)

Figure 2.1: (a) A laboratory nest of a Leptothorax ant colony; (b) Experiment settings used in

[25].

15

for building a perimeter wall of the nest.

It was observed [25] that ants – who lack sophisticated vision – could manage to

establish the optimal path between their colony and the foodsource within a very short

period of time. This is done by an indirect communication known asstigmergyvia the

chemical substance, orpheromone, left by the ants on the paths. Though any single

ant moves essentially at random, it will make a decision on its direction biased on

the “strength” of the pheromone trails that lie before it, where a higher amount of

pheromone hints a better path. As an ant traverses a path, it reinforces that path with

its own pheromone. A collective autocatalytic behavior emerges as more ants will

choose the shortest trails, which in turn creates an even larger amount of pheromone

on those short trails, which makes those short trails more likely to be chosen by future

ants. The experiment setup for the study done in [25] is shownin Figure 2.1(b), in

which the ants converge to the shortest path between their nest and food source amongst

four possible alternatives. The ACO algorithm is inspired by such observation. It is a

population based approach where a collection of agents cooperate together to explore

the search space. They communicate via a mechanism imitating the pheromone trails.

The algorithm can be characterized by the following steps:

1. The optimization problem is formulated as a search problem on a graph;

2. A certain number of ants are released onto the graph. Each individual ant tra-

verses the search space to create its solution based on the distributed pheromone

trails and local heuristics;

16

3. The pheromone trails are updated based on the solutions found by the ants;

4. If predefined stopping conditions are not met, then repeatthe first two steps;

Otherwise, report the best solution found.

2.2 ACO for Travel Salesman Problem

One of the first problems to which ACO was successfully applied was the Travel-

ing Salesman Problem (TSP) [28], for which it gave competitive results compared to

traditional methods.

The objective of TSP is to find a Hamiltonian path for the givengraph that gives the

minimal length. More specifically, a TSP can be represented by a complete weighted

directed graphG = (V,E,d) whereV = {1,2, . . . ,n} is a set of vertexes or cities,E =

{(i, j)|(i, j) ∈ V×V} is a set of edges, andd is a weight function which associates a

numeric weightdi j for each edge(i, j) in E. This weight is naturally interpreted as the

distance between cityi and j in TSP. The objective is to find a Hamiltonian path forG

which gives the minimal length.

In order to solve the TSP problem, ACO associates a pheromonetrail for each edge

in the graph. The pheromone indicates the attractiveness ofthe edge and serves as a

global distributed heuristic. For each iteration, a certain number of ants are released

randomly onto the nodes of the graph. An individual ant will choose the next node of

the tour according to a probability that favors a decision ofthe edges that possesses

17

higher volume of pheromone. Upon finishing of each iteration, the pheromone on the

edges is updated. Two important operations are taken in thispheromone updating pro-

cess. First, the pheromone will evaporate, and secondly thepheromone on a certain

edge is reinforced according to the quality of the tours in which that edge is included.

The evaporation operation is necessary for ACO to effectively avoid local minima and

diversify future exploration onto different parts of the search space, while the reinforce-

ment operation ensures that frequently used edges and edgescontained in better tours

receive a higher volume of pheromone, which will have betterchance to be selected

in the future iterations of the algorithm. The above processis repeated multiple times

until a certain stopping condition is reached. The best result found by the algorithm is

reported as the final solution.

The algorithm associates a pheromone trailτi j for each edge(i, j) in E. It indicates

the attractiveness of the edge and serves as a global distributed heuristic. Initially,τi j

is set with some fixed valueτ0. For each iteration,m ants are released randomly on the

cities, and each starts to construct a tour. Every ant will have memory about the cities

it has visited so far in order to guarantee the constructed tour is a Hamiltonian path. If

at stept the ant is at cityi, the ant chooses the next cityj probabilistically according to

a probability:

pi j =






τi j (t)α·ηβ
i j

∑k(τα
ik(t)·η

β
ik)

if is j not visited

0 otherwise

(2.1)

where edges(i,k) are all the allowed moves fromi, ηik is a local heuristic which is

defined as the inverse ofdi j , α andβ are parameters to control the relative influence of

18

the distributed global heuristicτik and local heuristicηik. Intuitively, the ant favors a

decision on a edge that possesses higher volume of pheromonetrail and better distance

cost. Upon finishing of each iteration, the pheromone trail is updated according to the

tours in which it is included. In the mean time, a certain amount of the it will evaporate.

More specifically, we have:

τi j (t) = ρ · τi j (t)+
m

∑
k=1

∆τk
i j (t) where 0< ρ < 1. (2.2)

Hereρ is the evaporation ratio, and∆τk
i j = Q/Lk if edge(i, j) is included in the tour ant

k constructed, otherwise∆τk
i j = 0. Q is a fixed constant to control the delivery rate of the

pheromone, whileLk is the tour length for antk. Two important operations are taken

in this pheromone trail updating process. The evaporation operation is necessary for

AS to be effective and diversified to explore different partsof the search space, while

the reinforcement operation ensures that frequently used edges and edges contained

in better tours receive a higher volume of pheromone and willhave better chance to be

selected in the future iterations of the algorithm. The above process is repeated multiple

times until certain ending condition is reached. The best result found by the algorithm

is reported. Figure 2.2 gives a visual illustration on how the above process works.

2.3 ACO for Other Combinatory Problems

When compared with existing algorithms over a set of difficult testing cases of the

TSP, the ACO method achieved very competitive results [28] either on result quality

19

Figure 2.2: An illustration on how ACO-TSP works.

(1) Single ant constructs a solution; (2) Multiple solutions are constructed by all the ants indi-

vidually;

(3) The pheromone trails adaptively adjust their values during the iterations; (4) The optimal

solution emerges as the search learns from its experience.

or the computing time. Motivated by this success, researchers have since formulated

ACO methods for a variety of traditionalN P -hard problems. These problems include

the maximum clique problem [34], the quadratic assignment problem [37], the graph

coloring problem [22], the shortest common super-sequenceproblem [61, 71], and the

multiple knapsack problem [35]. ACO also has been applied topractical problems such

as the vehicle routing problem [36], data mining [77] and network routing problem

[83]. More recently, ACO approach was also successfully forbioinformatics applica-

tion [87]. Table 2.1 gives a brief summary on the problems that ACO algorithms have

been devised and related results.

20

Problem Performance

Traveling salesman state-of-the-art / good performance

Quadratic assignment state-of-the-art / good performance

Job-Shop Scheduling state-of-the-art / good performance

Vehicle routing state-of-the-art / good performance

Sequential ordering state-of-the-art performance

Shortest common supersequence good results

Graph coloring and frequency assignmentgood results

Bin packing state-of-the-art performance

Constraint satisfaction good performance

Multi-knapsack poor performance

Timetabling good performance

Optical network routing promising performance

Set covering and partitioning good performance

Parallel implementations and models good parallelization efficiency

Routing in telecommunications networksstate-of-the-art performance

Protein Folding state-of-the-art performance

Table 2.1: Applications of ACO method and their qualitative performance

2.4 Convergency of ACO Method

The convergence property of the ACO approach was investigated in [44, 46]. It was

shown that ACO with a time-dependent evaporation factor or atime-dependent lower

pheromone bound converges to an optimal solution with probability exactly one. The

result enhanced the work presented in [45, 43, 91] for ACO algorithms to the strength

of the well-known convergence property of the Simulated Annealing meta-heuristic.

As in Simulated Annealing, it turns out that a convergence guarantee can be obtained

21

by a suitable speed of “cooling” (i.e., reduction of the influence of randomness). First,

in the basic ACO formulation, the geometric pheromone decrement caused by constant

evaporation factor on not reinforced arcs is too fast and leads (in general) to premature

convergence to suboptimal solutions. On the other hand, introducing a fixed lower

pheromone bound stops cooling at some point and leads to random-search-like behavior

without convergence. In between lies a compromise of allowing pheromone trails to

tend to zero, but slower than geometrically. This can be achieved either by decreasing

evaporation factors, or else by “slowly” decreasing lower pheromone bounds. In a

certain window of the cooling speed, we get convergence to the optimal solution with

probability of one.

However, it is worth noting that that the theoretical cooling speeds indicated in [44]

are also the most efficient ones, where efficiency is measuredby the average runtime

required to find a solution of a sufficiently good quality (say, only ρ% worse than the

best solution with some pre-definedρ). In the typical area of application for ACO, i.e.

the area ofN P -complete combinatorial optimization problems, we cannotexpect to

obtain an algorithm providing optimal solutions in a short computation time. Again,

as in Simulated Annealing, it might turn out that faster cooling than indicated by the

theoretical scheme is advantageous for finite-time computing – that is for getting quick

convergence, it may be worthwhile to pay the price of convergence to suboptimal so-

lutions. However, experimental studies with slightly decreasing evaporation factors or

lower pheromone bounds falling slightly slower than geometrically might be interest-

22

ing, especially for applications where the user is willing to invest a high amount of

computation time for obtaining excellent solution quality. In addition to the (so-called

“elitist”) pheromone update mechanisms investigated in the paper, the author also sug-

gests computational experiments with decreasing evaporation factors and/or decreasing

lower pheromone bounds for other empirically successful update mechanisms, such as

the rank-based update rule introduced by Bullheimer, Hartland Strauss [15]. It would

not be a surprise if some moderate form of retarding the cooling process could, in a

considerable number of cases, be able to further improve theperformance of present

ACO implementations.

2.5 MAX-MIN Ant System (MMAS)

Premature convergence to local minima is a critical algorithmic issue that can be

experienced by many heuristic optimization algorithms. Aswe have discussed in the

previous section, though it was shown [44] that ACO with a time-dependent evapora-

tion factor or a time-dependent lower pheromone bound converges to an optimal solu-

tion with probability of exactly one, it failed in providingany constructive approach.

Balancing exploration and exploitation is not trivial in these algorithms, especially for

algorithms that use positive feedback such as ACO.

The MAX-MIN Ant System (MMAS) [92] is one framework to provide such bal-

ance in an adaptive manner. It is built upon the original ACO algorithm and is specifi-

cally designed to address the premature convergence problem. It improves the original

23

ACO by providing dynamically evolving bounds on the pheromone trails such that the

heuristic value is always within a limit to that of the best path. As a result, all pos-

sible paths will have a non-trivial probability of being selected and thus it encourages

broader exploration of the search space.

More specifically, MMAS forces the pheromone trails to be limited within evolving

bounds, that is for iterationt, τmin(t) 6 τi j (t) 6 τmax(t). If we use f to denote the cost

function of a specific solutionS, the upper boundτmax [92] is shown in (2.3). Here

Sgb(·) represents the global best solution found so far in all iterations.

τmax(t) =
1

1−ρ
1

f (Sgb(t−1))
(2.3)

The lower bound is defined as (2.4):

τmin(t) =
τmax(t)(1− n

√
pbest)

(avg−1) n
√

pbest
(2.4)

wherepbest∈ (0,1] is a controlling parameter to dynamically adjust the boundsof the

pheromone trails. The physical meaning ofpbest is that it indicates the conditional

probability of the current global best solutionSgb(t) being selected given that all edges

not belonging to the global best solution have a pheromone level of τmin(t) and all edges

in the global best solution haveτmax(t). Hereavg is the average size of the decision

choices over all the iterations. For a TSP problem ofn cities,avg= n/2. It is noted

from (2.4) that loweringpbest will result in a tighter range for the pheromone heuristic.

As pbest→ 0, τmin(t)→ τmax(t), which means more emphasis is given to search space

exploration.

24

Theoretical treatment of using the pheromone bounds and other modifications on

the original ACO algorithm are proposed in [92]. These include a pheromone updating

policy that only utilizes the best performing ant, initializing pheromone withτmax and

combining local search with the algorithm. It was reported that MMAS was the best

performing ACO approach and provided very high quality solutions.

25

Chapter 3

System Partitioning

Modern digital systems consist of a complex mix of computational resources, e.g.

microprocessors, memory elements and reconfigurable logic. System partitioning – the

division of application tasks onto the system resources – plays an important role for the

optimization of the latency, area, power and other performance metrics. With the ad-

vent of complex heterogenous system architectures that contain a variety of computing

components like microprocessors, memory elements and reconfigurable logic, system

partitioning becomes an important step in the system designprocess, i.e. how to op-

timally assign computational tasks to the different systemcomputing resources while

respecting pre-defined design constraints.

In this chapter, we present a novel approach for this problembased on the Ant

Colony Optimization, in which a collection of agents cooperate using distributed and

local heuristic information to effectively explore the search space. The proposed model

26

can be flexibly extended to fit different design requirements. Experiments show that our

algorithm provides robust results that are qualitatively close to the optimal with minor

computational cost. Compared with the popularly used simulated annealing approach,

the proposed algorithm gives better solutions with substantial reduction on execution

time for large problem instances. Moreover, a hybrid approach that combines our algo-

rithm and SA achieves even better results with great runtimereduction.

3.1 Introduction

The continued scaling of the feature size of the transistor will soon yield incredibly

complex digital systems consisting of more than one billiontransistors. This allows ex-

tremely complicated system-on-a-chip (SoC), which may consist of multiple processor

cores, programmable logic cores, embedded memory blocks and dedicated applica-

tion specific components. At the same time, the fabrication techniques have become

increasingly complicated and expensive. Current day designs (below 150 nm feature

size) already cost over one million dollars to fabricate. These forces have created a

sizable and emerging market for programmable platforms, which have emerged as a

flexible, high performance, cost effective choice for embedded applications.

A programmable platform is a device consisting of programmable cores. Its pro-

grammability allows application development after it is fabricated. Therefore, the func-

tionality of the device can change over time. This is especially important for embedded

systems where the hardware cannot be easily upgraded (e.g. computers in cars). As

27

standards change, one just need to reprogram the device, rather than physically replace

the hardware. For these reasons, programmable platforms provide a good price point

for low volume applications. It allows “low” end users to create designs using newest,

highest performance manufacturing process. Furthermore,programmable devices en-

able fast prototyping, which allows for faster time to market.

Xilinx Virtex [108] and Altera Excalibur devices [6] are twoexamples of such pro-

grammable platform. These platforms may consist of hard cores, programmable cores

and/or soft cores. A hard core is a dedicated static processing unit, e.g. ARM processor

in Excalibur or the PowerPC core in Virtex. A programmable core is some kind of

programmable logic device (PLD) (e.g. FPGA, CPLD). A soft core is a processing unit

implemented on programmable logic, e.g. CAST DSP core [18] on Virtex or Nios [7]

on Excalibur. The programmability in these devices ranges from extremely fine grain

control in PLD, to coarse grain control in the microprocessor. This allows for fine grain

optimizations (bit level optimizations in the PLD), instruction level optimizations (on

processor cores) and task level optimizations (across programmable cores).

Comparing with the traditional single CPU architecture, these complex pro-

grammable platforms require more effective computer-aided design (CAD) techniques

to allow design space exploration by application programmers. One special challenge

resides at the system level design phase. At this stage, the application programmer

works with a set of tasks, where each task is a coarse grained set of computations

with a well defined interface based on the application. Different from single CPU

28

architecture, a key step in the mapping of applications ontothese systems is to assign

tasks to the different computational cores.

This partitioning problem isN P -complete [38]. Although it is possible to use

brute force search or ILP formulations [74] for small problem instances, generally, the

optimal solution is computationally intractable. Thus it requires us to develop efficient

algorithms in order to automatically partition the tasks onto the system resources, while

optimizing performance metrics such as execution time, hardware cost and power con-

sumption.

It is worth mentioning that though the above partitioning problem shares certain

similarity with the Job Scheduling Problem (JSP) [40], another well-studiedN P -hard

problem in the operation optimization community, they are fundamentally different.

First, thejobsin JSP are independent from each other while the computational tasks are

interrelated and constrained by data dependencies among different tasks. Secondly, for

every job in JSP, each of its operations is explicitly associated with a resource known

a priori, while a computational task on the programmable platform ispossible to be

allocated on different resources as long as the system requirements are met. Finally,

the optimization target in JSP is only constrained by the condition that no two jobs

are processed at the same time on the same resource. However,in the above task

partitioning problem, besides this constraint, we also need respect other system design

requirements, such as limits on power consumption and hardware cost.

Some early works [32, 42, 90, 95] investigate the hardware/software partitioning

29

problem, which is a special case of the system partitioning problem discussed here1.

It is difficult to name a clear winner [30]. Partitioning issues for system architectures

with reconfigurable logic components have also been studied[9, 47, 62]. These works

assume a reconfigurable device coupling with a processor core in their partitioning

problem.

Different heuristic methods have been proposed to try to effectively provide sub-

optimal solutions for the problem. These methods include Simulated Annealing (SA),

Tabu Search (TS), and Kernighan/Lin approach [32, 52, 31, 3,96]. Evolutionary meth-

ods [50, 75] using Genetic Algorithm (GA) are also studied. Software tools based

on these heuristics have been developed for system level partitioning problem. For

instance, in COSYMA [23], the application tasks are mapped onto the system architec-

ture using Simulated Annealing. Wiangtonget al.[106] compared three popularly used

heuristic methods, and provided a good survey on the motivation and the related work of

using task level abstraction. These methods provide practical algorithms for achieving

acceptable the system partitioning solutions, however, they also have different draw-

backs. Simulated Annealing suffers from long execution time for the low temperature

cooling process. For Genetic Algorithm, special effort must be spent in designing the

evolutionary operations and the problem-oriented chromosome representation, which

makes it hard to adapt to different system requirements.

In this chapter, we present a novel heuristic searching approach to the system par-

1Hardware/software partitioning is equivalent to the system partitioning problem where there is only
one microprocessor and one “hardware” resource i.e. ASIC.

30

titioning problem based on theAnt Colony Optimization(ACO) algorithm [28]. In the

proposed algorithm, a collection of agents cooperate together to search for a good parti-

tioning solution. Both global and local heuristics are combined in a stochastic decision

making process in order to effectively and efficiently explore the search space. Our

approach is truly multi-way and can be easily extended to handle a variety of system

requirements.

The remainder of the chapter is organized as follows. Section 3.2 details the pro-

posed algorithm for the constrained multi-way partitioning problem. As the basis of our

algorithm, a generic mathematic model for multi-way partitioning is also introduced in

this section. In Section 3.3.1, we present the experimentalheterogenous architecture

and the testing benchmark we used in our work. We analyze the experiment results

and give assessment on the performance of the proposed algorithm in Section 3.3. We

summarize our work on this topic with Section 3.5.

3.2 ACO for System Partitioning

3.2.1 Problem Definition

A crucial step in the design of systems with heterogenous computing resources is

the allocation of the computation of an application onto thedifferent computing com-

ponents. This system partitioning problem plays a dominantrole in the system cost

and performance. It is possible to perform partitioning at multiple levels of abstraction.

31

For example, operation (instruction) level partitioning is done in the Garp project [16],

while the good deal of research work [52, 31, 106, 23] are on the functional task level.

In this work, we focus on partitioning at the task or functional level. One of the

reasons we select the task level partitioning is that it is commonly found that a bad par-

titioning in the task level is hard to correct in lower level abstraction [53]. Additionally,

task level partitioning is typically requested in the earlier stage of the design so that

further hardware synthesis can be performed.

We formally define the system partitioning problem as follows:

For a given system architecture, a set of computing resources are defined for the

system partitioning task. We useR to represent this set wherer = |R| is the number of

resources in the system. The notationr i (i = 1, . . . , r) refers to theith resourceR.

An application to be partitioned onto the system is given as aset of tasksTapp =

{t1, . . . , tN}, where the atomic partitioning unit, atask, is a coarse grained set of com-

putation with a well defined interface. The precedence constraints between tasks are

modeled using a task graph. Atask graphis a directed acyclic graph (DAG)G= (T,E),

whereT = {t0, tn}∩Tapp, andE is a set of directed edges. Each task node defines a

functional unit for the program, which contains information about the computation it

needs to perform. There are two special nodest0 andtn which are virtual task nodes.

They are included for the convenience of having an unique starting and ending point of

the task graph. An edgeei j ∈ E defines an immediate precedence constraint between

ti andt j . For a given partitioning, the execution of a task graph runsin the following

32

way: the tasks of different precedence levels are sequentially executed from the top

level down, while tasks in the same precedence level but allocated on different system

components can run concurrently. Notice the precedence constraint is transitive. That

is, if we let−→ denote the precedence constraint, we have:

(ta−→ tb)∧ (tb−→ tc)⇒ ta−→ tc (3.1)

In a task graph, a task can only be executed when all the tasks with higher precedence

level have been executed.

If a system contains only one processing resource, e.g. a general purpose processor,

it is trivial to determine the system performance; only the sequential constraints be-

tween tasks need to be respected. For a system that containsr heterogenous computing

resources, the partitioning of the tasks onto different resources becomes critical to the

system performance. There arerN unique partitioning solutions, whereN is the number

of the actual tasks. Some of these solutions may be infeasible as they violate system

constraints2. We call a partitioningfeasiblewhen it satisfies the system constraints. An

optimalpartitioning is a feasible partitioning that minimizes theobjective function of

the system design.

Thus, the multi-way system partitioning problem is formally defined as: Find a set

of partitionsP = {P1, . . . ,Pr} on r resources, wherePi ⊆ T, Pi ∩Pj = φ for any i 6= j

that minimizes a system objective function under a set of system constraints.

2For example, a partitioning solution may allocate a large number of tasks to the reconfigurable logic.
However, the reconfigurable logic has a fixed size, and the area occupied by those tasks must be less than
the area of the reconfigurable logic

33

The objective function may be a multivariate function of different system parame-

ters (e.g. minimize execution time or power consumption) while system cost (e.g. cost

per device must be less than $5) is an example of a system constraint. In this work, we

use the critical path execution time of a task graph as the objective function and a fixed

amount of area as the constraint.

3.2.2 Augmented Task Graph

To solve the multi-way application partitioning problem, we introduce the Aug-

mented Task Graph as the underlying model. AnAugmented Task Graph(ATG) G′ =

(T,E′,R) is an extension of the traditional task graphG discussed above. It is derived

from G as follows: Given a task graphG = (T,E) and a system architectureR, each

nodeti ∈ T is duplicated inG′. For each edgeei j = (ti, t j) ∈ E, there existr directed

edges fromti to t j in G′, each corresponding to a resource inR. More specifically, we

have

e′i jk = (ti, t j , rk), whereei j ∈ E, andk = 1, ..., r (3.2)

In ATG, an edgee′i jk represents thebindingof edgeei j with resourcerk. Our al-

gorithm uses these augmented edges to make a local decision at task nodeti about the

binding of the resource on taskt j
3. We call this anaugmented edge. The original task

graphG is called thesupportof G′.

An example of ATG is shown in Figure 3.1(a) for a 3-way partitioning problem. In

3This will be further explained in Section 3.2.3

34

this case, we assume the system contains 3 computing resources, a PowerPC micro-

processor, a fixed size FPGA, and a digital signal processor (DSP). In the graph, the

solid links indicate that the pointed task nodes are allocated to the DSP, while the dotted

links for tasks partitioned onto PowerPC and dot-dashed links for FPGAs. It is easy to

see that partitioning algorithm based on the ATG model can beeasily adapted if more

resources are available. All we need to do is add additional augmented edges in the

ATG.��t
0

t
1

t
2

t
3

t
4

t
5
�t
n

(a)

��t
0

Power PC

DSP

t
1

t
2

t
3

t
4

t
5
�t
n

FPGA

(b)

Figure 3.1: ATG for 3-way Partitioning

Based on the ATG model, a specific partitioning for the tasks on the multiple re-

sources is a graphGp, whereGp is a subgraph ofG′ that is isomorphic to itssupport

G, and for every task nodeti in Gp, all the incoming edges ofti are bounded with the

same resource (say)r. Further, we say that partitionGp allocates taskti to resourcer.

Figure 3.1(b) shows a sample partitioning for the ATG illustrated in Figure 3.1(a). In

35

this partitioning, task 1, 2, and 3 are allocated onto the PowerPC, task 4 is partitioned

on to the DSP and task 5 for the FPGAs. Astn is a virtual node, we do not care the

status of the edge fromt5 to tn.

To make our model complete, adot operation is defined, which is a bivariate func-

tion between a task and a resource:

fik = ti • rk,∀ti ∈ T,∀rk ∈R (3.3)

It provides a local cost estimation for assigning taskti to resourcerk. Assuming we are

only concerned with the execution time and hardware area in our partitioning , we can

let fik be a two item tuple, i.e.

fik = ti • rk = {timeik,areaik} (3.4)

Obviously, other items, such as power consumption estimation, can be easily added if

they are considered. The dot operation can be viewed as an abstraction of the work

performed by the cost estimator.

3.2.3 ACO Formulation for System Partitioning

Based on the ATG model, our goal is to find a feasible partitioning Gp for G′, which

provides the optimal performance subject to the predefined system constraints. We in-

troduce a new heuristic method for solving the multi-way system partitioning problem

using the ACO algorithm. Essentially, the algorithm is a multi-agent4 stochastic de-

4We use the terms “agent”and“ant” interchangeably.

36

cision making process that combines local and global heuristics during the searching

process.

procedure ACOSystemPartition(G,R)

input : DFG G(V,E), resource setR

output: system partitionPbest to minimize latency under hardware cost constraint

1: construct ATGG′ based onG andR, andPbest← φ
2: while ending conditioning is not metdo

3: for 1 6 l 6 mdo

4: Initialize pheromone trailτi jk ← τ0 for eache′i jk in G′

5: ant(l) crawls overG′ to create a feasible partitioningPl ;

6: EvaluatePl based on its execution timetime(Pl).

7: If Pl is better thanPbest, updatePbest.

8: end for

9: Update the pheromone trails on the edges as follows:

τi jk ← (1−ρ)τi jk +
m

∑
l=1

∆τ(l)
i jk (3.5)

∆τ(l)
i jk =

{
Q/time(Pl) if e′i jk ∈ Pl

0 otherwise
(3.6)

where 0< ρ < 1 is the evaporation ratio,k = 1, . . . , r, andQ is a fixed constant

to control the delivery rate of the pheromone.

10: end while

11: returnPbest

Algorithm 1: ACO Algorithm for System Partitioning

The proposed algorithm proceeds as illustrated by Algorithm 1. Step 5 is an impor-

tant part in the proposed algorithm. It describe how an individual ant “crawls” over the

ATG and generates a solution. Two problems must be addressedin this step:

1. How does the ant handle the precedence constraints between task nodes?

37

2. What are the global and local heuristics and how can they beapplied?

3. Finally, how does the ant guarantee to find a feasible partition for the given ap-

plication?

To answer these questions, each ant traverses the graph in a topologically sorted

manner in order to satisfy the precedence constraints of task nodes. The trip of an ant

starts fromt0 and ends attn, the two virtual nodes that do not require allocation. By

visiting the nodes in the topologically sorted order, we ensure that every predecessor

node is visited before we visit the current node and that every incoming edge to the

current node has been evaluated. We can see later that by enforcing this ordering, we

not only make sure that the found partition could be executedcorrectly but also provide

an important preparation for the ant to make resource allocation decision upon entering

a new task node.

At each task nodeti wherei 6= n, the ant makes a probabilistic decision on the allo-

cation for each of its successor task nodest j based on the pheromone on the edge. The

pheromone is manipulated by the distributed global heuristic τi jk) and a local heuristic

such as the execution time and the area cost for a specific assignment of the successor

node. More specifically, an ant atti guesses that nodet j to be assigned to resourcerk

according to the probability:

pi jk =
τα

i jkηβ
jk

∑r
l=1 τα

i jl ηβ
jl

(3.7)

Hereα andβ are parameters to control the relative influence of the distributed global

heuristicτi jk and local heuristicη jk if t j is assigned to resourcerk. In our work, we

38

simply use the inverse of the cost of having taskt j allocated to resourcerk as η jk.

We focus on achieving the optimal execution time subject to hardware area constraint,

therefore a simple weighted combination is used to estimatethe cost:

costjk = wt · timejk +wa ·areajk (3.8)

wheretimejk andareajk are the execution time and hardware area cost estimates, con-

stantswt andwa are scaling factors to normalize the balance of the execution time and

area cost. It is intuitive to notice that the probabilitypi jk favors an assignment that

yields smaller local execution time and area cost, and an assignment that corresponds

with the stronger pheromone. Againtimejk andareajk are obtained via the dot opera-

tion explained above in Section 3.2.2. Based on the proposedATG model, by altering

the dot operation, one can easily adapt the cost function to consider other constraints

such as power consumption limit, while keep the algorithm essentially intact.

Upon entering a new nodet j , the ant also has to make a decision on the allocation

of the task nodet j based on the guesses made by all of the immediate precedents of t j .

Recall that the ant travels the ATG in a topologically sortedmanner, it is guaranteed

that those guesses are already made. Different strategies can be used on how such

allocation decision is made. For example, we can simply makethe assignment based

on the vote of the majority of the guesses. In our implementation, this decision is again

made probabilistically based on the distribution of the guesses, i.e. the possibility of

39

assigningt j to rk is:

p jk =
count of guessrk for t j

count of immediate precedents oft j
(3.9)

The above decision making process is carried by the ant untilall the task nodes in the

graph have been allocated.

Of course, during the above resource allocation process forthe nodet j , it is possible

that we encounter the situation where some of the allocationchoices become invalid.

For example, we may find that the current available FPGA area is not sufficient to hold

the realization oft j . For these cases, we simply reject the invalid resource allocations

by making the number of such guesses zero.

Once task nodet j is allocated on resourcerk, it remains unchanged during the cur-

rent tour for an ant. This ensures that each task is uniquely assigned to one specific

resource. Furthermore, we can obtain the cost (such as its execution time and area cost)

for t j on resourcerk by the querying the pre-computed cost information fort j on rk

using the dot operation discussed previously. In turn, the critical path of the applica-

tion up to this point will be updated together with the refreshed resource availabilities.

By carefully applying all the above measurements, we can guarantee that a partition

constructed by the ant is feasible.

As illustrated in Step 5 by the algorithm, at the end of each iteration, the pheromone

trails on the edges are updated according to Equation (3.5) and (3.6). First, a certain

amount of pheromone is evaporated. From an optimization point of view, the evapo-

ration step helps the system escape from local minimums. Secondly, thegoodedges

40

are reinforced. This reinforcement creates additional pheromone on the edges that are

included on partition solutions that provide shorter execution time for the task graph.

The given updating policy is similar to that reported in [28]. Notice here that every

ant will contribute to the pheromone update independently based on the quality of the

partition it finds. Alternative reinforcement methods [13]can also be applied here. For

example, we explored the strategy of updating the pheromonetrails on the edges that

are included only in the best tour amongst all the returned partitions at each iteration,

and we observed no noticeable difference regarding to the quality of the final results.

Finally, each run of the algorithm is composed of multiple iterations of the above

steps. Two ending possible stopping conditions are: 1) the algorithm ends after a fixed

number of iterations, or 2) the algorithm ends when there is no improvement found after

a number of iterations. In the same run, the global pheromonetrails τi jk are initialized

once as indicated in step 1 at the start of the algorithm, updated at the end of each

iteration, and inherited by the next iteration. The best partition found so far by the

ants is also updated dynamically at the end of each iterationand reported as the final

result of the run. Because of the stochastic nature of the algorithm, multiple runs can

be conducted and may provide different results. Another reason to have multiple runs

is to test the stability of the proposed algorithm in achieving high-quality results, as we

will discuss in Section 3.3. For our experiments reported here, each run is independent

and is started from scratch without using any result obtained in previous runs.

41

3.2.4 Complexity Analysis

The space complexity of the proposed algorithm is bounded bythe complexity of

the ATG, namelyO(rN2), whereN is the number of nodes in the task graph.

For each iteration, each ant has a run timeAntt confined byO(rN2). For a run with

I iterations usingmants, the time complexity of the proposed algorithm is(Antt +Et)∗

m∗ I , whereEt is the evaluation time for each generated partitioning. In the practical

situation,Et ≫ Antt. Comparing with brute force search which has a total run timeof

(rN)∗Et, the speedup ratio we can achieve is:

speedup=
(rN)∗Et

m∗ I ∗ (Antt +Et)
≈ rN

m∗ I
(3.10)

The number of ants in each iterationmdepends on the problem that is being solved

by the ACO algorithm. For the TSP problem, the authors assignedm to be a constant

multiple of total number of nodes in the TSP problem instance[28]. For the multiway

partitioning problem based on the ATG, we propose two possible ways to determine

the ant number: 1) based on the average branching factor of the original task graphG;

or 2) the maximum branch number of the original task graphG.

3.2.5 Extending the ACO/ATG method

Besides the ability to adjust itself as the number of computing resource numbers in

the system varies, the ACO/ATG method can be easily extendedto fit different system

requirements. Here we will discuss a few possible ways for some commonly encoun-

tered design scenarios.

42

During system design phase, it is common that certain computational tasks are pre-

determined or preferred to run on certain resources. That isfor each taskti ∈ T, it is

associated with a probability set{p1
i , . . . , pr

i } wherer is the size ofR. Among the ele-

ments of the set, some of them can be zero when the corresponding resources have been

determined to be not suitable for the given task. By modifying the decision strategy in

Equation (3.7), we can easily accommodate this requirementby using the following

equation:

pi jk =
pk

i τα
i jkηβ

jk

∑r
l=1 pl

i τ
α
i jl ηβ

jl

(3.11)

Similar to the above approach, other task dependent information, such as profiling

statistics can also be considered. In this case, the probability distribution set is asso-

ciated with the augmented edges in the ATG, instead with the resources. That is for

each edgee′i jk defined in Equation (3.2), there exists a frequency probability valuepi jk ,

which satisfies the following conditions:





pi jk = pi′ j ′k if i = i′ and j = j ′

∑ pi jl = 1 wherel = 1, . . . , r

(3.12)

Using the two approaches discussed here, one can further modify the proposed al-

gorithm to handle more complicated system features, such asdifferent communication

channels, where each channel has a different bandwidth and latency. These channels

can either be associated with the augmented edges if they arebounded with the hard-

ware realization, or may be treated as a task related attribute if the task can only use

one certain type channel.

43

Finally, by altering the definition of thedot operation in Equation (3.3), better local

cost estimation model can be introduced and integrated as the local heuristics. Simi-

larly, different target objective functions for defining the global heuristicη in Equation

(3.7) can be applied. For example, power consumption can be aggregated as part of the

consideration during the process.

3.2.6 Comparing with the Original ACO

In this section, we will summarize the proposed algorithm bycomparing it with the

original ACO approach proposed in [28].

Perhaps the most fundamental contrast between our work and the original ACO re-

ported in [28] is that they try to solve different domain problems. Though the ACO

approach is known as a meta-heuristic method for addressingoptimization problems,

one still needs to form specific strategies in order to effectively utilize the domain spe-

cific characteristics for the problem in hand. To our best knowledge, the method we

proposed here is the first approach in the literatures for solving application partitioning

problem using the ACO heuristics. Comparing with the TSP problem that the original

ACO algorithm was set to address, the application partitioning problem poses specific

issues in formulating the ACO algorithm, even though both ofthem areN P -complete.

First, there is a need to develop an appropriate graph model in formulating an ACO

method for the application partitioning problem such that the global and local heuristics

could be meaningfully fitted in. As discussed above, the ATG model is introduced in

44

our work as the answer, where the extended edges provide suitable attaching points for

the global and local heuristics. In contrast, the modeling issue is relatively easier for the

TSP problem since the connection graph of the problem is readily used as the model.

Secondly, a different solution construction strategy has to be developed in our work

for individual ant to come up with its partition result. In the original ACO method for

the TSP problem, this issue is also relatively trivial as theconnection between differ-

ent cities are undirectional and there is no specific constraint on the ordering of how

the cities are visited. However, in the application partitioning problem, to guarantee

the correctness of the application, stringent dependencies between tasks have to be re-

spected. In our formulation, a topological sorted orderingis used for individual ant to

transverse the ATG. This also has fundamental impact on how the partitioning decision

is made for a task node when it is visited.

Local heuristic definition is by nature problem dependent inthe ACO framework

and has to be formulated in a domain specific manner. In the original ACO method

for the TSP problem, it is straightforward to select the distance between two cities as

the local heuristic. In our work, we use a weighted combination for this purpose since

multiple considerations are involved in defining the cost ofmapping certain task onto a

resource.

Finally, in our work, we propose a decision making process that is different from

that in the original ACO method. In the TSP problem, the only decision to make is to

which city the ant shall move to while constructing the Hamilton tour. However, in the

45

application partitioning problem, we have to visit all the child nodes in the ATG in a

sorted order. Furthermore, when a task node is visited, we need to make decision on

which computing resource it shall be mapped to. As discussedearlier, in our algorithm,

a two step decision making process is adopted. First, at eachnode, the ant makes a

“guess” for each immediate child node on how it should be mapped based on the global

and local heuristics associated with these nodes. The final decision is delayed until

the child node is visited by the ant and the partitioning for the node is done using yet

another probabilistic approach over the previous “guesses”, such as the one indicated

by Equation (3.9).

3.3 Experimental Results and Performance Analysis

3.3.1 Target Architecture and Benchmarks

Our experiments address the partitioning of multimedia applications onto a pro-

grammable, multiprocessor system platform. The target architecture contains one gen-

eral purpose hard processor core, a soft DSP core, and one programmable core (see

Figure 3.2).

This model is similar to the Xilinx Virtex II Pro Platform FPGA [108], which con-

tains up to four hard CPU cores, 13,404 configurable logic blocks (CLBs) and other

peripherals. In our work, we target a system containing one PowerPC 405 RISC CPU

core, separate data and instruction memory, and a fixed amount of reconfigurable logic

46

P
o
w
e
r
P
C

R
I
S
C

C
P
U

C
o
r
e

S
h
a
r
e
d

M
a
i
n

M
e
m
o
r
y

C
o
n
f
i
g
u
r
a
b
l
e

L
o
g
i
c

B
l
o
c
k
s

(
F
P
G
A
s
)

T
M
S
3
2
0
C
2
5

D
S
P

P
r
o
c
e
s
s
o
r

C
o
r
e

D
i
s
t
r
i
b
u
t
e
d

L
o
c
a
l

M
e
m
o
r
y

Figure 3.2: Target architecture

with a capacity of 1,232 CLBs, among which, 724 CLBs are available to be used as

general purpose reconfigurable logic (FPGA), and the remaining 508 CLBs embed an

FPGA implementation (soft core) of the TMS320C25 DSP processor core [18]. Pro-

grammable routing switches provide communication betweenthe different system re-

sources.

This system imposes several constraints on the partitioning problem. The code

length of both the PowerPC processor and the DSP processor must be less than the size

of the instruction memory, and the tasks implemented on FPGAs must not occupy more

than the total number of available CLBs. The execution time and required resources

for each task on different resources depends on the implementation of the task. We

assumed the tasks are static and pre-computed. The communication time cost between

interfaces of different processors, such as the interface between the PowerPC and the

DSP processor, are knowna priori.

Tasks allocated on either the PowerPC processor or the DSP processor are executed

sequentially subject to the precedence constraints withinthe task (i.e. instruction level

47

precedence constraints). Both the potential parallelism among the tasks implemented

on FPGAs and the potential parallelism among all the processors are explored, i.e.

concurrent tasks may execute in parallel on the different system resources. However,

no hardware reuse between tasks assigned to FPGAs is considered. This would make

an interesting extension to our work, however, it is outsidethe scope of this research.

The system constraints are used to determine whether a particular partition solution is

feasible. For all the feasible partitions that do not exceedthe capacity constraints, the

partitions with the shortest execution time are consideredthe best.

Our experiments are conducted in a hierarchical environment for system design.

An application is represented as a task graph in the top level. The task graph, formally

described in Section 3.2.1, is a directed acyclic graph, which describes the precedence

relationship between the computing tasks. A task node in thetask graph refers to a

function, which could be written in high-level languages, such as C/C++. It is ana-

lyzed using the SUIF [4] and Machine SUIF [89] tools; the result is imported in our

environment as a control/data-flow graph (CDFG). CDFG reflects the control flow in a

function, and may contain loops, branches, and jumps. Each node in CDFGs is a basic

block, or a set of instructions that contains only one control-transfer instruction and

several arithmetic, logic, and memory instructions.

Estimation is carried out for each task node to get performance characteristics, such

as execution time, software code length, and hardware area.Based on the specification

data of the Virtex II Pro Platform FPGA [108] and the DSP processor core [18], we

48

0

25
 24
 23
 22
 21
 20

7
 5
 19
 17
 15
 18
 14
 12
 3
1
 9
 16
 13
 10

6

4

2

26

8

11

Figure 3.3: Example Task Graph

get the performance characteristics for each type of operations. Using these operation

(instruction) characteristics, we estimate the performance of each basic block. This

information for each task node is used to evaluate a partitioning solution. In each time

an ant finds a candidate solution, we perform a critical path-based scheduling over the

entire task graph to determine the minimum execution time. Additionally, we estimate

the hardware cost and software code length for each task node. The software code

length is estimated based on the number of instructions needed to encode the operations

of the CDFG. The hardware is scheduled using ASAP scheduling. Based on that we

can determine the approximate area needed to implement the task on the reconfigurable

logic. We assume that there is no hardware reuse between different tasks.

We create a task level benchmark suite based on the MediaBench applications [59].

49

Each testing example is formed via a two step process that combines a randomly gen-

erated DAG with real life software functions. The testing benchmarks are available

onlinehttp://express.ece.ucsb.edu.In order to better assess the quality of the proposed

algorithm while the application scales, task graphs of different sizes are generated. For

a given task graph, the computation definitions associated with the task nodes are se-

lected from the same application within the MediaBench testsuite. Task graphs are

created using GVF tool kit [68]. With this tool, we are able tocontrol the complexity of

the generated DAGs by specifying the total number of nodes orthe average branching

factor in the graph. Figure 3.3 gives a typical example for the task graph we used in our

study.

3.3.2 Absolute Quality Assessment

It is possible to achieve definitive quality assessment for the proposed algorithm

on small task graphs. In our experiments, we apply the proposed ACO algorithm on

the task benchmark set and evaluate the results with the statistics computed via the

brute force search. By conducting thorough evaluation on the search space, we obtain

important insights to the search space, such as the optimal partitions with minimal

execution time and the distribution of all the feasible partitions. More, the brute force

results can be used to quantify the hardness of the testing instances, i.e. by computing

the theoretical expectation for performing random sampling on the search space. Trivial

examples, for which the number of the optimal partitions is statistically significant,

50

are eliminated in our experiments to ensure that we are targeting thehard instances.

We also provided an ILP formulation similiar to that reported in [51] for the given

problem. However, the size of the problem prohibited it frombeing solvable. Unlike

the brute force search the ILP formulation does not provide detailed information about

the distribution of the solution quality over the complete search space, thus makes it

hard to quantitatively judge the hardness of the testing samples.

23000

24000

25000

26000

27000

28000

0 10 20 30 40 50

be
st

 e
xe

cu
tio

n
tim

e
fo

un
d

(in
 #

 o
f c

yc
le

s)

number of iterations

typical ant search result
(ant number = 5, iteration number = 50)

DAG5-62

Figure 3.4: A typical run of ant search

We give 100 runs of the ACO algorithm on each DAG in order to obtain enough

evaluation data. For each run, the ant number is set as the average branch factor of the

DAG. As a stopping condition, the algorithm is set to iterate50 times i.e.I = 50. The

solution with the best execution time found by the ants is reported as the result of each

run. In all the experiments, we setτ0 = 100,Q = 1,000,ρ = 0.8, α = β = 1, wt = 1

andwa = 2.

51

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 2% 4% 6% 8% 10% 12% 14% 16% 18% 20%

cu
m

ul
at

iv
e

di
st

rib
ut

io
n

of
 p

ar
tit

io
ni

ng
 s

ol
ut

io
ns

 w
ith

in
 th

e
to

p
ra

ng
e

solution quality measured by top percentage of the search space

distribution of ant search results for 3-way partitioning
(25 DAGs, 100 runs for each DAG)

task size = 13

task size = 15

task size = 17

Figure 3.5: Result quality measured by top percentage

A typical run of our algorithm is shown in Figure 3.4. It showsthe best execution

time found by the ants after each iteration. In this case, theants found a partition that

provides the optimal execution time for DAG-5 very quickly,after only 20 iterations.

This behavior is consistent over all the runs we conducted and agrees with the results

reported in [28] for TSP problems.

Figure 3.5 shows the cumulative distribution of the number of solutions found by

the ACO algorithm plotted against the quality of those solutions for different problem

sizes. The x-axis gives the solution quality compared to theoverall number of solutions.

The y-axis gives the total number of solutions (in percentage) that are worse than the

solution quality. For example, looking at the x-axis value of 2% for size 13, less than

10% of the solutions that the ACO algorithm found were outside of the top 2% of the

52

overall number of solutions. In other words, over 90% of the solutions found by the

ACO algorithm are within 2% of all possible partitions. The number of solutions drops

quickly showing that the ACO algorithm finds very good solutions in almost every run.

In our experiments, 2,163 (or 86%) solutions found by ACO algorithm are within the

top 0.1% range. Totally 2,203 solutions, or 88.12% of all the solutions, are within the

top 1% range. The figure indicates that a majority of the results are qualitatively close

to the optimal.

With the definitive description on the search space obtainedfrom the brute force

search, we can also evaluate the capability of the algorithmwith regard to discovering

the optimal partition. Table 3.1 shows a comparison betweenthe proposed algorithm

and random sampling when the task graph size is 13. The first column gives the test-

ing case index. The second and third columns are the optimal execution time and the

number of partitions that achieve this execution time for the testcase, respectively. This

information is obtained through the brute force search. Thefourth column gives the

derived theoretical possibility of finding an optimal partition in 250 tries over a search

space with a size of 313 = 1,594,323 if random sampling is applied. The last column

is the number of times we found an optimal partition in the 100runs of the ACO algo-

rithm. It can be seen that over 2,500 runs across the 25 testcases, we found the optimal

execution time 2,163 times. Based on this, the probability of finding the optimal so-

lution with our algorithm for these task graphs is 86.44%. With the same amount of

computation time, random sampling method has a 14.21% chance of discovering the

53

Table 3.1: Comparing ACO results with the random sampling*

Testcase Optimal

Execution

Time

Total # Op-

timal Parti-

tions

Random

Sampling

Prob.

Optimal

ACO

Runs

DAG-1 23991 2187 29.05 100

DAG-2 11507 1215 17.35 100

DAG-3 13941 2187 29.05 100

DAG-4 60120 1664 22.98 3

DAG-5 23004 729 10.80 100

DAG-6 12174 81 1.26 100

DAG-7 26708 2187 29.05 100

DAG-8 51227 486 7.34 71

DAG-9 11449 1458 20.45 100

DAG-10 140197 1024 14.84 0

DAG-11 138387 1215 17.35 98

DAG-12 10810 243 3.74 100

DAG-13 33193 2187 29.05 100

DAG-14 16460 81 1.26 100

DAG-15 30919 1215 17.35 100

DAG-16 49910 1856 25.26 92

DAG-17 22934 135 2.09 100

DAG-18 47161 243 3.74 100

DAG-19 152088 1024 14.84 2

DAG-20 6157 27 0.42 97

DAG-21 29877 610 9.12 100

DAG-22 14141 729 10.80 100

DAG-23 15718 2187 29.05 100

DAG-24 9905 108 1.68 100

DAG-25 48141 486 7.34 98

* 100 ACO runs on 25 testing task graphs with size 13.

optimal solution. Therefore, our ACO algorithm is statistically 6 times more effective

in finding the optimal solution than random sampling. Related to this, we found that

for 17 testing examples, or 68% of the testing set, our algorithm discovers the optimal

partition every time in the 100 runs. This indicates that theproposed algorithm is

54

statistically robust in finding close to optimal solutions.Similar analysis holds when

task graph size is 15 or 17.

There exist three testcases (DAG-4, DAG-10, and DAG-10) forwhich the proposed

algorithm only finds the optimal solution in few times among the 100 runs. Further

analysis of the results shows that all the solutions returned for these testing samples are

within the top 3% of the solution space.

Figure 3.6 provides another perspective regarding to the quality of our results. In

this figure, the x axis is the percentage difference comparing the execution time of the

partition found by the ACO algorithm with respect to the optimal execution time. The

y axis is the percentage of the solutions that fall in that range.

These results may seem somewhat conflicting with the resultsshown in Figure 3.5.

The results in Figure 3.5 show the results on how the ACO algorithm finds solutions that

are within a top percentage of overall solutions. This graphshows the solution quality

found by ACO. The results differ because while the ACO algorithm may not find the

optimal solution, it almost always finds the next best feasible solution. However, the

quality the next feasible solution in terms of execution time may not necessarily be

close to the optimal solution. We believe that this has more to do with the solution

distribution of the benchmarks than the quality of the algorithm.

For example, larger benchmarks are more likely to have more solutions whose qual-

ity is close to optimal. If this is the case, the ACO algorithmwill likely find a good so-

lution with a good solution quality as is show in Figure 3.5. Regardless, the quality of

55

60%

65%

70%

75%

80%

85%

90%

95%

100%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

cu
m

ul
at

iv
e

di
st

rib
ut

io
n

of
 p

ar
tit

io
ni

ng
 s

ol
ut

io
ns

percentage difference in execution time compared with the optimal

distribution of ant search results for 3-way partitioning
(25 DAGs, 100 runs for each DAG)

task size = 13

task size = 15

task size = 17

Figure 3.6: Execution time distribution

the solutions that we find are still very good. The majority (close to 90%) of our results

are within the range of less than 10% worse compared with the optimal execution time.

Based on the discussion in Section 3.2, when the ant number is5 and iteration

number is 50, for a three way partitioning problem over a 13 node task graph, the

proposed algorithm has a theoretical execution time about 0.015% of that using brute

force search, or 6,300 times faster. The experiments were conducted on a Linux ma-

chine with a 2.80 GHz Intel Pentium IV CPU with 512 MByte memory. The average

actual execution time for the brute force method is 9.1 minutes while, on average, our

ACO algorithm runs for 0.072 seconds. These runtimes are in scale with the theoreti-

cal speedup report in Section 3.2.4. To summarize the experiment results, with a high

probability (88.12%), we can expect to achieve a result within top 1% of the search

space with a very minor computational cost.

56

3.3.3 Comparing with Simulated Annealing

In order to further investigate the quality of the proposed algorithm, we compared

the results of the proposed ACO algorithm with that of the simulated annealing (SA)

approach.

Our SA implementation is similar to the one reported in [106]. To begin the SA

search, we randomly pick a feasible partition that obeys thecost constraint as the initial

solution. The neighborhood of a solution contains all the feasible partitions that can

be achieved by switching one of the tasks to a different computing resource from the

one it is currently mapped to. The feasibility of the neighbors is computed in a similar

way as in our ACO implementation. At every iteration of the SAsearch, a neighbor is

randomly selected and the cost difference (i.e. execution time of the DAG) between the

current solution and the neighboring solution is calculated. The acceptance of a more

costly neighboring solution is then determined by applyingthe Boltzmann probability

criteria [1], which depends on the cost difference and the annealing temperature. In our

experiments, the most commonly known and used geometric cooling schedule [106] is

applied and the temperature decrement factor is set to 0.9. When it reaches the pre-

defined maximum iteration number or the stop temperature, the best solution found by

SA is reported.

Because of the stochastic nature of the SA algorithm, for a given cooling approach,

the more the iterations the better chance for SA to find higherquality results. However,

as the iteration number increases, its execution time becomes longer. Figure 3.7 com-

57

pares the ACO results against those that achieved by the SA search sessions. The graph

is illustrated in the same way as Figure 3.5. The SA sessions are configured in the

same way except with different iteration numbers. Here SA50has roughly the same

execution time of our ACO implementation, while respectively, SA500 and SA1000

runs approximately 10 times and 20 times longer. We can see that with substantial

less execution time, the ACO algorithm achieves better results than the SA approach,

even when it is compared with a much more exhaustive SA session such as SA1000.

In other words, in order to obtain comparable partition quality, SA suffers from much

longer execution time. Furthermore, in order to compare thestability of the two dif-

ferent approaches, we also compared the variance of the results returned respectively

by the SA and the proposed algorithm. The is done by carrying multiple runs of ACO

and SA independently. This comparison indicates that the ACO approach consistently

provides significantly more stable results than SA. For sometesting cases, the variance

on the SA results can be more than 3 times wider. Thus experimentally we perhaps

can conclude that the ACO approach would have much better chance in obtaining high

quality results than the SA method with the same execution cost.

Another benefit of conducting comparison between SA and ACO is that it provides

a way for us to assess the quality of the proposed algorithm onbigger size testing cases.

For such problems, it becomes impossible for us to perform the brute force search to

find the true optimal solution for the problem. However, we can still assess the quality

of the proposed algorithm by comparing relative differencebetween its results with

58

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 2% 4% 6% 8% 10% 12% 14% 16% 18% 20%

cu
m

ul
at

iv
e

di
st

rib
ut

io
n

of
 p

ar
tit

io
ni

ng
 s

ol
ut

io
ns

solution quality measured by top percentage of the search space

distribution of ACO and SA results for 3-way partitioning
(25 DAGs, DAG size = 13)

SA50

SA1000

SA500

ACO

Figure 3.7: Comparing ACO with SA

that obtained by using other popularly used heuristic methods, such as SA. Figure 3.8

shows the cumulative result quality distribution curves for task graphs with 25 nodes.

For these problems, it is estimated that the brute force method would take hundreds

machine hours thus impractical for us to find the optimal exactly. In the figure, the x

axis now reads as the percentage difference on the executiontime of the partition found

by the corresponding algorithm with respect to thebestexecution time over all the

experiments using different approaches. Among them, the ACO and SA500 have the

same amount of execution time, while SA5000 runs at about 10 time slower. It is shown

that ACO outperforms SA500 while a much more expensive SA works comparably.

59

30%

40%

50%

60%

70%

80%

90%

100%

0% 2% 4% 6% 8% 10% 12% 14% 16% 18% 20%

pe
rc

et
ag

e
of

 s
ol

ut
io

ns
 th

at
 a

re
 w

ith
in

 th
e

to
p

ra
ng

e

percentage difference in execution time compared with the optimal

distribution of ACO and SA results for 3-way partitioning
search space size= 847,288,609,443

(50 DAGs of 25 task nodes)

SA500

ACO

SA5000

ACO-SA500

Figure 3.8: ACO, SA and ACO-SA on big size problems

3.3.4 Hybrid ACO with Simulated Annealing

One possible explanation for the proposed ACO approach to outperform the tradi-

tional SA method with regard to short computing time is that in the formulation of the

SA algorithm, the problem is modeled with a flat representation, i.e. the task/resource

partitioning is characterized as a vector, of which each element stores an individual

mapping for a certain task. This model yields simplicity, while losing the critical struc-

tural relationship among tasks as compared with the ATG model. This further makes

it harder to effectively use structural information duringthe selection of neighbor solu-

tions. For example, in the implementation tested, the internal correlation between tasks

is fully ignored. To compensate this, SA suffers from lengthy low temperature cooling

process.

60

Another problem of SA, which may be more related with the stability of the quality

of the results than the long computing time, is its sensitivity to the selection of the

initial seed solution. Starting with different initial partitions may lead to final results of

different qualities, besides the possibility of spending computing time on unpromising

parts of the search space.

On the other hand, the ACO/ATG model makes effective use of the core struc-

tural information of the problem. The autocatalytic natureof how the pheromone trails

are updated and utilized makes it more attractive in discovering ”good” solutions with

short computing time. However, this very behavior raises stagnation problem. For

example, it is observed that allowing extra computing time after enough iterations of

the ACO algorithm does not have significant benefit regardingto the solution quality.

This stagnation problem has been discussed in other works [37, 28, 13, 27] and special

problem-dependent recovery mechanisms have to be formulated to ease this artifact.

These complementary characteristics of the two methods motivate us to investigate

a hybrid approach that combines the ACO and SA together. Thatis to use the ACO

results as the initial seed partitions for the SA algorithm,it is possible for us to achieve

even better system performance with a substantially reduced computing cost. In Fig-

ure 3.8, curve ACO-SA500 shows the result of this approach. It achieves definitively

better results comparing with that of SA5000 while only taking about 20% of its run-

ning time. Similar result holds for task graphs with bigger sizes, such as 50 and 100 (for

a test case with 100 task node, the computing time can be reduced from about 2 hours

61

to 18 minutes using the hybrid ACO-SA approach with comparable result quality).

Table 3.2: Average Result Quality Comparison

SA500 ACO SA5000 ACO-SA500

(run time) (t) (t) (10t) (2t)

size = 25 1 0.86 0.90 0.85

size = 50 1 0.81 0.94 0.77

size = 100 1 0.84 0.92 0.80

Overall, we summarize the result quality comparison with Table 3.2 for problems

with big sizes. It compares the average result qualities reported by ACO, SA500,

SA5000 and the hybrid method ACO-SA500. The data is normalized with that ob-

tained by SA500, and the smaller the better. It is easy to see that ACO always outper-

forms the traditional SA even when SA is allowed a much longerexecution time, and

the ACO-SA approach provides the best average results consistently with great runtime

reduction.

3.4 Application: Quick Design Parameter Estimation

One possible application of using the proposed ACO approachfor application parti-

tioning is to help make high level design choices by estimating design parameters at the

early stage. At this point, a critical problem that the system designer faces is to make

choice among alternative designs. One common question thatthe system designer has

to answer is whether an extra computing device is needed in the system design.

62

For instance, considering the following case: assuming onedesign is realized with

a PowerPC and a FPGA component (Architecture 1), while an alternative design con-

tains an extra DSP core (Architecture 2), one needs to quickly evaluate design param-

eters associated with each of the two possible approaches. Does adding an extra DSP

result in FPGA area reduction and if yes, how much can we save?Does the second

design provide significant improvement of system’s timing performance? Or by hav-

ing an extra DSP, how much FPGA cost can be saved without tempting the system’s

time performance requirement? In order to address these questions, quick assessment

on related design parameters is needed. Essentially, the above problem request us to

provide insights for design parameters when the number of computing resources is in-

cremented. The high quality and fast execution time of the proposed ACO multi-way

application partitioning approach provides a possible method for certain situations for

such a system level design task.

To see this, we cross examine the results of the proposed algorithm over the testing

cases illustrated in Table 3.1 for the two architectures. Based on the available resources,

they can be viewed as 3-way partitioning and bi-partitioning problems under our model

respectively and the proposed ACO approach solves them in a uniformed way.

Based on this comparison, we find that with the same hardware area constraint, our

algorithm robustly provides partitions with better or at least the same execution time

for Architecture 2 for different test cases in our benchmarks. The speedup is dependent

on the specific application, i.e. the application’s ATG and the tasks associated with it.

63

With our testing cases, we have an average execution time speedup of 1.6% over the

25 testing examples, while over 11% speedup is observed for examples DAG-6 and

DAG-17. More interestingly, based on the same test, we find that the 3-way partition-

ing results have an average 12.01% save in hardware area for the FPGA component

compared with the bi-partitioning results. In 100 runs, theexpected biggest area save

over 25 DAGs is 12.61%, which is roughly in agreement with the average savings.

This motivates us to use the proposed ACO algorithm as a quickestimator for design

parameters, such as the FPGA area cost constraint, when a newcomputing resource is

included. The question the designer tries to answer here is:how much FPGA area

can we save by adding a DSP core in the system while respectingthe system delay

constraint? Or what is the right FPGA area cost constraint weshould provide for the

incremented system? Without a quick design parameter assessment method, this con-

straint is hard to be made accurately. To address this problem, we propose a two step

process using the ACO application partition as such quick estimator, as the process is

diagramed in Figure 3.9.

First, we notice that Architecture 2, which contains an extra DSP, is expected to

not make the FPGA cost worse. Based on this observation, a designer can first con-

duct bi-partitioning for the application over Architecture 1. The results will provide

critical guidance regarding to the time performance and theupper bound of the FPGA

area cost. The designer can then use the FPGA area cost resultreturned by our algo-

rithm as the “desired” constraint for the 3-way partitioning problem over Architecture

64

2. Of course, this step may require multiple iterations if the optimal FPGA saving is

expected. Thanks for the low computing cost of the proposed ACO approach, such

iterative process is practical and can be conducted within reasonable time. As shown

in Figure 3.9, for each of the iterations, we check if the system delay meets the time

performance constraint. If yes, it implies that a more stringent area cost constraint can

be used. Otherwise, we have found the optimal saving and the process terminates. By

applying this method, without noticeable degradation on the execution time (less than

2%), our experiments on the testing cases show that an average hardware area reduction

of 65.46% for the 3-way architecture comparing with original design which only uses

PowerPC and FPGA.

R
u
n

A
C
O

o
n

A
r
c
h
i
t
e
c
t
u
r
e

1

(
P
o
w
e
r
P
c
+
F
P
G
A
)

R
u
n

A
C
O

o
n

A
r
c
h
i
t
e
c
t
u
r
e

2

(
P
o
w
e
r
P
C
+
F
P
G
A
+
D
S
P
)

R
e
d
u
c
e

F
P
G
A

a
r
e
a

c
o
n
s
t
r
a
i
n
t

Y
e
s

N
o

F
i
n
i
s
h
S
y
s
t
e
m

D
e
l
a
y

>

R
e
q
u
i
r
e
m
e
n
t
?

O
b
t
a
i
n

b
a
s
e

r
u
n
t
i
m
e

a
n
d

F
P
G
A

c
o
s
t

u
p
p
e
r

b
o
u
n
d

Figure 3.9: Estimate Design Parameters with ACO application partitioner on design choice

with incremented resources

Notice this is just one of the possible scenarios that the proposed algorithm could

help. There are other cases such a quick parameter estimatorcould be useful. For

instance, by simply swapping the boxes associated with Architecture 1 and Architecture

2 in Figure 3.9, we can help to solve the reverse design problem, where we try to find

how much extra FPGA resource we would need if we simplify the system design by

65

excluding the DSP core from the architecture.

3.5 Summary

In this work, we presented a novel heuristic searching method for the system par-

titioning problem based on the ACO techniques. Our algorithm proceeds as a collec-

tion of agents work collaboratively to explore the search space. A stochastic decision

making strategy is proposed in order to combine global and local heuristics to effec-

tively conduct this exploration. We introduced the Augmented Task Graph concept as

a generic model for the system partitioning problem, which can be easily extended as

the resource number grows and it fits well with a variety of system requirements.

Experimental results over our test cases for a 3-way system partitioning task showed

promising results. The proposed algorithm consistently provided near optimal par-

titioning results over modestly sized tested examples withvery minor computational

cost. Our algorithm is more effective in finding the near optimal solutions and scales

well as the problem size grows. It is also shown that for largesize problems, with

substantial less execution time, the proposed method achieves better solutions than the

popularly used simulated annealing approach. With the observation of the complemen-

tary behaviors of the algorithms, we proposed a hybrid approach that combines the

ACO and SA together. This method yields even better result than using each of the

algorithms individually.

66

Chapter 4

Operation Scheduling

Operation scheduling is a fundamental problem in mapping anapplication to a com-

putational device. It takes a behavioral application specification and produces a sched-

ule solution for the operations onto a collection of processing units to either minimize

the completion time or the computing resources required to meet a given deadline. The

operation scheduling problem isN P -hard, thus effective heuristic methods are neces-

sary to provide qualitative solutions. We present novel operation scheduling algorithms

using the Ant Colony Optimization approach for both timing and resource constrained

scheduling problems. The algorithms use a unique hybrid approach by combining the

MAX-MIN ant system meta-heuristic with traditional scheduling heuristics. We com-

piled a comprehensive testing benchmark set from real-world applications in order to

verify the effectiveness and efficiency of our proposed algorithms. For timing con-

strained scheduling, our algorithm achieves better results compared with force-directed

scheduling on almost all the testing cases with a maximum 19.5% reduction of the

number of resources. For resource constrained scheduling,our algorithm outperforms

67

a number of different list scheduling heuristics with better stability, and generates bet-

ter results with up to 14.7% improvement(on average 6.2% better). Furthermore, by

solving the test samples optimally using ILP formulation, we show that our algorithm

consistently achieves a near optimal solution. Our algorithms outperform the simulated

annealing method for both scheduling problems in terms of quality, computing time

and stability.

4.1 Introduction

As fabrication technology advances and transistors becomemore plentiful, modern

computing systems can achieve better system performance byincreasing the amount

of computation units. It is estimated that we will be able to integrate more than a half

billion transistors on a 468mm2 chip by the year of 2009 [85]. This yields tremendous

potential for future computing systems, however, it imposes big challenges on how to

effectively use and design such complicated systems.

As computing systems become more complex, so do the applications that can run

on them. Designers will increasingly rely on automated design tools in order to map

applications onto these systems. One fundamental process of these tools is mapping

a behavioral application specification to the computing system. For example, the tool

may take a C function and create the code to program a microprocessor. This is viewed

as software compilation. Or the tool may take a transaction level behavior and create a

register transfer level (RTL) circuit description. This iscalled hardware or behavioral

68

synthesis [72]. Both software and hardware synthesis flows are essential for the use and

design of future computing systems.

Operation scheduling (OS) is an important problem in software compilation and

hardware synthesis. An inappropriate scheduling of the operations can fail to exploit

the full potential of the system. Operation scheduling appears in a number of different

problems, e.g. compiler design for superscalar and VLIW microprocessors [54], dis-

tributed clustering computation architectures [5] and behavioral synthesis of ASICs and

FPGAs [72]. In this work, we focus on operation scheduling for behavioral synthesis

for ASICs/FPGAs. However, the basic algorithms proposed here can be modified to

handle a wide variety of operation scheduling problems.

Operation scheduling is performed on a behavioral description of the application.

This description is typically decomposed into several blocks (e.g. basic blocks), and

each of the blocks is represented by a data flow graph (DFG). Figure 4.1 shows an

example DFG for a one-dimensional 8-point fast discrete cosine transformation.

Operation scheduling can be classified asresource constrainedor timing

constrained. Given a DFG, clock cycle time, resource count and resource delays, a

resource constrained scheduling finds the minimum number ofclock cycles needed to

execute the DFG. On the other hand, a timing constrained scheduling tries to determine

the minimum number of resources needed for a given deadline.

In the timing constrained scheduling problem (also called fixed control step

scheduling), the target is to find the minimum computing resource cost under a set

69

of given types of computing units and a predefined latency deadline. For example,

in many digital signal processing (DSP) systems, the sampling rate of the input data

stream dictates the maximum time allowed for computation onthe present data sample

before the next sample arrives. Since the sampling rate is fixed, the main objective is

to minimize the cost of the hardware. Given the clock cycle time, the sampling rate

can be expressed in terms of the number of cycles that are required to execute the

algorithm.

Resource constrained scheduling is also found frequently in practice. This is be-

cause in a lot of the cases, the number of resources are known apriori. For instance, in

software compilation for microprocessors, the computing resources are fixed. In hard-

ware compilation, DFGs are often constructed and scheduledalmost independently.

Furthermore, if we want to maximize resource sharing, each block should use same or

similar resources, which is hardly ensured by time constrained schedulers. The time

constraint of each block is not easy to define since blocks aretypically serialized and

budgeting global performance constraint for each block is not trivial [69].

Operation scheduling methods can be further classified asstatic schedulinganddy-

namic scheduling[88]. Static operation scheduling is performed during the compilation

of the application. Once an acceptable scheduling solutionis found, it is deployed as

part of the application image. In dynamic scheduling, a dedicated system component

makes scheduling decisions on-the-fly. Dynamic schedulingmethods must minimize

the program’s completion time while considering the overhead paid for running the

70

scheduler.

In this chapter, we focus on both resource and timing constrained static operation

scheduling. We propose iterative algorithms based on the MAX-MIN Ant Colony Op-

timization for solving these problems. In our algorithms, acollection of agents (ants)

cooperate together to search for a solution. Global and local heuristics are combined

in a stochastic decision making process in order to efficiently explore the search space.

The quality of the resultant schedules is evaluated and fed back to dynamically adjust

the heuristics for future iterations. The main contribution of our work is the formulation

of scheduling algorithms that:

• Utilize a unique hybrid approach combining traditional heuristics and the recently

developed MAX-MIN ant system optimization [92];

• Dynamically use local and global heuristics based on the input application to

adaptively search the solution space;

• Generate consistently good scheduling results over all testing cases compared

with a range of list scheduling heuristics, force-directedscheduling, simulated

annealing and the optimal ILP solution, and demonstrates stable quality over a

variety of application benchmarks of large size.

This chapter is organized as follows. We formally define the timing constrained and

resource constrained scheduling problems in Section 4.2. Then in Section 4.3 and Sec-

tion 4.4, we present two hybrid approaches combining traditional scheduling heuristics

with the MAX-MIN ant system optimization to solve the timingand resource con-

strained scheduling problems, respectively. We discuss the construction of our bench-

71

marks in Section 4.5. Experimental results for the new algorithms are presented and

analyzed in Section 4.6. We summarize with Section 4.7.

4.2 Preliminaries

4.2.1 Operation Scheduling Problem Definition

Given a set of operations and a collection of computational units, the resource con-

strained scheduling (RCS) problem schedules the operations onto the computing units

such that the execution time of these operations are minimized, while respecting the

capacity limits imposed by the number of computational resources. The operations can

be modeled as a data flow graph (DFG)G(V,E), where each nodevi ∈V(i = 1, . . . ,n)

represents an operationopi , and the edgeei j denotes a dependency between operations

v j andvi . A DFG is a directed acyclic graph where the dependencies define a partially

ordered relationship (denoted by the symbol4) among the nodes. Without affecting

the problem, we add two virtual nodesroot andend, which are associated with no op-

eration (NOP). We assume thatroot is the only starting node in the DFG, i.e. it has no

predecessors, and nodeend is the only exit node, i.e. it has no successors.

Additionally, we have a collection of computing resources,e.g. ALUs, adders,

and multipliers. There areR different types andr j > 0 gives the number of units for

resource typej (1 6 j 6 R). Furthermore, each operation defined in the DFG must

be executable on at least one type of the resources. When eachof the operations is

uniquely associated with one resource type, we call ithomogenousscheduling. If an

72

operation can be performed by more than one resource types, we call it heterogeneous

scheduling [94]. Moreover, we assume the cycle delays for each operation on different

type resources are known asd(i, j). Of course,root andendhave zero delays. Finally,

we assume the execution of the operations is non-preemptive, that is, once an operation

starts execution, it must finish without being interrupted.

A resource constrained schedule is given by the vector

{(sroot, froot),(s1, f1), . . . ,(send, fend)}

where si and fi indicate the starting and finishing time of the operationopi . The

resource-constrained scheduling problem is formally defined asmin(send) with respect

to the following conditions:

1. An operation can only start when all its predecessors havefinished, i.e.si > f j if

opj 4 opi ;

2. At any given cyclet, the number of resources needed is constrained byr j , for all

1 6 j 6 R.

The timing constrained scheduling (TCS) is a dual problem ofthe resource con-

strained version and can be defined using the same terminology presented above. Here

the target is to minimize total resources∑ j r j or the total cost of the resources (e.g. the

hardware area needed) subject to the same dependencies between operations imposed

by the DFG and a given deadlineD, i.e. send < D.

73

root

r

r

r r r r r r

r

r

r rr rr r

r r

r

rr

r

r

r

r

r

r

rr

rr

r

end

-

+ -

-

*

-

*

-

+-

+

-+

+

-+

++

+ -

* ** *

* *

* *

- +- +

ww ww

* *

* *

**

+ --+

w w

ww

Figure 4.1: Data Flow Graph (DFG) of thecosine2benchmark

(‘r’ is for memory read and ‘w’ for memory write).

4.2.2 Related Work

Many variants of the operation scheduling problem areN P -hard [12]. Although it

is possible to formulate and solve them using Integer LinearProgramming (ILP) [107],

the feasible solution space quickly becomes intractable for larger problem instances. In

order to address this problem, a range of heuristic methods with polynomial runtime

complexity have been proposed.

The integer linear programming (ILP) method [60]tries to find an optimal schedule

using a branch-and-bound search algorithm. It also involves some amount of back-

tracking, i.e., decisions made earlier are changed later on. A simplified formulation of

the ILP method for the time-constrained problem is given below:

First it calculates the mobility range for each operationM = {Sj |Ek 6 j 6 Lk},

whereEk andLk are the ASAP and ALAP values respectively. The scheduling problem

74

in ILP is defined by the following equations:

Min(
n

∑
k=1

(Ck∗Nk)) while ∑
Ei6 j6Li

xi j = 1

where 16 i 6 n andn is the number of operations. There are 16 k6 moperation types

available, andNk is the number of FUs of operation typek, andCk is the cost of each

FU. Eachxi j is 1 if the operationi is assigned in control stepj and 0 otherwise. Two

more equations that enforce the resource and data dependency constraints are:

n

∑
i=1

xi j 6 Ni

and

((q∗x j ,q)− (p∗xi,p)) 6−1, p 6 q

wherep andq are the control steps assigned to the operationsxi andx j respectively.

We can see that the ILP formulation increases rapidly with the number of control

steps. For one unit increase in the number of control steps wewill have n additionalx

variables. Therefore the time of execution of the algorithmalso increases rapidly. In

practice the ILP approach is applicable only to very small problems.

Many timing constrained scheduling algorithms used in highlevel synthesis are

derivatives of the force-directed scheduling (FDS) heuristic presented by Paulin and

Knight [78, 79]. Verhaeghet al. [97, 98] provide a theoretical treatment on the original

FDS algorithm and report better results by applying gradualtime-frame reduction and

the use of global spring constants in the force calculation.Due to the lack of a look

ahead scheme, the FDS algorithm is likely to produce a sub-optimal solution. One way

75

to address this issue is the iterative method proposed by Park and Kyung [76] based on

Kernighan and Lin’s heuristic [55] method used for solving the graph-bisection prob-

lem. In their approach, each operation is scheduled into an earlier or later step using

the move that produces the maximum gain. Then all the operations are unlocked and

the whole procedure is repeated with this new schedule. The quality of the result pro-

duced by this algorithm is highly dependent upon the initialsolution. More recently,

Heijligerset al.[48] and InSyn [86] use evolutionary techniques like genetic algorithms

and simulated evolution.

There are a number of heuristic algorithms devised for the resource constrained

problem, including list scheduling [84, 2, 80, 94, 2], forced-directed list scheduling

[78], genetic algorithm [11, 41], tabu search [10], simulated annealing [93], criti-

cal path based heuristic [17], graph theoretic and computational geometry approaches

[5, 69, 5]. Among them, list scheduling is the most common dueto its simplicity of

implementation and capability of generating reasonably good results for small sized

problems. The success of the list scheduler is highly dependent on the priority function

and the structure of the input application (DFG) [93, 72, 57]. One commonly used pri-

ority function assigns the priority inversely proportional to the mobility. This ensures

that the scheduling of operations with large mobilities aredeferred because they have

more flexibility as to where they can be scheduled. Many otherpriority functions have

been proposed [2, 57, 41, 8]. However, it is commonly agreed that there is no single

good heuristic for prioritizing the DFG nodes across a rangeof applications using list

76

scheduling. Our results in Section 4.6 confirm this.

4.3 ACO for Timing Constrained Scheduling

In this section, we introduce our MMAS-based algorithms forsolving the timing

constrained scheduling problem. As discussed in Section 4.2, force-directed schedul-

ing (FDS) is a commonly used heuristic as it generates “good”quality results for mod-

erately sized DFGs. Our algorithm uses distribution graphsfrom FDS as a local heuris-

tic. Additionally, we use the results produced by FDS to evaluate the quality of our

algorithm. For these reasons, we provide some details of FDSin the following subsec-

tion. The remaining subsections describe our MMAS algorithm for timing constrained

scheduling.

4.3.1 Force-Directed Scheduling

The force-directed scheduling algorithm (and its various forms) has been widely

used since it was first proposed by Paulin and Knight [78]. Thegoal of the algorithm

is to reduce the number of functional units used in the implementation of the design.

This objective is achieved by attempting to uniformly distribute the operations onto

the available resource units. The distribution ensures that resource units allocated to

perform operations in one control step are used efficiently in all other control steps,

which leads to a high utilization rate.

The FDS algorithm relies on both the ASAP and the ALAP scheduling algorithms

to determine the feasible control steps for every operationopi , or thetime frame of opi

77

(denoted as[tS
i , tL

i] wheretS
i andtL

i are the ASAP and ALAP times respectively). It also

assumes that each operationopi has a uniform probability of being scheduled into any

of the control steps in the range, and zero probability of being scheduled elsewhere.

Thus, for a given time stepj and an operationopi which needs△i > 1 time steps to

execute, this probability is given as:

p j(opi) =






(∑△i
l=0hi(j− l))/(tL

i − tS
i +1) if tS

i 6 j 6 tL
i

0 otherwise

(4.1)

wherehi(·) is a unit window function defined on[tS
i , tL

i].

Based on this probability, a set ofdistribution graphs can be created, one for each

specific type of operation, denoted asqk. More specifically, for typek at time stepj,

qk(j) = ∑
opi

p j(opi) if type of opi is k (4.2)

We can see thatqk(j) is an estimation on the number of typek resources that are needed

at control stepj.

The FDS algorithm tries to minimize the overall concurrencyunder a fixed latency

by scheduling operations one by one. At every time step, the effect of scheduling

each unscheduled operation on every possible time step in its frame range is calculated,

and the operation and the corresponding time step with the smallest negative effect is

selected. This effect is equated as the force for an unscheduled operationopi at control

step j, and is comprised of two components: the self-force,SFi j , and the predecessor-

successor forces,PSFi j .

78

The self-forceSFi j represents the direct effect of this scheduling on the overall

concurrency. It is given by:

SFi j =
tL
i +△i

∑
l=tS

i

qk(l)(Hi(l)−pi(l)) (4.3)

where, j ∈ [tS
i , tL

i], k is the type of operationopi , andHi(·) is the unit window function

defined on[j, j +△i].

We also need to consider the predecessor and successor forces since assigning op-

erationopi to time stepj might cause the time frame of a predecessor or successor

operationopl to change from[tS
l , tL

l] to [̃tS
l , t̃S

l]. The force exerted by a predecessor or

successor is given by:

PSFi j (l) =
t̃L
i +△l

∑
m=t̃S

i

(qk(m) · p̃m(opl))−
tL
i +△l

∑
m=tS

i

(qk(m) ·pm(opl)) (4.4)

wherep̃m(opl) is computed in the same way as Equation (4.1) except the updated mo-

bility information [̃tS
l , t̃S

l] is used. Notice that the above computation has to be carried

for all the predecessor and successor operations ofopi . The total force of the hypothet-

ical assignment of schedulingopi on time stepj is the addition of the self-force and all

the predecessor-successor forces, i.e.

total forcei j = SFi j +∑
l

PSFi j (l) (4.5)

whereopl is a predecessor or successor ofopi . Finally, the total forces obtained for

all the unscheduled operations at every possible time step are compared. The operation

and time step with the best force reduction is chosen and the partial scheduling result is

79

incremented until all the operations have been scheduled. Apseudo implementation of

FDS is given as Algorithm 2.

The FDS method is “constructive” because the solution is computed without per-

forming any backtracking. Every decision is made in a greedymanner. If there are

two possible assignments sharing the same cost, the above algorithm cannot accurately

estimate the best choice. Based on our experience, this happens fairly often as the DFG

becomes larger and more complex. Moreover, FDS does not takeinto account future

assignments of operators to the same control step. Consequently, it is likely that the

resulting solution will not be optimal, due to the lack of a look ahead scheme and the

lack of compromises between early and late decisions.

Our experiments show that a baseline FDS implementation based on [78] fails to

find the optimal solution even on small testing cases. To easethis problem, a look-

ahead factor was introduced in the same paper. A second orderterm of the displacement

weighted by a constantη is included in force computation, and the valueη is experi-

mentally decided to be 1/3. In our experiments, this look-ahead factor has a positive

impact on some testing cases but does not always work well. More details regarding

FDS performance can be found in Section 4.6.

4.3.2 Algorithm Formulation

We address the timing constrained scheduling (TCS) problemin an evolutionary

manner. The proposed algorithm is built upon the Ant System approach and the TCS

80

procedure FDS(G,R)

input : DFG G(V,E), resource setR, and a map of operation to one resource inR

output: instruction schedule

1: initialize schedule resultScurrent to be empty

2: while exists unscheduled instructiondo

3: perform ASAP and ALAP on partial schedule resultScurrent

4: update time frame[tS
i , tL

i] associated with each instructionopi

5: Min = ∞
6: for each unscheduled instructionopi do

7: for tS
i 6 j 6 tL

i do

8: Stmp= schedule(Scurrent,opi, j)

9: Update time frame and distribution graphs based onStmp

10: ComputeSFi j and settotal f orcei j = SFi j

11: for each predecessor/sucessoropl of opi do

12: ComputePSFi j (l)

13: total f orcei j + = PSFi j (l)

14: end for

15: if total f orcei j < Min then

16: Min = total f orcei j

17: BestOp= opi ;BestStep= j

18: end if

19: end for

20: end for

21: Scurrent = schedule(Scurrent,BestOp,BestStep)

22: Update time frame and distribution graphs based onScurrent

23: end while

24: returnScurrent and the resource cost

Algorithm 2: Force-Directed Scheduling for Time-Constrained Optimization

81

problem is formulated as an iterative searching process. Each iteration consists of two

stages. First, the ACO algorithm is applied in which a collection of ants traverse the

DFG to construct individual operation schedules with respect to the specified deadline

using global and local heuristics. Second, these results are evaluated using their re-

source costs. The heuristics are adjusted based on the solutions found in the current

iteration. The hope is that future iterations will benefit from this adjustment and come

up with better schedules.

Each operation or DFG nodeopi is associated withD pheromone trailsτi j , where

j = 1, . . . ,D andD is the specified deadline. These pheromone trails indicate the global

favorableness of assigning thei-th operation at thej-th control step in order to minimize

the resource cost with respect to the time constraint. Initially, based on ASAP and

ALAP results,τi j is set with some fixed valueτ0 if j is a valid control step foropi ;

otherwise, it is set to be 0.

For each iteration,m ants are released and each ant individually starts to construct

a schedule by picking an unscheduled operation and determining its desired control

step. However, unlike the deterministic approach used in the FDS method, each ant

picks up the next operation probabilistically. The simplest way is to select an operation

uniformly among all unscheduled operations. Once an operation oph is selected, the ant

needs to make a decision on which control step it should beassigned to. This decision

is also made probabilistically according to Equation (4.6).

82

ph j =





τh j(t)α·ηβ
h j

∑l (τα
hl(t)·η

β
hl)

if oph can be scheduled atl and j

0 otherwise

(4.6)

Here j is the control step under consideration, which is betweenoph’s time frame

[tS
h, tL

h]. The itemηh j is the local heuristic for scheduling operationoph at control step

j, andα andβ are parameters to control the relative influence of the distributed global

heuristicτh j and local heuristicηh j. In our work, assumingoph is of typek, we simply

setηh j to be the inverse ofqk(j); that is the distribution graph value of typek at control

step j (calculated in the same way as in FDS). Recalling our discussion in Section 4.3.1,

qk is computed based on partial scheduling result and is an indication on the number of

computing units of typek needed at control stepj. Intuitively, the ant favors a decision

that possesses higher volume of pheromone and better local heuristic, i.e. a lowerqk. In

other words, an ant is more likely to make a decision that is globally considered “good”

and also uses the fewest number of resources under the current partially scheduled

result. Similar to FDS, once an operation is fixed at a time step, it will not change.

Furthermore, the time frames will be updated to reflect the changed partial schedule.

This guarantees that each ant will always construct a valid schedule.

In the second stage of our algorithm, the ant’s solutions areevaluated. The quality

of the solution from anth is judged by the total number of resources, i.e.Qh = ∑k rk.

At the end of the iteration, the pheromone trail is updated according to the quality of

individual schedules. Additionally, a certain amount of pheromone evaporates. More

83

specifically, we have:

τi j (t) = ρ · τi j (t)+
m

∑
h=1

∆τh
i j (t) where 0< ρ < 1. (4.7)

Hereρ is the evaporation ratio, and

∆τh
i j =






Q/Qh if opi is scheduled atj by anth

0 otherwise

(4.8)

Q is a fixed constant to control the delivery rate of the pheromone. Two important

operations are performed in the pheromone trail updating process. Evaporation is nec-

essary for ACO to effectively explore the solution space, while reinforcement ensures

that the favorable operation orderings receive a higher volume of pheromone and will

have a better chance of being selected in the future iterations. The above process is

repeated multiple times until an ending condition is reached. The best result found by

the algorithm is reported.

In our experiments, we implemented both the basic ACO and theMMAS algo-

rithms. The latter consistently achieves better scheduling results, especially for larger

DFGs. A pseudo code implementation of the final version of ourTCS algorithm using

MMAS is shown as Algorithm 3, where the pheromone bounding step is indicated as

step 23.

84

procedure MaxMinAntSchedulingTCS(G,R)

input : DFGG(V,E), resource setR

output: operation schedule

1: initialize parameterρ,τi j , pbest,τmax,τmin

2: constructmants

3: BestSolution← φ
4: while ending condition is not metdo

5: for i = 0 to mdo

6: ant(i) constructs a valid schedule timing constrainedScurrent as following:

7: Scurrent← φ
8: perform ASAP and ALAP

9: while exists unscheduled operationdo

10: update time frame[tS
i , tL

i] associated with each operationopi and the distribution

graphsqk.

11: select one operationoph among all unscheduled operations probabilistically

12: for tS
h 6 j 6 tL

h do

13: set local heuristicηh j = 1/qk(j) whereoph is of typek

14: end for

15: select time stepl usingη andτ as Equation (4.6).

16: Scurrent = schedule(Scurrent,oph, l)

17: Update time frame and distribution graphs based onScurrent

18: end while

19: if Scurrent is better than that ofBestSolutionthen

20: BestSolution← Scurrent

21: end if

22: end for

23: updateτmax andτmin based on Equation (2.3) and (2.4)

24: update η if needed

25: updateτi j based on Equation (4.7)

26: end while

27: returnBestSolution

Algorithm 3: MMAS for Timing Constrained Scheduling

85

4.3.3 Refinements

Updating Neighboring Pheromone Trails

We found that a “better” solution can often be achieved from a“good” scheduling

result by simply adjusting very few operations’ scheduled positions within their time

frames. Based on this observation, we can refine our pheromone update policy to en-

courage exploration of the neighboring positions. More specifically, in the pheromone

reinforcement step indicated by Equation 4.8, we also increase the pheromone trails

of the control steps adjacent positionj subject to a weighted function window. Two

such windowing functions are shown in Figure 4.2. Dependingon the neighbor’s off-

set from j, the two functions adjust its pheromone trail in a similar manner to Equa-

tion 4.8 but with an extra factor applied. Assuming we usex to represent the offset,

then Figure 4.2(a) has a weight function of 1−1/3|x| while Figure 4.2(b) provides a

weight function ofe−|x|. In our experiments, the latter provides relatively betterper-

formance. Ideally, the weight function window size shall becomputed based on the

mobility ranges of the operations. However, to keep the algorithm simple, we use a

window size 5 across all our experiments, subject to the operation’s time frame[tS
i , tL

i].

This number is estimated using the average mobility ranges of all testing cases.

Operation Selection

In our algorithm, the ants construct a schedule for the givenDFG by making two de-

cisions in sequence. First, it needs to select the next operation. Then a specific control

86

-3 -2 -1 0 1 2 3
offset

0

0.25

0.5

0.75

1

w
ei

gh
t

(a)

-3 -2 -1 0 1 2 3
offset

0

0.25

0.5

0.75

1

w
ei

gh
t

(b)

Figure 4.2: Pheromone update windows

step is determined for the selected operation. As discussedearlier, the simplest ap-

proach for selecting an operation is to randomly pick one amongst all the unscheduled

operations. Though it is simple and computationally effective, it does not appreciate the

information accumulated in the pheromone from the previousiterations; it also ignores

the dynamic time frame information. One possible refinementis to make the selection

probability proportional to the pheromone and inversely proportional to the size of the

operation’s time frame at that instance. More precisely, wepick the next operationopi

probabilistically with the following equation:

pi =

∑ j τi j

(tL
i −tS

i +1)

∑l
∑k τlk

(tL
l −tS

l +1)

(4.9)

Here the numerator can be viewed as the average pheromone value over all possible po-

sitions in the current time frame for operationopi . The denominator is a normalization

factor to bring the result to be a valid probability value between 0 and 1. It is basically

the addition of the average of pheromone for all the unscheduled operationsopl . Notice

87

that as the time frames of the operations change dynamicallydepending on the partial

schedule, the average pheromone trail is not constant during the schedule construction

process. In other words, we only consider a pheromoneτi j whentS
i 6 j 6 tL

i .

Intuitively, this formulation favors an operation with stronger pheromone and fewer

possible scheduling alternatives. In the extreme case,tL
i = tS

i , which means operation

opi is on the critical path, we will have only one choice foropi . If the pheromone for

opi at this position happens to be very strong, we will have better chance to pickopi at

the next step compared with other operations. Our experiments show that applying this

operation selection policy makes the algorithm faster in identifying high quality results.

Compared with the even possibility approach, there is an overhead to perform this

operation selection policy. However, by making the selection more targeted, it allows

us to reduce the overall iteration number of the algorithm thus the additional overhead

is well worth it. In our experiments, we were able to reduce the total runtime by about

23% while achieving almost the same quality with our testingresults by adopting this

biased selection policy.

4.3.4 Extensions

Our proposed TCS algorithm applies the Ant Colony meta-heuristic at the high

level. It poses little difficulty to extend it to handle different scheduling contexts. Most

of the methods proposed previously for FDS can be readily implemented within our

framework.

88

Resource Preference

In our work, the target is to minimize the total count of resources needed. Ac-

cordingly, we use the inverse of this total count as the quality of the scheduling result.

This quality measurement is further used to adjust the pheromone trails. However, in

practice, we may have unbalanced hardware costs for different resource types. With

this consideration, we might find that we prefer a schedule that requires 3 multipliers

and 4 adders rather than one that needs 4 multipliers and 3 adders, even though both

schedules have the same total number (7) of resources. This issue can be handled in our

algorithm simply by introducing a cost factorck for each resource type and modifying

the quality of the schedule to this weighted resource cost,

Qh = ∑
k

(ckrk) (4.10)

By adjusting theck assigned to different resource types, we can control the preference

in our schedule results.

Multi-cycle Operation

No change is needed for our algorithm to handle multi-cycle operation since it uses

dynamically computed time frames. Also, as presented in Section 4.3.1, the distribution

graph handles multi-cycle operations naturally.

89

Mutually Exclusive Operations

Mutually exclusive operations occur when operations are located in different

branches of the program. This happens inif-then-elseandcasestatements in high-level

languages. With the proposed algorithm, we do not need to addany extra constraints

for handling such operations; thus the approach proposed in[78] is still valid.

Chained Operations

When the total delay of consecutive operations is less than aclock cycle, it is pos-

sible to chain the operations during scheduling. The same techniques used in [78] can

be directly applied within our approach, where chaining is handled by extending the

ASAP and ALAP computation to obtain the time frames for the operations.

Pipelining

For pipelined resources, there exists additional parallelism provided by functional

pipelining. Here optimizing an individual control step becomes inappropriate and lim-

ited. We have to consider scheduling optimization over groups of control steps. We can

solve this by slicing and superimposing the distribution graph in a manner depending

on the latency [78]. Again, this method can also be applied toextend our algorithm to

handle the pipelined scenario.

90

4.3.5 Complexity Analysis

As we can see, the construction of individual schedule by theants, or the body of the

inner loop in the proposed algorithm, is of the complexityO(n2), wheren is the number

of nodes in the DFG under consideration. Thus the total complexity of the algorithm

is determined by the number of antsm and the iteration numberN. Theoretically, the

production ofm andN shall be proportional to the production ofn and the deadline

D. In this case, we have a total complexity ofO(Dn3) which is the same as the un-

optimized version of FDS. However, in practice, we found it is possible to fixm andN

for a large range of applications (see Section 4.6). This means that in practical use the

algorithm can be expected to work withO(n2) complexity for most of the cases.

4.4 ACO for Resource Constrained Scheduling

In this section, we present our algorithm of applying Ant System heuristic, or

more specifically the MAX-MIN Ant System (MMAS) [92], for solving the operation

scheduling problem under resource constraints.

4.4.1 List Scheduling

List scheduling is a commonly used heuristic for solving a variety of scheduling

problems. It is a generalization of the ASAP algorithm with the inclusion of resource

constraints [57]. A list scheduler takes a data flow graph anda priority list of all the

91

nodes in the DFG as input. The list is sorted with decreasing magnitude of priority

assigned to each of the operation. The list scheduler maintains a ready list, i.e. nodes

whose predecessors have already been scheduled. In each iteration, the scheduler scans

the priority list and operations with higher priority are scheduled first. Scheduling an

operator to a control step makes its successor operations ready, which will be added to

the ready list. This process is carried until all of the operations have been scheduled.

When there exist more than one ready nodes sharing the same priority, ties are broken

randomly. A pseudo code implementation of list scheduling is shown in Algorithm 4.

procedure ListScheduling(G,R, L)

input : DFG G(V,E), resource setR, priority list L

output: instruction schedule

1: cycle← 0

2: ReadyList← successors ofstart

3: while nodeend is not scheduleddo

4: for op∈ReadyListin descending priority orderdo

5: if a resource exists forop to startthen

6: scheduleop at timecycle

7: end if

8: updateReadyList

9: end for

10: cycle← cycle+1

11: end while

12: returncycle

Algorithm 4: Resource-Constrained List Scheduling

It is easy to see that list scheduler always generates feasible schedule. Further-

more, it has been shown that a list scheduler is always capable of producing the optimal

92

schedule for resource-constrained instruction scheduling problem if we enumerate the

topological permutations of the DFG nodes with the input priority list [57].

The success of the list scheduler is highly dependent on the priority function [93, 72]

and the structure of the input application (DFG) [57]. One simple, commonly used

priority function assigns the priority inversely proportional to the mobility, i.e., the

greater the mobility the smaller the priority and vice-versa. This would ensure that

operations with large mobility are deferred to later control steps because the number

of control steps into which they could go is greater. Many other priority functions

have been proposed [2, 57, 41, 8]. It is commonly agreed that there is no single good

heuristic for prioritizing the DFG nodes across a range of applications. Our results in

Section 4.6 confirm this.

4.4.2 Algorithm Formulation

Based on this observation, we address the RCS problem in a similar manner to the

ACO meta heuristic framework used to solve the TCS problem. The key idea is to com-

bine ACO meta-heuristic with the traditional list scheduling algorithm, and formulate

the problem as an iterative searching process over the operation list space. Our pro-

posed algorithm dynamically explores different priority functions based on the struc-

ture of the input application. This allows us to adaptively create a priority function that

is suited to the application at hand.

Similar to the algorithm formulated for the TCS problem, each operation, or DFG

93

nodeopi , is associated with a set of pheromone trailsτi j . The difference is that now

each trail indicates the global favorableness of assigningthe i-th operation at thej-th

position in the priority list, wherej = 1, . . . ,n. Since it is valid for the operation to be

assigned to any of the position in the priority list, each pheromone trail will be valid.

This is different from the timing-constrained formulationwhere some trails are fixed

to be zero based on the allowed time frames of the operations.Initially, τi j is set with

some fixed valueτ0.

A pseudo code implementation of our RCS algorithm using MMASis shown as

Algorithm 5, where the pheromone bounding step is indicatedas step 12. For each

iteration,m ants are released and each starts to construct an individualpriority list by

filling the list with one operation per step. Every ant will have memory about the

operations it has already selected in order to guarantee thevalidity of the constructed

list. Upon starting stepj, the ant has already selectedj−1 operations of the DFG. To

fill the j-th position of the list, the ant chooses the next operationopi probabilistically

according to:

pi j =





τi j (t)α·ηβ
i j

∑k(τα
k j(t)·η

β
k j)

if opk is not scheduled yet

0 otherwise

(4.11)

where the eligible operationsopk are those yet to be scheduled. Again,ηik is a local

heuristic for selecting operationopk, andα andβ are parameters to control the relative

influence of the distributed global heuristicτik and local heuristicηik.

The local heuristicη gives the local favorableness of scheduling thei-th operation

at the j-th position of the priority list. In our work, we experimented with different

94

well-known heuristics [72] proposed for operation scheduling.

1. Operation Mobility (OM): The mobility of an operation gives the range for

scheduling the operation. It is computed as the difference between ALAP and

ASAP results. The smaller the mobility, the more urgent the scheduling of the

operation is. When the mobility is zero, the operation is on the critical path.

2. Operation Depth(OD): Operation depth is the length of the longest path in the

DFG from the operation to the sink. It is an obvious measure for the priority of

an operation as it gives number of operations we must pass.

3. Latency Weighted Operation Depth(LWOD): LWOD is computed in a similar

manner as OD, except that the nodes along the path are weighted using their

operation latencies.

4. Successor Number(SN): The motivation of using the number of successors is

the hope that scheduling a node with more successors has a higher possibility

of making other nodes in the DFG free, thus increasing the number of possible

operations to choose from later on.

The second stage of the algorithm, i.e. the result quality assessment and pheromone

trail updating, proceeds similarly as the timing constrained algorithm discussed previ-

ously. The only exception is that now the qualityQh in Equation 4.8 is replaced by the

total latencyLh of the generated scheduling result.

95

procedure MaxMinAntSchedulingRCS(G,R)

input : DFG G(V,E), resource setR

output: operation schedule

1: initialize parameterρ,τi j , pbest,τmax,τmin

2: constructm ants

3: BestSolution← φ
4: while ending condition is not metdo

5: for i = 0 to mdo

6: ant(i) constructs a listL(i) of nodes usingτ andη
7: Qi = ListScheduling(G,R,L(i))

8: if Qi is better than that ofBestSolutionthen

9: BestSolution← L(i)

10: end if

11: end for

12: updateτmax andτmin based on Equation (2.3) and (2.4)

13: update η if needed

14: updateτi j based on (4.7)

15: end while

16: returnBestSolution
Algorithm 5: MMAS for Resource-Constrained Scheduling

96

4.4.3 Refinements

Dynamic Local Heuristics

One important difference between our algorithm and other Ant System algorithms

is that we use a dynamic local heuristic in the resource constrained scheduling process.

It is indicated by step 13 in Algorithm 5. This technique allows better local guidance

to the ants for making the selection in the next iteration. Wewill illustrate this feature

with the use of the operation mobility heuristic.

Typically, the mobility of an operation is computed by usingALAP and ASAP

results. One important input parameter in computing the ALAP result is the estimated

scheduling deadline. This deadline is usually obtained from system specifications or

other quick heuristic methods such as a list scheduler. It isclear that more accurate

deadline estimation will yield tighter mobility range thusbetter local guidance.

Based on the above observation, we use dynamically computedmobility as the

local heuristic in our algorithm. As the algorithm proceeds, whenever a better schedule

is achieved, we use the newly obtained scheduling length as the deadline for computing

the ALAP result for the next iteration. That is, for iteration t, the local heuristic for

operationi is computed as (see section 2.5 for definitions forf andSgb):

ηi(t) =
1

ALAP(f (Sgb(t−1)), i)−ASAP(i)+1
(4.12)

97

Topologically Sorted Lists

In the above algorithm, the ants construct a priority list using the same traversing

method that is used in the TSP formulation [28]. In fact, thisturns out to be a naı̈ve

way. To illustrate this, one just need to notice that it will yield a search space of totally

n! possible lists, which is simply all the permutations ofn operations. However, we

know that the resultant schedules of the list scheduler are only a small portion of these

lists. More precisely, they are all the possible permutations of the operations that are

topologically sorted based on the dependency constraints imposed by the DFG. By

leveraging this application dependent feature, it is possible for us to greatly reduce the

search space. For instance, using this technique on a simple11 node example [72]

reduces the possible number of orderings from 11! to 59400, or 0.15%. Though it

quickly becomes prohibitive to precisely compute such reduction for more complex

graphs1, it is generally significant. By adopting this technique, inthe final version

of our algorithm, the ant traverses the DFG in a similar manner to the list scheduling

process and fills operation list one by one. At each step, the ant will select an operation

based on Equation 4.11 but only from all the ready operations, that is, from all the

operations whose predecessors have all been scheduled.

1We tried to compute the search space reduction for Figure 4.5using GenLE [81]. It failed to produce
any result within 100 computer hours.

98

4.4.4 Extensions

So far, our discussion on the operation scheduling problemshas been limited to the

thehomogeneouscase. In other words, each operation is mapped to a unique resource

type, though a resource type might be able to handle different operations. In practice,

this means that aresource allocationstep needs to precede the operation scheduling

process. We often need to handle theheterogeneouscase, where one operation can be

executed with different resource types. For example, a system might have two different

realizations of multiplier, one is faster but more expensive while the other is slower but

cheaper. Both are capable of executing a multiplication operation. Our challenge is to

determine how to effectively use the resources to achieve the best time performance. In

this situation, separating the resource allocation step from operation scheduling may be

not a favorable approach, as the prior step could greatly limit the optimization oppor-

tunity for operation scheduling. This motivates us to consider the resource allocation

issue within the operation scheduling problem.

It is possible to address this problem using ILP by extendingthe ILP formulation

for the homogenous case. The basic idea is to introduce a new set of parametersmik

which can take value 0 or 1, and describe the compatibility between operationopi and

resource typek. A set of new constraints are needed to make sure that only onetype of

resources among all those that are capable of processingopi is used, i.e.

∑
k

mik = 1 wherei = 1, . . . ,n (4.13)

We can see it makes the ILP problem even more intractable.

99

However, this extra difficulty does not block the list scheduler or the proposed

MMAS approach from working. The basic algorithm could be carried out with almost

no changes except for the list construction. The major problem is, when there exists

alternative resource types for one specific operation, estimating a certain attribute of

the operation becomes more challenging. For example, with different execution de-

lay on capable resource types, the mobility of the operationis variable. This has been

studied in previous research, e.g. [94], where the average latency over a set of het-

erogenous resources is used to carry the scheduling task. Inour work, we simply take

the pessimistic approach by applying the longest executionlatency amongst the alter-

native resources in computing such attributes. With this extension, our algorithm can

be applied to heterogenous cases.

4.4.5 Complexity Analysis

List scheduling is a two step process. In the first step, a priority list is built. The

second step takesn steps to solve the scheduling problem since it is a constructive

method without backtracking. For different heuristics, the complexity of the first step is

different. When operation mobility, operation depth and latency weight operation depth

are used, it takesO(n2) steps to build the priority list since a depth-first or breadth-first

graph transversal is involved. When the successor node number is adopted as the list

construction heuristic, it only takesn steps. Thus the complexities for these methods

areO(n2) or O(n) respectively.

100

The force-directed resource constrained scheduling method is different. Though

it is also a constructive method without backtracking, we need to compute the force

of each operation at every step since the total latency is dynamically increased based

on whether there is enough resources to handle the ready operations. Thus the FDS

method hasO(n3) complexity.

The complexity of the proposed MMAS solution is determined mainly by the com-

plexity of constructing individual scheduling solutions,the number of antsm and the

total iterationN in every run. In order to generate a schedule solution, each ant needs to

first loop throughn operations and for each operation determine its location, which has

a complexity ofO(n). This list is then provided to a list scheduler with a complexity of

O(n) or O(n2). This makes overall complexityO(n2). Obviously, ifmN is proportional

to n, we will have one order higher complexity than the corresponding list scheduling

approach. However, based on our experience, it is possible to fix such factor for a large

set of practical cases so that the complexity of the MMAS solution is the same as the

list scheduling approach.

4.5 ExpressDFG Benchmarks

In order to test and evaluate our algorithms, we have constructed a comprehensive

set of benchmarks named asExpressDFG. These benchmarks are taken from one of two

sources:

• Popular benchmarks used in previous literature;

101

• Real-life examples generated and selected from the MediaBench suite [59].

The benefit of having classic samples is that they provide a direct comparison be-

tween results generated by our algorithm and that from previously published methods.

This is especially helpful when some of the benchmarks have known optimal solutions.

In our final testing benchmark set, seven samples widely usedin operation scheduling

studies are included. These samples focus mainly on frequently used numeric calcula-

tions performed by different applications. They are:

1. ARF: an implementation of anAuto Regression Filter.

2. EWF: an implementation of anElliptic Wave Filter.

3. FIR1 and FIR2: two versions of aFinite Impulse Response Filter).

4. COSINE1 and COSINE2: two implementations for a one dimensional 8-point

fast discrete cosine transform, where COSINE1 assumes constant coefficients

while the coefficients in COSINE2 are given as inputs.

5. HAL: an iterative solution of a second order differentialequation. This perhaps

is the most popularly used example in text books which originally appeared in

[78].

However, these samples are typically small to medium in size, and are considered

somewhat old. To be representative, it is necessary to create a more comprehensive set

with benchmarks of different sizes and complexities. Such benchmarks shall aim to:

• Provide real-life testing cases from real-life applications;

102

• Provide more up-to-date testing cases from modern applications;

• Provide challenging samples for operation scheduling algorithms with regards to

larger number of operations, higher level of parallelism and data dependency;

• Provide a wide range of synthesis problems to test the algorithms’ scalability;

For this purpose, we have investigated the MediaBench suite, which contains a

wide range of complete applications for image processing, communications and DSP

applications. We analyzed these applications using the SUIF [4] and Machine SUIF

[89] tools, and over 14,000 DFGs were extracted as preliminary candidates for our

benchmark set. After careful study, thirteen DFG samples were selected from four

MediaBench applications. These applications are:

JPEG JPEG is a lossy compression technique for digital images.Thecjpegapplica-

tion performs compression, while thedjpegapplication decompresses the JPEG

image.

MPEG2 MPEG2 is a digital video compression standard, commonly used for high

quality video compression including DVD compression. Thempeg2encapplica-

tion encodes the video, while thempeg2decapplication decodes the video.

EPIC EPIC stands for Efficient Pyramid Image Coder and is another image com-

pression utility.

MESA The Mesa project is a software 3-D graphics package. The primary applica-

tion that we were concerned with was thetexgenutility, which generates a texture

mapped version of the Utah teapot.

103

From the JPEG project, four basic blocks were selected. The first came from the

write bmpheaderfunction. The basic block was selected for its high level of par-

allelism. The second basic block came from theh2v2smoothdownsamplefunction.

This function has 51 nodes for only one store operation at theend. The store is depen-

dent on all but two of the operations, making it an interesting problem for scheduling.

The third basic block was selected from thejpeg fdct islow function. The function per-

forms an integer forward discrete cosine transform (DCT) using a slow-but-accurate

algorithm and was chosen for its popularity amongst DSP applications. The final block

was selected from thejpeg idct ifast function. Like the forward DCT, this was selected

for its commonality. However, this implementation is a fast, and much less accurate,

version of the inverse DCT.

Two basic blocks were selected from the MPEG section. The first came from the

idctcol function in thempeg2decapplication. The function implements another version

of the inverse DCT algorithm. In this case, the function is part of a 2-D inverse DCT,

while the inverse DCT from the JPEG application is only 1-D. The large size of the DFG

and complicated dependency structure provide a good test for scheduling algorithm.

The second comes from themotionvectorsfunction in thempeg2encfunction. The

basic block only contains 42 nodes and 38 edges, making it oneof the smaller blocks

selected from MediaBench, ensuring that the benchmark suite provides a wide range of

synthesis problems to test scalability.

104

The EPIC project supplied one basic block. It came from thecollapsepyr function,

which is a quadrature mirror filter bank. The block was selected for its medium size

and common use in DSP applications.

 0

 5

 10

 15

 20

 25

 0 10 20 30 40 50 60 70 80 90

nu
m

be
r

of
 D

F
G

s
(%

)

DFG size
(99.3% of the DFGs are of a size smaller than 90)

distribution of DFG size for MediaBench
(collected over epic, g721, jpeg, mesa, mpeg2dec, and mpeg2enc packages)

Figure 4.3: Distribution of DFG size for MediaBench

From the MESA application, six basic blocks were selected tobe added to the

benchmark suite. Theinvert matrix generalandmatmulfunctions were selected be-

cause they are general functions, not specific to the MESA application. Matrix oper-

ations, such as inversion and multiplication, are common inDSP applications where

many filters are merely matrix multiplications with a set of coefficients. The next block

selected came from thesmoothcolor z trianglefunction. The basic block is essentially

four parallel computations without data dependencies, making it an ideal addition to the

benchmark suite. The fourth benchmark is from thehorner beziermethod. With only

105

18 nodes, the small size helps add variety to the benchmarks.The fifth block comes

from theinterpolateauxfunction. The function performs four linear interpolationcal-

culations, which can easily be run in parallel if the hardware is available. The final

benchmark is from thefeedbackpointsfunction, which calculates texture coordinates

for a feedback buffer.

In order to justify the difficulty and representativeness ofour testing cases, we ana-

lyze the distribution of the sizes of DFGs in practical software programs. Our analysis

covers theepic, jpeg, g721, mpeg2enc, mpeg2dec, andmesapackages. The result is

shown in Figure 4.3. We find that the maximum size of a DFG can beas big as 632.

However, the majority of the DFGs are much smaller. In fact, more than 99.3% DFGs

have fewer than 90 nodes. Moreover, the very largest ones areof little interest with re-

spect to system performance. They are typically related with system initialization and

are executed only once.

Table 4.1 lists all twenty benchmarks that were included in our final benchmark set.

Together with the names of the various functions where the basic blocks originated are

the number of nodes, number of edges and operation depth (assuming unit delay for

every operation) of the DFG. The data, including related statistics, DFG graphs and

source code for the all testing benchmarks, is available online [33].

106

Benchmark Name # Nodes # Edges OD

HAL 11 8 4

hornerbezier 18 16 8

ARF 28 30 8

motion vectors 32 29 6

EWF 34 47 14

FIR2 40 39 11

FIR1 44 43 11

h2v2 smoothdownsample 51 52 16

feedbackpoints 53 50 7

collapsepyr 56 73 7

COSINE1 66 76 8

COSINE2 82 91 8

write bmp header 106 88 7

interpolateaux 108 104 8

matmul 109 116 9

idctcol 114 164 16

jpeg idct ifast 122 162 14

jpeg fdct islow 134 169 13

smoothcolor z triangle 197 196 11

invert matrix general 333 354 11

Table 4.1: ExpressDFG benchmark suite

(Benchmarks with † are extracted from MediaBench.)

(Benchmark node and edge count with the operation depth (OD)assuming unit delay.)

107

4.6 Experimental Results

4.6.1 Time Constrained Scheduling

In order to evaluate the quality of our proposed algorithm for timing constrained

scheduling problem, we compare its results with that obtained by the widely used force-

directed scheduling method. For all testing benchmarks, operations are allocated on two

types of computing resources, namely MUL and ALU, where MUL is capable of han-

dling multiplication and division, and ALU is used for otheroperations such as addition

and subtraction. Furthermore, we define the operations running on MUL to take two

clock cycles and the ALU operations take one. This definitelyis a simplified case from

reality. However, it is a close enough approximation and does not change the generality

of the results. Other choices can easily be implemented within our framework.

Since there is no widely distributed and recognized FDS implementation, we im-

plemented our own. The implementation is based on [78] and has all the applicable

refinements proposed in the paper, including multi-cycle operation support, resource

preference control, and look-ahead using second order of displacement in force com-

putation. Actually, based on our experience, the look-ahead function for FDS is very

critical. Without invoking this mechanism, basic FDS provides poor scheduling results

even for small sized examples. In Table 4.2, we show the effect of look-ahead for the

HAL benchmark originally presented in [78], which has only 11 operations and 8 data

dependencies. Because of this, in our experiments, the look-ahead function is always

108

used to allow FDS to provide better results.

deadline w/t look-ahead w/ look-ahead

9 (2 1) (2 1)

10 (2 1) (2 1)

11 (2 1) (2 1)

12 (3 1) (2 1)

13 (3 1) (1 1)

14 (3 1) (1 1)

Table 4.2: Effect of Look-ahead Mechanism in FDS

(Result shown in MUL/ALU number pair. Deadline is in cycles.)

With the assigned resource/operation mapping, ASAP is firstperformed to find the

critical path delayLc. We then set our predefined deadline range to be[Lc,2Lc], i.e.

from the critical path delay to 2 times of this delay. This results 263 testing cases in

total. For each delay, we run FDS first to obtain its scheduling result. Following this, the

proposed MMAS algorithm is executed 5 times to obtain enoughdata for performance

evaluation. We report the FDS result quality, the average and best result quality for the

proposed algorithm and the standard deviation for these results. The execution time

information for both algorithms is also reported.

We have implemented our MMAS formulation in C for the TCS problem, with the

refinements discussed in Section 4.3. The evaporation rateρ is configured to be 0.98.

The scaling parameters for global and local heuristics are set to beα = β = 1 and deliv-

ery rateQ = 1. These parameters are not changed over the tests. We also experimented

with different ant numberm and the allowed iteration countN. For example, setm to

109

be proportional to the average branching factor of the DFG under study andN to be

proportional to the total operation number. However, it is found that there seems to

exist a fixed value pair form andN which works well across the wide range of testing

samples in our benchmark. In our final settings, we setm to be 10, andN to be 150 for

all the timing constrained scheduling experiments.

Due to the large amount of data, we won’t be able to report testing results for

all 263 cases in details. Table 4.3 compares the testing results for idctcol and in-

vert matrix general, two of the biggest samples. In this table, we provide a side by

side comparison between FDS and our proposed method. The scheduling results are

reported as MUL/ALU number pair required by the obtained scheduling. For MMAS

method, we report both the average performance and the best performance in the 5 runs

for each testing case, together with the saving percentage.The saving is measured by

the reduction of computing resources. In order to keep the evaluation general and ob-

jective, we use the total count of resources as the quality metrics without considering

their individual cost factors.

Besides absolute quality of the results, one difference between FDS and the pro-

posed method is that our method is relatively more stable. Inour experiments, it is

observed that the FDS approach can provide worse quality results as the deadline is

relaxed. Using theidctcol in Table 4.3 as an example, FDS provides drastically worse

results for deadlines ranging from 25 to 30 though it is able to reach decent scheduling

qualities for deadline from 19 to 24. The same problem occursfor deadlines between

110

Name (size) Deadline FDS Average Savings Best Savings σ

19 (6 8) (5.0 6.0) 21.43% (5 6) 21.43% 0.000

20 (5 7) (4.4 6.0) 13.33% (4 6) 16.67% 0.219

21 (4 7) (4.2 5.8) 9.09% (4 6) 9.09% 0.000

22 (4 7) (4.2 5.4) 12.73% (4 5) 18.18% 0.219

23 (4 7) (4.0 5.4) 14.55% (4 5) 18.18% 0.219

24 (4 7) (3.6 5.2) 20.00% (3 5) 27.27% 0.335

25 (8 8) (3.8 5.0) 45.00% (3 5) 50.00% 0.179

26 (8 8) (3.4 5.0) 47.50% (3 5) 50.00% 0.219

27 (8 8) (3.0 5.0) 50.00% (3 5) 50.00% 0.00

28 (8 8) (3.0 4.6) 52.50% (3 4) 56.25% 0.219

idctcol 29 (8 8) (3.0 4.4) 53.75% (3 4) 56.25% 0.219

(114 164) 30 (8 8) (3.0 4.6) 52.50% (3 4) 56.25% 0.219

31 (4 6) (3.0 4.6) 24.00% (3 4) 30.00% 0.219

32 (4 5) (3.0 4.0) 22.22% (3 4) 22.22% 0.000

33 (4 5) (2.8 4.0) 24.44% (2 4) 33.33% 0.179

34 (4 5) (3.0 4.0) 22.22% (3 4) 22.22% 0.000

35 (4 5) (3.0 4.0) 22.22% (3 4) 22.22% 0.000

36 (4 6) (3.0 3.8) 32.00% (3 3) 40.00% 0.179

37 (4 6) (2.6 3.8) 36.00% (3 3) 40.00% 0.219

38 (4 6) (2.8 3.4) 38.00% (3 3) 40.00% 0.179

15 (24 23) (26.0 22.0) -2.13% (25 22) 0.00% 0.283

16 (22 19) (23.8 19.0) -4.39% (23 19) -2.44% 0.179

17 (19 17) (21.8 17.4) -8.89% (21 17) -5.56% 0.335

18 (18 16) (20.4 16.2) -7.65% (20 16) -5.88% 0.219

19 (17 16) (19.2 16.0) -6.67% (19 15) -3.03% 0.335

20 (17 16) (18.2 13.4) 4.24% (18 13) 6.06% 0.358

invert matrix general 21 (16 16) (17.2 12.8) 6.25% (17 13) 6.25% 0.000

(333 354) 22 (16 16) (16.4 12.2) 10.63% (16 12) 12.50% 0.358

23 (16 16) (16.0 11.8) 13.12% (16 11) 15.62% 0.179

24 (16 16) (15.4 11.2) 16.87% (15 11) 18.75% 0.219

25 (16 16) (14.4 10.8) 21.25% (14 11) 21.88% 0.179

26 (16 16) (14.2 10.2) 23.75% (13 10) 28.12% 0.358

27 (16 16) (13.8 10.0) 25.62% (13 10) 28.12% 0.179

28 (16 16) (13.4 10.2) 26.25% (13 10) 28.12% 0.219

29 (16 16) (13.0 9.4) 30.00% (13 9) 31.25% 0.219

30 (16 16) (12.6 9.6) 30.63% (13 9) 31.25% 0.179

Table 4.3: Partial detailed results for Timing-Constrained Scheduling

(Size is given as DFG’s node/edge number pair. Virtual nodesand edges are not counted.

Average and standard deviationσ are computed over 5 runs. Saving is computed based on

FDS results. No weight applied.)

111

Name Size Deadline Avg. Savings (SA) Best Savings (SA) Avg. σ (SA)

HAL 11/8 (6 - 12) 7.1% (7.1%) 7.1% (7.1%) 0.000 (0.000)

hornerbeziersurf 18/16 (11 - 22) 9.9% (-4.6%) 13.2% (2.1%) 0.015 (0.051)

ARF 28/30 (11 - 22) 12.4% (-1.2%) 16.9% (3.1%) 0.093 (0.099)

motion vectors 32/29 (7 - 14) 13.1% (-3.4%) 16.0% (2.8%) 0.072 (0.177)

EWF 34/47 (17 - 34) 11.5% (-4.4%) 18.1% (4.7%) 0.081 (0.136)

FIR2 40/39 (12 - 24) 16.8% (-15.7%) 22.8% (-1.9%) 0.106 (0.299)

FIR1 44/43 (12 - 24) 15.2% (-7.7%) 18.0% (-3.3%) 0.047 (0.116)

h2v2 smoothdownsample 51/52 (17 - 34) 19.3% (7.6%) 21.3% (11.0%) 0.042 (0.088)

feedbackpoints 53/50 (11 - 22) 5.9% (-12.8%) 9.2% (-6.4%) 0.103 (0.196)

collapsepyr 56/73 (8 - 16) 18.3% (4.6%) 18.9% (9.6%) 0.044 (0.195)

COSINE1 66/76 (10 - 20) 21.5% (7.4%) 25.9% (14.1%) 0.150 (0.349)

COSINE2 82/91 (10 - 20) 5.6% (-14.8%) 12.0% (-7.3%) 0.232 (0.342)

write bmp header 106/88 (8 - 16) 0.9% (-5.3%) 1.0% (-3.4%) 0.064 (0.093)

interpolateaux 108/104 (10 - 20) 0.2% (-36.5%) 2.0% (-27.9%) 0.109 (0.407)

matmul 109/116 (11 - 22) 3.7% (-30.8%) 5.1% (-21.4%) 0.088 (0.363)

idctcol 114/164 (19 - 38) 30.7% (12.6%) 34.0% (17.5%) 0.151 (0.231)

jpeg idct ifast 122/162 (17 - 34) 50.3% (36.9%) 52.1% (41.8%) 0.147 (0.336)

jpeg fdct islow 134/169 (16 - 32) 31.4% (7.5%) 34.2% (13.0%) 0.171 (0.335)

smoothcolor z triangle 197/196 (15 - 30) 7.3% (-18.7%) 9.2% (-12.0%) 0.136 (0.472)

invert matrix general 333/354 (15 - 30) 11.2% (-29.4%) 13.2% (-22.9%) 0.237 (0.743)

Total Avg. 16.4% (-5.1%) 19.5% (1.0%) 0.104 (0.251)

Table 4.4: Result Summary for Timing-Constrained Scheduling

Data in parenthesis shows the results obtained using Simulated Annealing.

Deadline shows the tested range. Averageσ is computed over the tested range.

Saving is computed based on FDS results. No weight applied.

112

36 and 38. One possible reason is that as the deadline is extended, the time frame

of each operation is also extended, which makes the force computation more likely to

clash with similar values. Due to the lack of backtracking and good look-ahead capa-

bility, an early mistake would lead to inferior results. On the other hand, our proposed

algorithm robustly generates monotonically non-increasing results with fewer resource

requirements as the deadline increases.

Table 4.4 summarizes the testing results for all of the benchmarks. We present

the average and the best results for each testing benchmark,its tested deadline range,

and the average standard deviations. The table is arranged in the increasing order of the

complexity of the DFGs. The average result quality generated by our algorithm is better

than or equal to the FDS results in 258 out of 263 cases. Among them, for 192 testing

cases (or 73% of the cases) our MMAS method outperforms the FDS method. There

are only five cases where our approach has worse average quality results. They all

happened on theinvert matrix generalbenchmark and are listed in Table 4.3, indicated

by lines with the italic bold fonts. On average, as shown in Table 4.4, we can expect a

16.4% performance improvement over FDS. If only considering the best results among

the 5 runs for each testing case, we achieve a 19.5% resource reduction averaged over

all tested samples. The most outstanding results provided by our proposed method

achieve a 75% resource reduction compared with FDS. These results are obtained on a

few deadlines for thejpeg idct ifast benchmark.

From Table 4.4, it is easy to see that for all the examples, MMAS based operation

113

scheduling achieves better or much better results. Our approach seems to have much

stronger capability in robustly finding better results for different testing cases. Further-

more, it scales very well over different DFG sizes and complexities. Another aspect

of scalability is the pre-defined deadline. Based on the results presented in Table 4.3

and Table 4.4, the proposed algorithm also demonstrates better scalability over this

parameter.

 0

 10

 20

 30

 40

 50

 0 50 100 150 200 250 300 350
 0

 100

 200

 300

 400

ra
tio

 M
M

A
S

/F
D

S

ex
ce

ut
io

n
tim

e
in

 s
ec

on
ds

size of DFG

A: FDS
B: Proposed Algorithm

C: ratio

Figure 4.4: Execution Time for Timing-Constrained Scheduling.

(Ratio is MMAS time / FDS time)

All of the experimental results are obtained on a Linux box with a 2GHz CPU.

Figure 4.4 diagrams the execution time comparison between the presented algorithm

and FDS. Curve A and B shows the run time for FDS and the proposed method (re-

spectively), where we use the average runtime for our MMAS solutions over 5 runs.

114

As discussed before, since we use fixed ant numberm and iteration limitN in our ex-

periments to make the algorithm simpler, there exists a big gap between the execution

times for the smaller sized cases. For example, for the HAL example, which only has

11 operations, the execution time of FDS is 0.014 seconds while our method takes 0.66

seconds. This translates into a ratio of 47. However, as the size of the problem gets

bigger, this ratio drops quickly. For the biggest casesinvert matrix genera, FDS takes

270.6 seconds while our method spends about 411.7 seconds, which makes the ratio

1.5. To summarize, for smaller cases, our algorithm does have relatively larger execu-

tion times but the absolute run time is still very short. For the HAL example, it only

takes a fraction of a second. For bigger cases, the proposed method has a runtime at the

same scale as FDS. This makes our algorithm practical.

In Figure 4.4, we do see some spikes in the ratio curve. We attribute this to two

main reasons. First, the recorded execution time is based onsystem time and it is

relatively more unreliable when the execution time is small. Secondly but perhaps

more important, the timing performance of both algorithms is not only determined by

the DFG node count but also dependent on the predefined dependencies in the DFGs

and the deadlineD. This will introduce variance when the curves are drawn against the

node count.

115

4.6.2 Resource Constrained Scheduling

We have implemented the proposed MMAS-based resource-constrained scheduling

algorithm and compared its performance with the popularly used list scheduling and

force-directed scheduling algorithms.

For each of the benchmark samples, we run the proposed algorithm with different

choices of local heuristics. For each choice, we also perform 5 runs to obtain enough

statistics for evaluating the stability of the algorithm. Again we fixed the number of

ants per iteration 10 and in each run we allow 100 iterations.Other parameters are

also the same as those used in the timing constrained problem. The best schedule

latency is reported at the end of each run and then the averagevalue is reported as the

performance for the corresponding setting. Two different experiments are conducted

for resource constrained scheduling – the homogenous case and the heterogenous case.

For the homogenous case, resource allocation is performed before the operation

scheduling. Each operation is mapped to a unique resource type. In other words, there

is no ambiguity on which resource the operation shall be handled during the scheduling

step. In this experiment, similar to the timing constrainedcase, two types of resources

(MUL/ALU) are allowed. The number of each resource type is predefined after making

sure they do not make the experiment trivial (for example, ifwe are too generous, then

the problem simplifies to an ASAP problem).

116

Name Size Resources FDS List Scheduling MMAS(average over 5 runs) SA

OM OD LWOD SN OM OD LWOD SN
(avg.

10 runs)

HAL (8/11) (2 1) 8 10 8 8 8 8.0 8.0 8.0 8.0 8.0

hornerbeziersurf (16/18) (2 1) 12 16 12 13 13 12.0 12.0 12.0 12.0 12.4

ARF (30/28) (3 1) 18 19 16 18 18 16.0 16.0 16.0 16.0 17.2

motion vectors (29/32) (3 4) 12 15 12 12 14 12.0 12.0 12.0 12.0 13.3

EWF (47/34) (1 2) 21 22 21 21 22 21.0 21.0 21.0 21.0 21.3

FIR2 (39/40) (2 3) 17 19 18 17 15 17.0 16.8 17.0 17.0 18.5

FIR1 (43/44) (2 3) 16 22 22 21 16 16.0 16.0 16.0 16.0 21.1

h2v2 smoothdownsample (52/51) (1 3) 23 28 23 23 22 22.4 22.8 22.8 22.8 23.6

feedbackpoints (50/53) (3 3) 16 20 14 19 14 14.4 14.2 14.6 14.6 16.6

collapsepyr (73/56) (3 5) 11 12 11 11 11 11.0 11.0 11.0 11.0 11.3

COSINE1 (76/66) (4 5) 16 18 16 17 16 14.0 14.0 14.0 14.0 15.2

COSINE2 (91/82) (5 8) 14 18 14 17 13 12.4 12.4 12.6 12.8 14.9

write bmp header (88/106) (1 9) 12 17 12 12 12 12.8 12.6 12.8 12.4 13.4

interpolateaux (104/108) (9 8) 13 16 12 16 16 11.0 11.8 11.0 11.8 15.6

matmul (116/109) (9 8) 15 14 13 14 14 13.6 13.8 13.8 13.8 14.7

idctcol (164/114) (5 6) 21 26 21 21 21 20.6 19.8 20.2 20.0 24.3

jpeg idct ifast (162/122) (10 9) 19 21 20 19 19 19.0 19.0 19.0 19.0 20.8

jpeg fdct islow (169/134) (5 7) 21 28 22 22 21 22.0 22.0 21.8 21.8 23.8

smoothcolor z triangle (196/197) (8 9) 24 25 25 23 24 24.0 24.0 24.0 24.0 25.5

invert matrix general (354/333) (15 11) 26 28 28 25 25 24.0 24.2 24.2 24.2 27.1

Table 4.5: Result Summary for Homogenous Resource-Constrained Scheduling

(Heuristic Labels: OM=Operation Mobility OD=Operation Depth, LWOD=Latency Weighted Operation Depth, SN=SuccessorNumber)

1
1

7

Table 4.5 shows the testing results for the homogenous case.The best results for

each case are shown in bold. Compared with a variety of list scheduling approaches and

the force-directed scheduling method, the proposed algorithm generates better results

consistently over all testing cases, which is demonstratedby the number of times that

it provides the best results for the tested cases. This is especially true for the case when

operation depth (OD) is used as the local heuristic, where wefind the best results in 14

cases amongst 20 tested benchmarks. For other traditional methods, FDS generates the

most hits (10 times) for best results, which is still less than the worst case of MMAS (11

times). For some of the testing samples, our method providessignificant improvement

on the schedule latency. The biggest saving achieved is 22%.This is obtained for the

COSINE2 benchmark when operation mobility (OM) is used as the local heuristic for

our algorithm and also as the heuristic for constructing thepriority list for the traditional

list scheduler. For cases that our algorithm fails to provide the best solution, the quality

of its results is also much closer to the best than other methods.

Besides the absolute schedule latency, another important aspect of the quality of a

scheduling algorithm is its stability over different inputapplications. As indicated in

Section 4.2, the performance of traditional list schedulerheavily depends on the input

application. This is echoed by the data in Table 4.5. Meantime, it is easy to observe that

the proposed algorithm is much less sensitive to the choice of different local heuristics

and input applications. This is evidenced by the fact that the standard deviation of the

results achieved by the new algorithm is much smaller than that of the traditional list

118

Benchmark Resources CPLEX Force

List Scheduling MMAS(average over 5 runs)

(nodes/edges) (latency/runtime) DirectedOM OD LWOD SN OM OD LWOD SN

HAL(21/25) 1a, 1fm, 1m,

3i, 3o

8 / 32 8 8 8 9 8 8 8 8 8

ARF(28/30) 2a, 1fm, 2m 11 / 22 11 11 13 13 13 11 11 11 11

EWF(34/47) 1a, 1fm, 1m 27 / 24000 28 28 31 31 28 27.2 27.2 27 27.2

FIR1(40/39) 2a, 2m, 3i, 3o 13 / 232 19 19 19 19 18 17.2 17.2 17 17.8

FIR2(44/43) 1a, 1fm, 1m,

3i, 3o

14 / 11560 19 19 21 21 21 16.2 16.4 16.2 17

COSINE1(66/76) 2a,2m, 1fm, 3i,

3o

† 18 19 20 18 18 17.4 18.2 17.6 17.6

COSINE2(82/91) 2a,2m, 1fm, 3i,

3o

† 23 23 23 23 23 21.2 21.2 21.2 21.2

Table 4.6: Result Summary for Heterogenous Resource-Constrained Scheduling

Schedule latency is in cycles; Runtime is in seconds; † indicates CPLEX failed to provide final result before running out of memory.

(Resource Labels: a=alu, fm=faster multiplier, m=mutiplier, i=input, o=output)

(Heuristic Labels: OM=Operation Mobility OD=Operation Depth, LWOD=Latency Weighted Operation Depth, SN=SuccessorNumber)

1
1

9

scheduler. Based on the data shown in Table 4.5, the average standard deviation for list

scheduling over all the benchmarks and different heuristicchoices is 1.2, while for the

MMAS algorithm it is only 0.19. In other words, we can expect to achieve high quality

scheduling results much more stably on different application DFGs regardless of the

choice of local heuristic. This is a great attribute desiredin practice.

One possible explanation for the above advantage is the different ways how the

scheduling heuristics are used by list scheduler and the proposed algorithm. In list

scheduling, the heuristics are used in a greedy manner to determine the order of the op-

erations. Furthermore, the schedule of the operations is done all at once. Differently, in

the proposed algorithm, local heuristics are used stochastically and combined with the

pheromone values to determine the operations’ order. This makes the solution explo-

ration more balanced. Another fundamental difference is that the proposed algorithm

is an iterative process. In this process, the pheromone value acts as an indirect feed-

back and tries to reflect the quality of a potential componentbased on the evaluations

of historical solutions that contain this component. It introduces a way to integrate

global assessments into the scheduling process, which is missing in the traditional list

or force-directed scheduling.

In the second experiment, heterogeneous computing units are allowed, i.e. one type

of operation can be performed by different types of resources. For example, multipli-

cation can be performed by either a faster multiplier or a regular one. Furthermore,

multiple same type units are also allowed. For example, we may have 3 faster multipli-

120

ers and 2 regular ones.

We conduct the heterogenous experiments with the same configuration as for the

homogenous case. Moreover, to better assess the quality of our algorithm, the same

heterogenous RCS tasks are also formulated as integer linear programming problems

and then optimally solved using CPLEX. Since the ILP solution is time consuming to

obtain, our heterogenous tests are only done for the classicsamples in our benchmark

set.

Table 4.6 summarizes our heterogenous experiment results.Here an extended HAL

benchmark is used which includes extra memory access operations. Compared with

a variety of list scheduling approaches and the force-directed scheduling method, the

proposed algorithm generates better results consistentlyover all testing cases. The

biggest saving achieved is 23%. This is obtained for the FIR2benchmark when the

latency weighted operation depth (LWOD) is used as the localheuristic. Similar to the

homogenous case, our algorithm outperforms other methods in regards to consistently

generating high-quality results. In Table 4.6, the averagestandard deviation for list

scheduler over all the benchmarks and different heuristic choices is 0.8128, while that

for the MMAS algorithm is only 0.1673.

Though the results of force-directed scheduler generally outperform the list sched-

uler, our algorithm achieves even better results. On average, comparing with the force-

directed approach, our algorithm provides a 6.2% performance enhancement for the

testing cases, while performance improvement for individual test sample can be as

121

much as 14.7%.

Finally, compared to the optimal scheduling results computed by using the integer

linear programming model, the results generated by the proposed algorithm are much

closer to the optimal than those provided by the list scheduling heuristics and the force-

directed approach. For all the benchmarks with known optima, our algorithm improves

the average schedule latency by 44% comparing with the list scheduling heuristics.

For the larger size DFGs such as COSINE1 and COSINE2, CPLEX fails to generate

optimal results after more than 10 hours of execution on a SPARC workstation with

a 440MHz CPU and 384MByte memory. In fact, CPLEX crashes for these two cases

because of running out of memory. For COSINE1, CPLEX does provide a intermediate

sub-optimal solution of 18 cycles before it crashes. This result is worse than the best

result found by our proposed algorithm.

Experiment results of our algorithm are obtained on a Linux box with a 2GHz CPU,

as well as those for list scheduling and the force-directed scheduling. For all the bench-

marks, the runtime of the proposed algorithm ranges from 0.1to 1.76 seconds. List

scheduling is always the fastest due to its one-pass nature.It typically finishes within a

small fraction of a second. The force-directed scheduler runs much slower than the list

scheduler because its complexity is cubic in the number of operations. For small testing

cases, it is typically faster than our algorithm as we set a fixed iteration number for the

ants to explore the search space. However, as the problem size grows, the force-directed

scheduler has longer runtime than our algorithm. In fact, for COSINE1 and COSINE2,

122

root

*
2

*
3

*

4

*

5

*
6

*
7

*8 *9

1

end

+
10

+
11

+
12

+
13

+28

+
14

+
15

+
29

*

16

*
18

*
17

*
19

+
20

+
21

*

22

*
24

*

23

*
25

+
26

+
27

30

Figure 4.5: Data Flow Graph of AR Filter.

(The number by the node is the index assigned for the operation.)

the force-directed approach takes 12.7% and 21.2% more execution time respectively.

The evolutionary effect on the global heuristicsτi j is illustrated in Figure 4.6. It

plots the pheromone values for the ARF testing sample after 100 iterations of the pro-

posed algorithm. The x-axis is the index of operation node inthe DFG (shown in Fig-

ure 4.5), and the y-axis is the order index in the priority list passed to the list scheduler.

There exist totally 30 nodes with node 1 and node 30 as the dummy source and sink

of the DFG. Each dot in the diagram indicates the strength of the resultant pheromone

trails for assigning corresponding order to a certain operation – the bigger the size of

123

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
node

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

or
de

r

Figure 4.6: Pheromone Heuristic Distribution for ARF

the dot, the stronger the value of the pheromone.

It is clearly seen from Figure 4.6 that there are a few strong pheromone trails while

the remaining pheromone trails are very weak. This might be explained by the strong

symmetric structure of the ARF DFG and the special implementation in our algorithm

of considering operation list only with topologically sorted order. It is also interesting

to notice that though a good amount of operations have a limited few alternative “good”

positions (such as operation 6 and 26), for some of the operations the pheromone heuris-

tics are strong enough to lock their positions. For example,according to its pheromone

distribution, operation 10 shall be placed as the 28-th itemin the list and there is no

other competitive position for its placement. After careful evaluation, this ordering

preference cannot be trivially obtained by constructing priority lists with any of the

124

popularly used heuristics. This shows that the proposed algorithm has the possibility to

discover better orderings which may be hard to achieve intuitively.

4.6.3 Comparison with Simulated Annealing

In order to further investigate the quality of the proposed algorithms, we compared

them with a simulated annealing (SA) approach. For resourceconstrained scheduling,

we implemented the algorithm presented in [93]. The basic idea is very similar to what

we proposed in our MMAS approach in which a meta-heuristic method (SA) is used

to guide the searching process while a traditional list scheduler is used to evaluate the

result quality. The scheduling result with the best resource usage is reported when the

algorithm terminates.

However, it is more difficult for the timing constrained scheduling problem since we

have not found any SA-based approach in previously published works. Therefore, we

formulated one ourselves. Consequently, we will give more emphasis on our SA based

formulation for the timing constrained scheduling problemin the rest of this section.

A pseudo implementation of SA-based TCS algorithm is given as Algorithm 6. The

major challenge here is the construction of aneighborselection in the SA process. With

the knowledge of each operation’s mobility range, it is trivial to see the search space for

the TCS problem is covered by all the possible combinations of the operation/timestep

pairs, where each operation can be scheduled into any time step in its mobility range.

In our formulation, given a schedulingS where operationopi is scheduled atti, we

experimented with two different methods for generating a neighbor solution:

125

1. Physical neighbor: A neighbor ofS is generated by selecting an operationopi

and rescheduling it to a physical neighbor of its current scheduled time stepti,

namely eitherti +1 or ti−1 with even possibility. In caseti is on the boundary

of its mobility range, we treat the mobility range as a circular buffer;

2. Random neighbor: A neighbor ofS is generated by selecting an operation and

rescheduling it to any of the position in its mobility range excluding its currently

scheduled position.

However, both of the above approaches suffer from the problem that a lot of these

neighborswill be invalid because they may violate the data dependencyposed by the

DFG. For example, say, inSa single cycle operationop1 is scheduled at time step 3, and

another single cycle operationop2 which is data dependent onop1 is scheduled at time

step 4. Changing the schedule ofop2 to step 3 will create an invalid scheduling result.

To deal with this problem in our implementation, for each generated scheduling, we

quickly check whether it is valid by verifying the operation’s new schedule against those

of its predecessor and successor operations defined in the DFG. Only valid schedules

will be considered.

Furthermore, in order to give roughly equal chance to each operation to be selected

in the above process, we try to generate multiple neighbors before any temperature

update is taken. This can be considered as a local search effort, which is widely imple-

mented in different variants of SA algorithm. We control this local search effort with

a weight parameterθ. That is before any temperature update taking place, we attempt

126

to generateθN valid scheduling candidates whereN is the number of operations in the

DFG. In our work, we setθ = 2, which roughly gives each operation two chances to

alter its currently scheduled position in each cooling step.

This local search mechanism is applied to both neighbor generation schemes dis-

cussed above. In our experiments, we found there is no noticeable difference between

the two neighbor generation approaches with respect to the quality of the final schedul-

ing results except that therandom neighbormethod tends to take significantly more

computing time. This is because it is more likely to come up with an invalid scheduling

which are simply ignored in our algorithm. In our final realization, we always use the

physical neighbormethod.

Another issue related to the SA implementation is how to set the initial seed so-

lution. In our experiments, we experimented three different seed solutions: ASAP,

ALAP and a randomly generated valid scheduling. We found that SA algorithm with

a randomly generated seed constantly outperforms that using the ASAP or ALAP ini-

tialization. It is especially true when thephysical neighborapproach is used. This is

not surprising since the ASAP and ALAP solutions tend to cluster operations together

which is bad for minimizing resource usage. In our final realization, we always use a

randomly generated schedule as the seed solution.

The framework of our SA implementation for both timing constrained and resource

constrained scheduling is similar to the one reported in [106]. The acceptance of a

more costly neighboring solution is determined by applyingthe Boltzmann probability

127

procedure SA-TCS(G,R)

input : DFG G(V,E), resource setR, and a map of operation to one resource inR

output: operation schedule

1: perform ASAP and ALAP on the DFG to obtain mobility ranges.

2: randomly initialize a valid seed schedulingScurrent

3: set starting and ending temperatureTs andTe.

4: set local search weight toθ.

5: setN to be the number of operations.

6: sett to Ts

7: setSbest to beScurrent

8: while t > Te do

9: for i = 0; i < θN; i++ do

10: randomly generate a neighbor solutionSn

11: if Sn is invalid then

12: continue

13: else

14: compute the resource cost ofSn

15: randomly acceptSn to beScurrent

16: updateSbest if needed

17: end if

18: end for

19: updatet based on cooling scheme

20: end while

21: returnSbest and the resource cost

Algorithm 6: Simulated Annealing for Timing-Constrained Scheduling

128

criteria [1], which depends on the cost difference and the annealing temperature. In our

experiments, the most commonly known and used geometric cooling schedule [106] is

applied and the temperature decrement factor is set to 0.9. When it reaches the pre-

defined maximum iteration number or the stop temperature, the best solution found by

SA is reported.

The experimental results for TCS problem obtained using theabove simulated an-

nealing formulation are shown in Table 4.4, where the SA results are provided in paren-

thesis column by column with those achieved by using MMAS. Similar to the MMAS

algorithm, we perform 5 runs for each benchmark sample and report the average sav-

ings, the best savings, and the standard deviation of the reported scheduling results. It

can be seen from Table 4.4 that the SA method provides much worse results compared

with the proposed MMAS solutions. In fact, the MMAS approachprovides better re-

sults on every testing case. Though the SA method does have significant gains on select

cases over FDS, its average performance is actually worse than FDS by 5%, while our

method provides a 16.4% average savings. This is also true ifwe consider the best

savings achieved amongst multiple runs where a modest 1% savings is observed in

SA comparing with a 19.5% reduction obtained by MMAS method.Furthermore, the

quality of the SA method seems to be very dependent on the input applications. This is

evidenced by the large dynamic range of the scheduling quality and the larger standard

deviation over the different runs. Finally, we also want to make it clear that to achieve

this result, the SA approach takes substantially more computing time than the proposed

129

MMAS method. A typical experiment over all 263 testing caseswill run between 9 to

12 hours which is 3 to 4 times longer than the MMAS-based TCS algorithm.

As discussed above, our SA formulation for resource constrained scheduling is sim-

ilar to that studied in [93]. It is relatively more straight forward since it will always

provide valid scheduling using a list scheduler. To be fair,a randomly generated op-

eration list is used as the seed solution for the SA algorithm. The neighbor solutions

are constructed by swapping the positions of two neighboring operations in the current

list. Since the algorithm always generates a valid scheduling, we can better control the

runtime than in its TCS counterpart by adjusting the coolingscheme parameter. We

carried experiments using execution limit ranging from 1 to10 times of that of the

MMAS approach. It was observed that SA RCS algorithm provides poor performance

when the time limit was too short. On the other hand, once we increase this time limit

to over 5 times of the MMAS execution time, there was no significant improvement on

the results as the execution time increased. In the rightmost column of Table 4.5, we

present the typical RCS results using SA achieved with 10 times the MMAS execution

time. The performance data is averaged over 10 runs for each testing sample. It is easy

to see that the MMAS-based algorithm consistently outperforms it while using much

less computing time.

130

4.6.4 Parameter Sensitivity

The proposed ACO-based algorithms belong to the category ofstochastic search

algorithms. This implies a certain sensitivity of the result to the choices of parameters

which are at times difficult to determine. In order to better understand this issue and

its relationship with the algorithms’ performance, a studyon their sensitivity to the

parameter selection is in order. We have conducted extensive experiments in our work

on this topic and will report our major findings in this section.

• α, β andQ: Variation on global heuristic weightα, local heuristic weightβ and

the pheromone delivery constantQ does not have noticeable impact on the per-

formance of our algorithms. The algorithms consistently provide robust results

whenα andβ are in the range of[1,100] andQ is between[1,5000] with small

step size, while performance on benchmarks of smaller sizestend to have more

fluctuations than the bigger ones. Of course, a numerically precise limit should be

a concern for parameterα andβ in algorithm realization because they are used in

power functions. Also, the scaling of local and global heuristics could be an issue

with these parameters. In our study, we found settingα = β = 1 worked well in

our implementation over a comprehensive set of testing benchmarks. Moreover,

the benefit is that it essentially eliminates the power function calls in Equation

(2.1) which further reduces computing time.

• ρ: The pheromone evaporation factorρ takes a value in the range of [0,1] and

controls how much the existing pheromone trails will be reduced before any en-

131

hancement. The smaller this number, the more reduction is applied (see Equation

(2.2)). When this number is too small, historical information accumulated in the

search process will be essentially lost, and the the algorithms behave close to a

random search. In our experiments, we found a value between 0.95 and 1 seems

to be a good choice. In our final setup, parameterρ is set to 0.98.

• pbest: This parameter, together withρ, controls how the lower bound and upper

bound of pheromone trails will be computed. Recall that whenpbest→ 0, the

difference betweenτmin(t) andτmax(t) gets smaller, which means the search is

getting more random and more emphasis is given to search space exploration. In

our experiments, we found thatpbest should be bigger than 0.5. Once it is above

this threshold, both algorithms for RCS and TCS problems perform robustly. In

our final setup,pbest is set to 0.93.

• m andN: The ant countm and the iteration numberN are closely related and

have a direct impact on the algorithms execution time. Roughly, the product of

m andN gives an estimation of how many scheduling instances the algorithms

will cover. Theoretically, the bigger this product, the better the performance.

Also, it is intuitive to see that these parameters should be positively correlated

with the complexity of the test sample. In our work, we preferto use a fixed

setting for these parameters in order to make the algorithm simpler. As reported

above, withm= 10 andN is set to be 150 and 100 for the TCS and RCS problem

respectively, our algorithms work well over a wide range of testing samples. In

132

a further study, we variedm between 1 and 10, andN from 50 to 1000. We

find that little performance improvement is seen afterN is bigger than 250 when

m is reasonable large (> 4). We contribute this to the fact that the pheromone

trails converge after a large number of iterations.IfN is smaller than 100, we

will often miss the optimal solution because of premature termination. This is

especially true for the TCS problem. Similarly, whenm is bigger than 6, we see

little improvement. The best tradeoff ofm seems to be between 4 and 6. It is

interesting to notice that these numbers are very close to the average branching

factor of the testing samples. These results implies that wemay still have room to

fine tune these two parameters to further improve the performance/cost tradeoff

of the algorithms.

4.7 Summary

In this chapter, we presented two novel heuristic searchingmethods for the resource

and timing constrained scheduling problems based on the MAX-MIN Ant System. Our

algorithms employ a collection of agents that collaborate to explore the search space.

We proposed a stochastic decision making strategy in order to combine global and local

heuristics to effectively conduct this exploration. As thealgorithms proceed in finding

better quality solutions, dynamically computed local heuristics are utilized to better

guide the searching process.

A comprehensive set of benchmarks was constructed to include a wide range of

133

applications. Experimental results over our test cases showed promising results. The

proposed algorithms consistently provided higher qualityresults over the tested ex-

amples and achieved very good savings comparing to traditional simulated annealing,

list scheduling and force-directed scheduling approaches. Furthermore, the algorithm

demonstrated robust stability over different applications and different selection of local

heuristics, as evidenced by a much smaller deviation over the results.

To the best of our knowledge, the only other reported work on using Ant Colony

Optimization to solve the operation scheduling problem is done by Kopuriet al. [58].

Compared to our work, their study is limited to the timing constrained scheduling prob-

lem.

To address the TCS problem, their algorithm has a different formulation and is

more closely related to the classic force-directed scheduling algorithm. They use a

modified self force computation, where predecessor and successor forces are dropped

in the overall force consideration. This force is calculated by linear combination of

normalized classic self-force and the pheromone trails. Since the resulting value can be

both negative and positive, it is hard to act as an indicator for operation selection during

the scheduling construction process. In their work, simplerandom selection is used.

Our algorithm uses a dynamically computed distribution graph for the correspond-

ing resourcek for the local heuristic and force calculation is not needed.We believe it

provides the following benefits:

• It is directly tied with the optimization target, i.e. minimizing the resource cost.

134

• It is faster to compute.

• The value range for the distributed graph is non-negative, which enables more ef-

fective operation selection strategy than random selection as discussed in Section

4.3.3.

Moreover, as discussed in Section 4.3, our algorithm can be readily extended to

handle different design scenarios such as multiple-cycle operations, mutually exclusive

operations, operation chaining and pipelining. It is unclear if their algorithm can be

easily extended to do so, and only single cycle operations were used in their study.

It is known that premature convergence is an important issuein ant based ap-

proaches and our experience shows this is an important factor for the operation schedul-

ing problem. In order to cope with this, MAX-MIN formulationis used in our algo-

rithms for both timing and resource constrained scheduling. No such mechanism was

used in [58].

Finally, the effectiveness and efficiency of our algorithmsis tested over a compre-

hensive benchmark suite compiled from real-world applications. The performance with

respect to solution quality, stability, scalability, and timing performance is more thor-

oughly studied and reported here. Only limited results on a small number of samples

were reported in [58].

135

Chapter 5

Design Space Exploration

Design space exploration during high level synthesis is often conducted through

ad-hoc probing of the solution space using some scheduling algorithm. This is not

only time consuming but also very dependent on designer’s experience. We propose

a novel design exploration method that exploits the dualityof the time and resource

constrained scheduling problems. Our exploration automatically constructs a time/area

tradeoff curve in a fast, effective manner. It is a general approach and can be combined

with any high quality scheduling algorithm. In our work, we use the MAX-MIN ant

colony optimization technique to solve both the time and resource constrained schedul-

ing problems. Our algorithm provides significant solution quality savings (average

17.3% reduction of resource counts) with similar run time compared to using force

directed scheduling exhaustively at every time step. it also scales well across a com-

prehensive benchmark suite constructed with classic and real-life samples.

136

5.1 Introduction

When building a digital system, designers are faced with a countless number of

decisions. Ideally, they must deliver the smallest, fastest, lowest power device that can

implement the application at hand. More often than not, these design parameters are

contradictory. For example, making the device run faster often makes it larger and more

power hungry. Designers must also deal with increasingly strict time to market issues.

Unfortunately, this does not afford them much time to make a decision.

Designers must be able to reason about the tradeoffs amongsta set of parameters.

Such decisions are often made based on experience, i.e. thisworked before, it should

work again. Exploration tools that can quickly survey the design space and report a

variety of options are invaluable.

From optimization point of view, design space exploration can be distilled to identi-

fying a set of Pareto optimal design points according to someobjective function. These

design points form a curve that provides the best tradeoffs for the variables in the ob-

jective function. Once the curve is constructed, the designer can make design decisions

based on the relative merits of the various system configurations. Timing performance

and the hardware cost are two common objectives in such process.

Resource allocation and scheduling are two fundamental problems in constructing

such Pareto optimal curves for time/cost tradeoffs. The twoproblems are tightly inter-

woven. Resource constrained scheduling takes as input an application modeled as data

flow graph and a number of different types of resources. It outputs a start time for each

137

of the operations, such that the resource constraints are not violated, while attempting

to minimize the application latency. Here allocation is performed before scheduling,

and the schedule is obviously very dependent on the allocation; a different resource

allocation will likely produce a vastly different scheduling result.

We could perform scheduling before allocation; this is the time constrained schedul-

ing problem. Here the inputs are a data flow graph and a time deadline (latency). The

output is again a start time for each operation, such that thelatency is not violated, while

attempting to minimize the number of resources that are needed. It is not clear as to

which solution is better. Nor is it clear on the order that we should perform scheduling

and allocation.

One possible method of design space exploration is to vary the constraints to probe

for solutions in a point-by-point manner. For instance, youcan use some time con-

strained algorithm iteratively, where each iteration has adifferent input latency. This

will give you a number of solutions, and their various resource allocations over a set of

time points. Or you can run some resource constrained algorithm iteratively. This will

give you a latency for each of these area constraints.

An effective design space exploration strategy must understand and exploit the rela-

tionship between the time and resource constrained problems. Unfortunately, designers

are left with individual tools for tackling either problem.They are faced with questions

like: Where do we start the design space exploration? What isthe best way to utilize

the scheduling tools? When do we stop the exploration?

138

Moreover, due to the lack of connection amongst the traditional methods, there

is very little information shared between time constrainedand resource constrained

solutions. This is unfortunate, as we are throwing away potential solutions since solving

one problem can offer more insight into the other problem.

In this chapter, we describe a design space exploration strategy for scheduling and

resource allocation. The ant colony optimization (ACO) meta-heuristic lies at the core

of our algorithm. We switch between timing and resource constrained ACO heuristics

to efficiently traverse the search space. Our algorithms dynamically adjust to the input

application and produce a set of high quality solutions across the design space.

The rest of the chapter is organized as follows. We discuss related work in the next

section. In Section 5.3, we present a design space exploration algorithm using duality

between the time and resource scheduling problems. Together, we will discuss why

ACO-based scheduling algorithms are suitable to be integrated within the proposed

exploration framework. Experimental results for the new algorithms are presented and

analyzed in Section 5.4. We summarize with Section 5.5.

5.2 Related Work

The scheduling and resource allocation problems form the basis for design space

exploration during high level synthesis. These problems can be formulated as an Inte-

ger Linear Program (ILP) [107]; however it is typically impossible to solve large prob-

lem instances in this manner. Much research has been done to cleverly use heuristic

139

approaches to address these problems.

In [29], the authors concentrate on providing alternative “module bags” for design

space exploration by heuristically solving the clique partitioning problems and using

force directed scheduling. Their work focuses more on the situations where the opera-

tions in the design can be executed on alternative resources. In the Voyager system [19],

scheduling problems are solved by carefully bounding the design space using ILP, and

good results are reported on small sized benchmarks. Moreover, it reveals that clock

selection can have an important impact on the final performance of the application. In

[49, 26, 75], genetic algorithms are implemented for designspace exploration. Simu-

lated annealing [65] has also been applied in this domain. A survey on design space

exploration methodologies can be found in [63] and [66].

Force directed scheduling (FDS) [78] is a popular scheduling algorithm. The origi-

nal FDS algorithm is designed to solve the time constrained scheduling (TCS) problem,

i.e. to reduce the number of functional units used in the implementation with a given

execution deadline. This objective is achieved by attempting to uniformly distribute

the operations onto the available resource units. The distribution ensures that resource

units allocated to perform operations in one control step are used efficiently in all other

control steps, which leads to a high utilization rate. A“force” is used to measure the

parallel usage of a resource type. Each force is computed based on the operation’s

mobility range under the assumption that each operationopi has a uniform probability

of being scheduled into any of the control steps in this range. The algorithm proceeds

140

iteratively by selecting the operation and time step with the minimal force. The authors

also proposed a method called force-directed list scheduling (FDLS) to address the re-

source constrained scheduling problem. Here, the priorityfunction of the list scheduler

is constructed using forces.

The FDS method is constructive since the solution is computed without backtrack-

ing. Every decision is made deterministically in a greedy manner. If there are two

potential assignments with the same cost, the FDS algorithmcannot accurately esti-

mate the best choice. Moreover, FDS does not take into account future assignments

of operators to the same control step. Consequently, it is possible that the resulting

solution will not be optimal due to its greedy nature. FDS works well on small sized

problems, however, it often results to inferior solutions for more complex problems.

This phenomena is observed in our experiments reported in Section 5.4.

In this work, we focus our attention on the basic design spaceexploration problem

similar to the one treated in [78], where the designers are faced with the task of mapping

a well defined application represented as a DFG onto a set of known resources where

the compatibility between the operations and the resource types has been defined. Fur-

thermore, the clock selection has been determined in the form of execution cycles for

the operations. The goal is to find the a Pareto optimal tradeoff amongst the design

implementations with regard to timing and resource costs. Our basic method can be

extended to handle clock selection and the use of alternative resources. However, this

is beyond the scope of this study.

141

5.3 Exploration Using Time and Resource Constrained

Duality

5.3.1 Iterative Design Space Exploration Leveraging Duality

We are concerned with the design problem of making tradeoffsbetween hardware

cost and timing performance. This is still a commonly faced problem in practice, and

other system metrics, such as power consumption, are closely related with them. Based

on this, we have a 2-D design space as illustrated in Figure 5.1(a), where the x-axis

is the execution deadline and the y-axis is the aggregated hardware cost. Each point

represents a specific tradeoff of the two parameters.

14 16 18 20 22 24 26 28 30
deadline (cycle)

50

100

150

200

250

300

350

co
st

design space

L

c1

t1 t2

(m1,a1) (m2,a2)

F

U

(a)

deadline (cycle)

co
st

design space

L

TCSTCSTCS

RCS

RCS

(m1,a1)

(m2,a2)

(m3,a3)

(m′,a′)

t1t2-1t3-1 t2t3

F

U

(b)

Figure 5.1: Design Space Exploration Using Duality between Schedule Problems

(CurveL gives the optimal time/cost tradeoffs.)

142

For a given application, the designer is givenR types of computing resources (e.g.

multipliers and adders) to map the application to the targetdevice. We define a specific

design as aconfiguration, which is simply the number of each specific resource type.

In order to keep the discussion simple, in the rest of the chapter we assume there are

only two resource typesM (multiply) andA (add), though our algorithm is not limited

to this constraint. Thus, each configuration can be specifiedby (m,a) wherem is the

number of resourceM anda is the number ofA.

It is worth noticing that for each point in the design space shown in Figure 5.1(a),

we might have multiple configurations that could realize it.For example, assuming

unit cost for all resources, it is possible that a configuration with 10 multipliers and 10

adders can achieve the same execution time as another configuration with 5 multipliers

and 15 adders, as both solutions have the same cost (20).

Studying the design space more carefully, reveals several key observations. First,

the achievable deadlines are limited to the range[tasap, tseq], wheretasap is the ASAP

time for the application whiletseq is the sequential execution time when we have only

one instance for each resource type. It is impossible to get asolution faster than the

ASAP solution and any solution with a deadline beyond that oftseq are not Pareto

optimal. Furthermore, for each specific configuration we have the following lemma

about the portion of the design space that it maps to.

Lemma 5.3.1 Let C be a feasible configuration with cost c for the target application.

The configuration maps to a horizontal line in the design space starting at(tmin,c),

143

where tmin is the resource constrained minimum scheduling time.

The proof of the lemma is straightforward as each feasible configuration has a mini-

mum execution timetmin for the application, and obviously it can handle every deadline

longer thantmin. For example, in Figure 5.1(a), if the configuration(m1,a1) has a cost

c1 and a minimum scheduling timet1, the portion of design space that it maps to is

indicated by the arrow next to it. Of course, it is possible for another configuration

(m2,a2) to have the same cost but a bigger minimum scheduling timet2. In this case,

their feasible space overlaps beyond(t2,c1).

As we discussed before, the goal of design space explorationis to help the designer

find the optimal tradeoff between the time and area. Theoretically, this can be done by

finding the minimum areac amongst all the configurations that are capable of producing

t ∈ [tasap, tseq]. In other words, we can find these points by performing time constrained

scheduling (TCS) on allt in the interested range. These points form a curve in the

design space, as illustrated by curveL in Figure 5.1(a). This curve divides the design

space into two parts, labeled withF andU respectively in Figure 5.1(a), where all the

points in F are feasible to the given application whileU contains all the unfeasible

time/area pairs. More interestingly, we have the followingattribute for curveL:

Lemma 5.3.2 Curve L is monotonically non-increasing as the deadline t increases.

Proof Assume the lemma is false. Therefore, we will have two points(t1,c1) and

(t2,c2) on the curveL wheret1 < t2 andc1 < c2. This means we have a specific con-

figurationC with costc1 that is capable of producing an execution timet1 for the ap-

144

plication. Sincet1 < t2, and also from Lemma 5.3.1, we know that configurationC

can producet2. This introduces a contradiction sincec2, which is worse thanc1, is the

minimum cost att2.

Due to this lemma, we can use the dual solution of finding the tradeoff curve by

identifying the minimum resource constrained scheduling (RCS) timet amongst all

the configurations with costc. Moreover, because the monotonically non-increasing

property of curveL, there may exist horizontal segments along the curve. Basedon

our experience, horizontal segments appear frequently in practice. This motivates us to

look into potential methods to exploit the duality between RCS and TCS to enhance the

design space exploration process. First, we consider the following theorem:

Theorem 5.3.3 If C is a configuration that provides the minimum cost at time t1, then

the resource constrained scheduling result t2 of C satisfies t2 6 t1. More importantly,

there is no configuration C′ with a smaller cost that can produce an execution time

within [t2, t1].

Proof The first part of the theorem is obvious. Therefore, we focus on the second part.

Assuming there is a configurationC′ that provides an execution timet3 ∈ [t2, t1], then

C′ must be able to producet1 based on Lemma 5.3.1. SinceC′ has a smaller cost,

this conflicts with the fact thatC is the minimum cost solution (i.e. the TCS solution) at

timet1. Thus the statement is true. This is illustrated in Figure 5.1(b) with configuration

(m1,a1) and(m′,a′).

145

This theorem provides a key insight for the design space exploration problem. It

says that if we can find a configuration with optimal costc at time t1, we can move

along the horizontal segment from(t1,c) to (t2,c) without losing optimality. Heret2 is

the RCS solution for the found configuration. This enables usto efficiently construct the

curveL by iteratively using TCS and RCS algorithms and leveraging the fact that such

horizontal segments do frequently occur in practice. Basedon the above discussion,

we propose a new space exploration algorithm as shown in Algorithm 7 that exploits

the duality between RCS and TCS solutions. Notice themin function in step 10 is

necessary since a heuristic RCS algorithm may not return thetrue optimal that could be

worse thantcur.

procedure DSE

output: curveL

1: interested time range[tmin, tmax], wheretmin > tasapandtmax6 tseq.

2: L = φ
3: tcur = tmax

4: while tcur > tmin do

5: perform TCS ontcur to obtain the optimal configurationsCi .

6: for configurationCi do

7: perform RCS to obtain the minimum timet i
rcs

8: end for

9: trcs = mini (t i
rcs) /* find the best rcs time */

10: tcur = min(tcur, trcs)−1

11: extendL based on TCS and RCS results

12: end while

13: returnL
Algorithm 7: Iterative Design Space Exploration Algorithm

146

By iteratively using the RCS and TCS algorithms, we can quickly explore the design

space. Our algorithm provides benefits in runtime and solution quality compared with

using RCS or TCS alone. Our algorithm performs exploration starting from the largest

deadlinetmax. Under this case, the TCS result will provide a configurationwith a small

number of resources. RCS algorithms have a better chance to find the optimal solution

when the resource number is small, therefore it provides a better opportunity to make

large horizontal jumps. On the other hand, TCS algorithms take more time and provide

poor solutions when the deadline is unconstrained. We can gain significant runtime

savings by trading off between the RCS and TCS formulations.

5.3.2 Integrate with ACO-based Scheduling Algorithms

The proposed framework is general and can be combined with any scheduling al-

gorithm. We found that in order for it to work in practice, theTCS and RCS algorithms

used in the process require special characteristics. First, they must be fast, which is

generally requested for any design space exploration tool.More importantly, they must

provide close to optimal solutions, especially for the TCS problem. Otherwise, the

conditions for Theorem 5.3.3 will not be satisfied and the generated curveL will suffer

significantly in quality. Moreover, notice that we enjoy thebiggest jumps when we take

the minimum RCS result amongst all the configurations that provide the minimum cost

for the TCS problem. This is reflected in Steps 6-9 in Algorithm 7. For example, it is

possible that both(m,a) and(m′,a′) provide the minimum cost at timet but they have

147

different deadline limits. Therefore a good TCS algorithm used in the proposed ap-

proach should be able to provide multiple candidate solutions with the same minimum

cost, if not all of them.

In order to select the suitable TCS and RCS algorithms, we studied different

scheduling approaches for the two problems, including the popularly used force

directed scheduling (FDS) for the TCS problem [78], variouslist scheduling heuristics,

and the recently proposed Ant Colony Optimization (ACO) based instruction

scheduling algorithms [104, 99].

We found that ACO-based scheduling algorithms offer the following major benefits

over FDS, several variants of list scheduling and simulatedannealing [99]:

• ACO-based scheduling algorithms generate better quality results that are close to

the optimal with good stability for both the TCS and RCS problems;

• ACO-based methods provide reasonable runtime;

• Furthermore, as a population based method, ACO-based TCS approach naturally

provides multiple alternative solutions. As we have discussed, this feature pro-

vides potential benefit in the proposed DSE process since we can select the largest

jump provided by these candidates.

148

5.4 Experiments and Analysis

5.4.1 Benchmarks and Setup

We implemented four different design space exploration algorithms:

1. FDS: exhaustively step through the time range by performing time constrained

force directed scheduling at each deadline;

2. MMAS-TCS: step through the time range by performing only MMAS-based TCS

scheduling at each deadline.

3. MMAS-D: use the iterative approach proposed in Algorithm7 by switching be-

tween MMAS-based RCS and TCS.

4. FDS-D: similar to the MMAS-D, except using FDS-based scheduling algorithms.

We implemented the MMAS-based TCS and RCS algorithms as described in Section

5.3.2. Since there is no widely distributed and recognized FDS implementation, we

implemented our own. The implementation is based on [78] andhas all the applicable

refinements proposed in the paper, including multi-cycle instruction support, resource

preference control, and look-ahead using second order of displacement in force com-

putation.

For all testing benchmarks, the operations are allocated ontwo types of computing

resources, namely MUL and ALU, where MUL is capable of handling multiplication

and division, while ALU is used for other operations such as addition and subtraction.

149

Furthermore, we define the operations running on MUL to take two clock cycles and the

ALU operations take one. This definitely is a simplified case from reality, however, it is

a close enough approximation and does not change the generality of the results. Other

operation to resource mappings can easily be implemented within our framework.

With the assigned resource/operation mapping, ASAP is firstperformed to find the

critical path delayLc. We then set our predefined deadline range to be[Lc,2Lc], i.e.

from the critical path delay to two times of this delay. This results in 263 testing

cases in total. Four design space exploration experiments are carried out. For the FDS

and MMAS-TCS algorithms, we run force-directed or MMAS-based time constrained

scheduling on every deadline and report the best schedule results together with the

costs obtained. For the MMAS-D and FDS-D algorithms, we onlyrun MMAS-based

or FDS-based TCS on selected deadlines starting from 2Lc and make jumps based on

the RCS results on the configurations previously obtained byperforming TCS.

5.4.2 Quality Assessment

We first studied the effectiveness of the ACO approach for design space exploration.

Two individual tests are carried out, one to verify its performance on TCS problem

with a specific deadline, while the other tries to confirm its performance over the entire

design space.

In the first tests, MMAS-based TCS is performed on theidctcolbenchmark, an im-

plementation of inverse discrete cosine transform, with deadline set to its ASAP time

150

19. We use 10 ants for each iteration, which provides 10 individual scheduling solu-

tions. The total iteration limit is set to 200, which produces a total of 2000 scheduling

results for this TCS problem. We want to examine the effectiveness of the algorithm.

In other words, how does the quality of the solutions improveacross iterations? Fig-

ure 5.2 shows this result by plotting the solution quality/frequency curves over time.

Here each curve aggregates solutions found within certain iterations. For example, the

curve labeled “1-200” diagrams the quality distribution for the first 200 scheduling re-

sults obtained in the first 20 iterations. The x-axis is the hardware cost for the schedule

results, where we simply use resource number counts. The y-axis shows the number of

solutions that iteration range produces at each specific cost.

From this graph, we can easily see the MMAS-based TCS is working. For example,

comparing the initial 200 solutions (1-200) and the final 200solutions (1801-2000). In

the initial 200 solutions, there are 5 solutions with an areaof 20, and the best solutions

have area of 14 (there are 12 such solutions); by the last 200 solutions, there are 0 with

an area of 20, 69 with an area of 14, and one with an area of 11. Asthe algorithm pro-

gresses, a positive trend emerges where the ants ignore the worst solutions and enforce

the better ones.

To show the effectiveness of the algorithm over the whole design space, similar

experiments are conducted across the range of interested deadlines. Figure 5.3 gives

one example on theidctcol benchmark on deadlines from 19 to 32, where the x-axis

is the deadline constraint and y-axis is the cost for scheduling results. The size of

151

10 12 14 16 18 20
cost

0

10

20

30

40

50

60

70

80

nu
m

be
r

of
 s

ol
ut

io
ns

solutions per range

1801-2000
1401-1800
1001-1400
601-1000
201-600
1-200

Figure 5.2: Distribution of the TCS ACO solution quality on idctcol benchmark with a deadline

set to its ASAP time. Each line shows a different phase of the algorithm execution where each

point gives the number of solutions of a particular resourcecost. The line “1-200” denotes

the first 200 solutions found by the ACO algorithm, while the line “1801-2000” gives last 200

solutions.

dots are proportional to the number of schedule results thatthe ants produce for the

specific cost and deadline. It is easy to see that the focus area of algorithm adjusts as

the constraints change. Moreover, if we inspect each columnmore carefully, we can

see that the algorithm effectively explores the “best” partof the design space. This is

evidenced by the movement of the dense area in the graph and the relatively invariant

vertical spread.

We performed experiments on each benchmark using the four different design space

exploration algorithms. First, time constrained FDS scheduling is used at every dead-

line. The quality of results is used as the baseline for quality assessment. Then MMAS-

TCS, MMAS-D and FDS-D algorithms are executed; the difference is that MMAS-

152

TCS steps through the design space in the same way as FDS whileMMAS-D and

FDS-D utilize the duality between TCS and RCS. Because of their randomized nature,

the MMAS-TCS and MMAS-D algorithms are executed five times inorder to obtain

enough statistics to evaluate their stability.

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
deadline (cycle)

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

co
st

design space

Figure 5.3: Solution quality of the TCS ACO on the idctcol benchmark. We run the TCS

ACO algorithm at each deadline ranging from its ASAP time (19) to (32). The size of the dot

indicates the proportion of solutions with a specific resource cost found at each deadline.

Detailed design space exploration results for six of the benchmarks are shown in

Figure 5.4, where we compare the curves obtained by MMAS-D, FDS-D and FDS al-

gorithms. Table 5.1 summarizes the experiment results. Foreach benchmark we give

the node/edge count, and the average resource saving of the FDS-D, MMAS-TCS and

MMAS-D algorithms comparing with FDS. We report the saving in percentage of total

153

resource counts (a negative result indicates a lower (better) resource cost). We weight

the two resource types M and A equally, though we use different cost weights to bias

alternative solutions (for example, solution (3M, 4A) is more favorable than (4M, 3A)

as resource M has a large cost weight. We could easily vary therelative costs and num-

ber of the resources types. However, we feel this is would introduce confusion caused

by different weight choices. The percentage savings is computed for every deadline of

every benchmark. The average for a certain benchmark is reported in Table 5.1. It is

easy to see that MMAS-TCS and MMAS-D both outperform the classic FDS method

across the board with regard to solution quality, often withsignificant savings. Overall,

MMAS-TCS achieves an average improvement of 16.4% while MMAS-D obtains a

17.3% improvement. Both algorithms scale well for different benchmarks and problem

sizes. Moreover, by computing the standard deviation over the 5 different runs, the

algorithms are shown to be very stable. For example, the average standard deviation on

result quality for MMAS-TCS is only 0.104. On the other hand,the FDS-D algorithms

has a minor performance degradation comparing with the FDS baseline. It outperforms

FDS over 14 out of the 20 benchmarks, gives worse result on 4 samples, and shows

no change on 2 testing cases. Though it provides modestly better results over two test-

ing samples (i.e.wbmpheaderand interpolate) when compared to MMAS-D, overall

MMAS-D produces a much better result. Finally, FDS-D is muchless stable with re-

gard to the result quality. It seems to be more application dependent and yields bad

results in certain cases (e.g. benchmarkjpegidictifast).

154

 20
 25
 30
 35
 40
 45
 50

 10 12 14 16 18 20 22

co
st

deadline

arf (28/30)

MMAS-D
FDS-D

FDS

(a)

 11
 12
 13
 14
 15
 16
 17

 16 18 20 22 24 26 28 30 32 34

co
st

deadline

h2v2_smooth (51/52)

MMAS-D
FDS-D

FDS

(b)

 30
 40
 50
 60
 70
 80

 20 25 30 35

co
st

deadline

idctcol (114/164)

MMAS-D
FDS-D

FDS

(c)

 22
 24
 26
 28
 30
 32
 34
 36

 12 14 16 18 20 22 24

co
st

deadline

fir1 (44/43)

MMAS-D
FDS-D

FDS

(d)

 60
 80

 100
 120
 140
 160

 16 18 20 22 24 26 28 30 32 34

co
st

deadline

jpeg_idct (122/162)

MMAS-D
FDS-D

FDS

(e)

 45
 50
 55
 60
 65
 70
 75
 80
 85
 90

 16 18 20 22 24 26 28 30 32

co
st

deadline

jpeg_fdct (134/169)

MMAS-D
FDS-D

FDS

(f)

Figure 5.4:Design Space Exploration results: MMAS-D, FDS-D and FDS

155

Name Nodes/Edges Deadline FDS-D MMAS-TCS MMAS-D

HAL 11/8 (6 - 12) 14.3% -7.1% -7.1%

hbsurf 18/16 (11 - 22) 0.0% -9.9% -13.2%

ARF 28/30 (11 - 22) -4.7% -12.4% -18.6%

motionvectors 32/29 (7 - 14) -8.0% -13.1% -16.0%

EWF 34/47 (17 - 34) -5.6% -11.5% -21.9%

FIR2 40/39 (12 - 24) -4.1% -16.8% -22.8%

FIR1 44/43 (12 - 24) -3.9% -15.2% -18.0%

h2v2 smooth 51/52 (17 - 34) 4.2% -19.3% -20.5%

feedbackpoints 53/50 (11 - 22) -1.2% -5.9% -9.1%

collapsepyr 56/73 (8 - 16) -5.3% -18.3% -20.0%

COSINE1 66/76 (10 - 20) -3.1% -21.5% -23.5%

COSINE2 82/91 (10 - 20) 0.7% -5.6% -8.1%

wbmpheader 106/88 (8 - 16) -2.4% -0.9% -1.6%

interpolate 108/104 (10 - 20) -2.3% -0.2% -1.8%

matmul 109/116 (11 - 22) -4.7% -3.7% -5.6%

idctcol 114/164 (19 - 38) -11.2% -30.7% -32.0%

jpegidctifast 122/162 (17 - 34) 35.2% -50.3% -52.1%

jpegfdctislow 134/169 (16 - 32) 16.2% -31.4% -34.6%

smoothcolor 197/196 (15 - 30) -4.6% -7.3% -8.6%

invertmatrix 333/354 (15 - 30) 0.0% -11.2% -11.9%

Total Avg. 0.48% -16.4% -17.3%

Table 5.1: Summary for Design Space Exploration Results. Each line gives the benchmark

name, the tested time range and the results of each design space exploration algorithm

(FDS-D, MMAS-TCS, MMAS-D compared to the exhaustive FDS result. (A negative result

indicates a smaller resource allocation, which is desired.)

156

It is interesting and initially surprising to observe that the MMAS-D always had

no-worse performance than MMAS-TCS method. More careful inspection on the ex-

periments reveals the reason: using the duality between TCSand RCS not only reduces

the computation time but can also improves the quality of theresult. To understand this,

recall Theorem 5.3.3 and Figure 5.1(b). If we achieve an optimal solution att1, with

MMAS-D we automatically extend this optimality fromt1 to t2, while the MMAS-TCS

algorithm can provide worse quality solutions on deadlinesbetweent1 andt2.

This benefit is not specifically associated with MMAS scheduling algorithms,

rather, it is also observed when other scheduling methods are used. For example,

consider the curve generated by FDS-D in Figure 5.4(d). We can see that the

configuration provided by TCS at deadline 24 can be pushed to deadline 16. FDS-D

achieves better results over FDS at time stamps of 16, 17, 18 and 21. However, we

will not always obtain this benefit. For the same curve, FDS-Dactually suffers worse

result at time 13 and 14. Extreme examples of this are shown inFigure 5.4(e) and

Figure 5.4(f), the two worst samples for FDS-D. It is easy to realize that if a generous

TCS result is generated at a bigger deadline, the following RCS step is misled to

provide a very small deadline result. The effect is that the algorithm provides a poor

tradeoff curve.

In conclusion, the proposed duality based design space exploration framework is a

general approach and can be combined with any scheduling algorithm. However, the

selection of such scheduling algorithms has a direct impacton the quality of the result-

157

ing tradeoff curves. This is not surprising in light of our discussion on Theorem 5.3.3

in Section 5.3.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 6000

 0 50 100 150 200 250 300 350

ex
ce

ut
io

n
tim

e
in

 s
ec

on
ds

size of DFG

A

B

C

D

A: FDS
B: MMAS-D w/ duality

C: MMAS-TCS w/t duality
D: FDS-D w duality

Figure 5.5: Timing Performance Comparison

Figure 5.5 diagrams the average execution time comparison for the four design

space exploration approaches, ordered by the size of the benchmark. All of the exper-

iment results use the same Linux box with a 2GHz CPU. It is easyto see that the all

the algorithms have similar run time scale, where MMAS-TCS takes more time, while

MMAS-D and FDS have very close run times–especially on larger benchmarks. The

major execution time savings come from the fact that MMAS-D exploits the duality

and only computes TCS on selected number of deadlines. Over 263 testing cases, we

find on average MMAS-D skips about 44% deadlines with the helpof RCS. The fact

that MMAS-D achieves much better results than FDS with almost the same execution

time makes it very attractive in practice.

158

5.5 Summary

We proposed a novel design space exploration method that bridges the time and

resource constrained scheduling problems and exploits their duality. Our algorithm

provides time/cost tradeoff curve in the design space in a systemic manner. We proved

that it is possible to use the duality to help us effectively construct such a curve, while

reducing the computing time and improving the quality of theresult. The proposed

method is general and can be combined with any high quality scheduling algorithms.

However, the underlying scheduling algorithms has direct impact on the quality of the

tradeoffs curve. We showed that ACO-based scheduling algorithms are ideal due to

their robustness, high performance, reasonable executiontime and the capability of

providing multiple scheduling candidates. Our algorithmsoutperformed the popularly

used force directed scheduling method with significant savings (average 17.3% sav-

ings on resource counts) and almost the same run time on comprehensive benchmarks

constructed with classic and real-life samples. The algorithms also scaled well over

different applications and problem sizes.

159

Chapter 6

Conclusions and Future Work

In this section, we first conclude our work on applying Ant Colony metaheuristics

to solve the architectural design problems. Then we presentsome thoughts on potential

future work in this area.

6.1 Conclusions

As VLSI technology advances, we have seen the steady shrink of feature sizes in

integrated circuits and an exponential increase in capacity per die and per dollar at an

exponential rate. Though we may see the end of the exponential feature size scaling

in the next 20 years for conventional CMOS-based IC, there are promising evidence

that advances in basic science may keep this trend forward with emerging technologies

such as nanoscale material and molecular computing. Based on this observation, we

project that system design techniques will soon become a necessity in order to tame

160

the immense complexity of future computing systems. This isespecially true with the

advent of complex system architectures that contain a variety of computing components

like microprocessors, memory elements, ASIC, reconfigurable logic, even nanoscale

devices. With increasing abundance and flexibility of computing resources, how to

effectively use them to fully exploit the benefits becomes a renewed problem for the

EDA community with much more difficult tasks in hand. To answer the challenge,

we must look towards new optimizations methods, rather thansimply perform iterative

improvements on existing techniques.

In this study, we focus on constructing effective and efficient algorithms for solving

a number of fundamental architectural design problems using the Ant Colony Optimza-

tion, a relatively new meta-heuristic method inspired by the study of the behaviors of

social insects. Comparing with other conventional metaheuristic methods, ACO-based

approaches pose a set of unique advantages and have been proven effective in solv-

ing a wide range of traditionally hard combinatory problems. One special motivation

for us to applying ACO to design problems is its natural connection with graph based

modeling, which is often used in various system design problems.

To study the effectiveness of ACO method, we investigate three problems, namely

system partitioning, operation scheduling and design space exploration problem, all

of which areN P -hard. By carefully examining the problem specific characteristics,

we construct concrete algorithms to solve these problems under the ACO framework.

Our algorithms utilize a unique hybrid approach by combining the ant colony meta-

161

heuristic with problem specific knowledge, where a collection of agents cooperate using

distributed and local heuristic information to effectively explore the search space.

Our experiments over comprehensive benchmark suites show very promising re-

sults. For the system partitioning problem, the proposed algorithm provides robust

results that are qualitatively close to the optimal with minor computational cost. Com-

paring with popularly used simulated annealing approach, the proposed algorithm gives

better solutions with substantial reduction on execution time. For the operation schedul-

ing problem, a comprehensive set of benchmarks was constructed to include a wide

range of applications. The proposed algorithms consistently provide higher quality re-

sults over the tested examples and achieved very good savings comparing to traditional

simulated annealing, list scheduling and force-directed scheduling approaches. Fur-

thermore, the algorithm demonstrated robust stability over different applications and

different selection of local heuristics, as evidenced by a much smaller deviation over

the results.

Moreover, we propose a novel design space exploration method that bridges the

time and resource constrained scheduling problems and exploits their duality. Our al-

gorithm provides time/cost tradeoff curve in the design space in a systemic manner.

We prove that it is possible to use the duality to help us effectively construct such

a curve, while reducing the computing time and improving thequality of the result.

The proposed method is general and can be combined with any high quality schedul-

ing algorithms. However, the underlying scheduling algorithms have direct impact on

162

the quality of the tradeoffs curve. We showed that ACO-basedscheduling algorithms

are ideal due to their robustness, high performance, reasonable execution time and the

capability of providing multiple scheduling candidates. Our algorithms outperformed

the popularly used force directed scheduling method with significant savings (average

17.3% savings on resource counts) and almost the same run time on comprehensive

benchmarks constructed with classic and real-life samples. The algorithms also scale

well over different applications and problem sizes.

6.2 Future Work

Besides the promising results we have seen in the problems weinvestigated, we

believe the Ant Colony metaheuristic method may also be helpful for the lower level

system synthesis of reconfigurable computing system. The very nature that the sys-

tem quality is distributively encoded as pheromone trails on the system representation

makes it a promising model to handle dynamic changes required by the reconfigurable

computing systems. As the system’s computing characteristics change, it is natural

to expect that the pheromone parameters accumulated over time will better reflect the

dynamics of the system’s behaviors, and thus, lead to quickly finding more effective

configurations for the changed computing requirements. An application of this could

be new ways for quickly calculating and deploying new FPGA placement and routing

arrangement during the run time.

During our research work discussed above, we strongly felt the need of a better

163

application representation in the design process in order to effectively facilitate the sys-

tem design/synthesis for the modern reconfigurable computing systems, which contain

powerful hybrid architectures with multiple microprocessor cores, large reconfigurable

logic arrays and distributed memory hierarchies. It is clear that traditional represen-

tations such as CDFG are not capable enough for optimizations that exploit fine and

coarse grained parallelism. In our recent paper published on ERSA’2004 [39], we

present an application representation based on the programdependence graph (PDG)

incorporated with the static single-assignment (SSA) for synthesis to high performance

reconfigurable devices. The PDG effectively describes control dependencies, while

SSA yields precise data dependencies. When used together, these two representations

provide a powerful, synthesizable form that exploits both fine and coarse grained par-

allelism. Our work showed that an intermediate representation based on PDG+SSA

form supports a broad range of transformations and enables both coarse and fine grain

parallelism. We described a method to synthesize this representation to a configurable

logic array. Experimental results indicate that the PDG+SSA representation gives faster

execution time using similar area when compared with commonly used CFG (Control

Flow Graph) and PSSA (Predicted Static Single Assignment) forms.

164

Bibliography

[1] E. Aarts and J. Korst.Simulated Annealing and Boltzmann Machines: A Stochas-

tic Approachto Combinatoria Optimization and Neural Computing. John Wiley

& Sons, New York, NY, 1989.

[2] Thomas L. Adam, K. M. Chandy, and J. R. Dickson. A comparison of list sched-

ules for parallel processing systems.Commun. ACM, 17(12):685–690, 1974.

[3] Samir Agrawal and Rajesh K. Gupta. Data-flow Assisted Behavioral Partition-

ing for Embedded Systems. InProceedings of the 34th Annual Conference on

Design Automation Conference, 1997.

[4] Gerald Aigner, Amer Diwan, David L. Heine, Monica S. Lamand David L.

Moore, Brian R. Murphy, and Constantine Sapuntzakis.The Basic SUIF Pro-

gramming Guide. Computer Systems Laboratory, Stanford University, August

2000.

[5] Alex Aletà, Josep M. Codina, and Jesús Sánchez andAntonio González. Graph-

Partitioning based Instruction Scheduling for ClusteredProcessors. InProceed-

165

ings of the 34th Annual ACM/IEEE International Symposium onMicroarchitec-

ture, 2001.

[6] Altera Corporation.Excalibur Device Overview Data Sheet, May 2002.

[7] Altera Corporation. Nios Embedded Processor System Development, 2003.

http://www.altera.com/products/devices/nios.

[8] A. Auyeung, I. Gondra, and H. K. Dai.Advances in Soft Computing: Intelli-

gent Systems Design and Applications, chapter Integrating random ordering into

multi-heuristic list schedulinggenetic algorithm. Springer-Verlag, 2003.

[9] Massimo Baleani, Frank Gennari, Yunjian Jiang, Yatish Pateand Robert K.

Brayton, and Alberto Sangiovanni-Vincentelli. HW/SW Partitioning and Code

Generation of EmbeddedControl Applications on a Reconfigurable Architec-

ture Platform. InProceedings of the Tenth International Symposium on Hard-

ware/SoftwareCodesign, 2002.

[10] Steve J. Beaty. Genetic algorithms versus tabu search for instruction schedul-

ing. In Proceedings of the International Conference on Artificial NeuralNets

and Genetic Algorithms, 1993.

[11] Steven J. Beaty. Genetic algorithms and instruction scheduling. InProceedings

of the 24th annual international symposium on Microarchitecture, 1991.

[12] David Bernstein, Michael Rodeh, and Izidor Gertner. Onthe Complexity of

166

Scheduling Problems for Parallel/PipelinedMachines.IEEE Transactions on

Computers, 38(9):1308–13, September 1989.

[13] Eric Bonabeau, Macro Dorigo, and Guy Theraulaz.Swarm Intelligence: From

Natural to Artificial Systems. Oxford University Press, New York, NY, 1999.

[14] U. Bondhugula, A. Devulapalli, J. Fernando, P. Wyckoff, and P. Sadayappan.

Parallel fpga-based all-pairs shortest-paths in a directed graph. Inthe 20th IEEE

International Parallel and Distributed Processing Symposium (IPDPS06), April

2006.

[15] B. Bullnheimer, R. F. Hartl, and C. Strauss. A new rank based version of the

ant system: A computational study.Central European Journal for Operations

Research and Economics, 7(1):25–38, 1999.

[16] T. J. Callahan, J. R. Hauser, and J. Wawrzynek. The Garp Architecture and C

Compiler.Computer, 33(4):62–69.

[17] Raul Camposano. Path-based scheduling for synthesis.IEEE Transaction on

Computer-Aided Design, 10(1):85–93, Janunary 1991.

[18] CAST, Texas Instruments Inc.C32025 Digital Signal Processor Core, Septem-

ber 2002.

[19] Samit Chaudhuri, Stephen A. Blythe, and Robert A. Walker. A solution method-

167

ology for exact design space exploration in a three-dimensional design space.

IEEE Trans. Very Large Scale Integr. Syst., 5(1):69–81, 1997.

[20] Jason Cong, Michail Romesis, and Min Xie. Optimality, scalability and stability

study of partitioning and placement algorithms. InISPD ’03: Proceedings of the

2003 international symposium on Physical design, pages 88–94, New York, NY,

USA, 2003. ACM Press.

[21] Jason Cong, Joseph R. Shinnerl, Min Xie, Tim Kong, and Xin Yuan. Large-

scale circuit placement.ACM Trans. Des. Autom. Electron. Syst., 10(2):389–430,

2005.

[22] D. Costa and A. Hertz. Ants can colour graphs.Journal of the Operational

Research Society, 48:295–305, 1996.

[23] Achim Österling, Thomas Benner, Rolf Ernstand Dirk Herrmann, Thomas

Scholz, and Wei Ye.Hardware/Software Co-Design: Principles and Practice,

chapter The COSYMA System. Kluwer Academic Publishers, 1997.

[24] Andre DeHon. Very large scale spatial computing. InUMC ’02: Proceedings of

the Third International Conference on Unconventional Models of Computation,

pages 27–36, London, UK, 2002. Springer-Verlag.

[25] J. L. Deneubourg and S. Goss. Collective Patterns and Decision Making.Ethol-

ogy, Ecology & Evolution, 1:295–311, 1989.

168

[26] Robert P. Dick and Niraj K. Jha. MOGAC: A MultiobjectiveGenetic Algorithm

for the Co-Synthesis of Hardware-Software Embedded Systems. In IEEE/ACM

Conference on Computer Aided Design, pages 522–529, 1997.

[27] Marco Dorigo and Luca Maria Gambardella. Ant Colony System: A Cooperative

Learning Approach tothe Traveling Salesman Problem.IEEE Transactions on

Evolutionary Computation, 1(1):53–66, April 1997.

[28] Marco Dorigo, Vittorio Maniezzo, and Alberto Colorni.Ant System: Optimiza-

tion by a Colony of Cooperating Agents.IEEE Transactions on Systems, Man

and Cybernetics, Part-B, 26(1):29–41, February 1996.

[29] R. Dutta, J. Roy, and R. Vemuri. Distributed design-space exploration for high-

level synthesis systems. InDAC ’92, pages 644–650, Los Alamitos, CA, USA,

1992. IEEE Computer Society Press.

[30] Stephen A. Edwards, Luciano Lavagno, Edward A. Lee, and

AlbertoSangiovanni-Vincentelli. Design of Embedded Systems: Formal

Models Validation, andSynthesis.Proceedings of the IEEE, 85(3):366–390,

March 1997.

[31] Petru Eles, Zebo Peng, and Alexa Doboli. System Level Hardware/Software

Partitioning Based on SimulatedAnnealing and Tabu Search.Design Automation

for Embedded Systems, 2(1):5–32, 1996.

169

[32] Rolf Ernst, Jorg Henkel, and Thomas Benner. Hardware/Software Cosynthesis

for Microcontrollers.IEEE Design and Test of Computers, 10(4):64–75, Decem-

ber 1993.

[33] ExpressDFG. ExpressDFG benchmark web site.

http://express.ece.ucsb.edu/benchmark/, 2006.

[34] Serge Fenet and Christine Solnon. Searching for maximum cliques with ant

colony optimization.3rd European Workshop on Evolutionary Computation in

CombinatorialOptimization, April 2003.

[35] S. Fidanova. Evolutionary Algorithm for Multiple Knapsack Problem. In

Proceedings of PPSN-VII, Seventh International Conference on ParallelProb-

lem Solving from Nature, Lecture Notes in Computer Science. Springer Verlag,

Berlin, Germany, 2002.

[36] L. M. Gambardella, E. D. Taillard, and G. Agazzi.New Ideas in Optimization,

chapter A multiple ant colony system for vehicle routing problems with timewin-

dows, pages 51–61. McGraw Hill, London, UK, 1999.

[37] L. M. Gambardella, E. D. Taillard, and M. Dorigo. Ant colonies for the quadratic

assignment.Journal of the Operational Research Society, 50(2):167–176, 1996.

[38] Michael R. Garey and David S. Johnson.Computers and Intractability: A Guide

to the Theory of NP-Completeness. W. H. Freeman, New York, NY, 1979.

170

[39] Wenrui Gong, Gang Wang, and Ryan Kastner. A high performance applica-

tion representation for reconfigurablesystems.International Conference on En-

gineering of Reconfigurable Systemsand Algorithms, ERSA’04, June 2004.

[40] R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. G. R. Kan. Optimization

and approximation in deterministic sequencing and scheduling:a survey.Annals

of Discrete Mathematics, 5:287–326, 1979.

[41] Martin Grajcar. Genetic List Scheduling Algorithm forScheduling and Alloca-

tionon a Loosely Coupled Heterogeneous Multiprocessor System. InProceed-

ings of the 36th ACM/IEEE Conference on Design AutomationConference, 1999.

[42] Rajesh K. Gupta and Giovanni De Micheli. Constrained Software Generation for

Hardware-Software systems. InProceedings of the Third International Work-

shop on Hardware/SoftwareCodesign, 1994.

[43] Walter J. Gutjahr. A graph-based ant system and its convergence.Future Gener.

Comput. Syst., 16(9):873–888, 2000.

[44] Walter J. Gutjahr. Aco algorithms with guaranteed convergence to the optimal

solution.Inf. Process. Lett., 82(3):145–153, 2002.

[45] Walter J. Gutjahr. A generalized convergence result for the graph-based ant sys-

tem metaheuristic.Probability in the Engineering and Informational Sciences,

17:545 – 569, 2003.

171

[46] Walter J. Gutjahrs. A converging aco algorithm for stochastic combinatorial

optimization. InSAGA, pages 10–25, 2003.

[47] J Harkin, T M McGinnity, and L P Maguire. Partitioning methodology for dy-

namically reconfigurable embeddedsystems.IEE Proceedings - Computers and

Digital Techniques, 147(6):391–396, November 2000.

[48] M. Heijligers and J. Jess. High-level synthesis scheduling and allocation us-

ing genetic algorithms based on constructive topological scheduling techniques.

In International Conference on Evolutionary Computation, pages 56–61, Perth,

Australia, 1995.

[49] M. J. M. Heijligers, L. J. M. Cluitmans, and J. A. G. Jess.High-level synthesis

scheduling and allocation using genetic algorithms. page 11, 1995.

[50] J I Hidalgo and J Lanchares. Functional Partitioning for Hardware - Codesign

CodesignUsing Genetic Algorithms. InProceedings of the 23rd Euromicro Con-

ference, 1997.

[51] B. Jeong, S. Yoo, and K. Choi. Exploiting early partial reconfiguration of run-

time reconfigurableFPGAs in embedded systems design.7th ACM/SIGDA Int.

Symposium on Field Programmable Gate Arrays, page 247, 1999.

[52] Asawaree Kalavade and Edward A. Lee. A Global Criticality/Local Phase

Driven Algorithm forthe Constrained Hardware/Software Partitioning Problem.

In codes94, 1994.

172

[53] Ryan Kastner.Synthesis Techniques and Optimizations for ReconfigurableSys-

tems. PhD thesis, University of California at Los Angeles, 2002.

[54] Ken Kennedy and Randy Allen.Optimizing Compilers for Modern Architec-

tures: A Dependence-basedApproach. Morgan Kaufmann, 2001.

[55] B. W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning

graphs.Bell System Technical Journal, 49(2):291–307, February 1970.

[56] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated an-

nealing.Science, Number 4598, 13 May 1983, 220, 4598:671–680, 1983.

[57] Rainer Kolisch and Sonke Hartmann.Project Scheduling: Recent models,

algorithms and applications, chapter Heuristic Algorithms for Solving the

Resource-Constrained ProjectScheduling problem: Classification and Compu-

tational Analysis. Kluwer Academic Publishers, 1999.

[58] Shekhar Kopuri and Nazanin Mansouri. Enhancing scheduling solutions through

ant colony optimization. InInternational Symposium on Circuits and Systems

(ISCAS’04), Vancouver, Canada, May 2004. IEEE.

[59] Chunho Lee, Miodrag Potkonjak, and William H. Mangione-Smith. Media-

Bench: a Tool for Evaluating and Synthesizing Multimedia and Communicatons

Systems. InProceedings of the 30th annual ACM/IEEE international symposium

on Microarchitecture, 1997.

173

[60] Jiahn-Hung Lee, Yu-Chin Hsu, and Youn-Long Lin. A new integer linear pro-

gramming formulation for the schedulingproblem in data path synthesis. InPro-

ceedings of ICCAD-89, pages 20–23, Santa Clara, CA, USA, Nov 1989.

[61] G. Leguizamon and Z. Michalewicz. A new version of ant system for subset

problems. InProceedings of the 1999 Congress of Evolutionary Computation,

pages 1459–1464. IEEE Press, 1999.

[62] Yanbing Li, Tim Callahan, Ervan Darnell, Randolph HarrandUday Kurkure,

and Jon Stockwood. Hardware-Software Co-Design of Embedded Reconfig-

urableArchitectures. InProceedings of the 37th Conference on Design Automa-

tion, 2000.

[63] Youn-Long Lin. Recent developments in high-level synthesis.ACM Trans. Des.

Autom. Electron. Syst., 2(1):2–21, 1997.

[64] Qinghua Liu and Malgorzata Marek-Sadowska. A study of netlist structure and

placement efficiency. InISPD ’04: Proceedings of the 2004 international sym-

posium on Physical design, pages 198–203, New York, NY, USA, 2004. ACM

Press.

[65] J Madsen, J Grode, P V Knudsen, M E Petersen, and A Haxthausen. LYCOS:

the Lyngby Co-Synthesis System.Design Automation for Embedded Systems,

2(2):125–63, March 1997.

174

[66] Michael C. McFarland, Alice C. Parker, and Raul Camposano. The high-level

synthesis of digital systems. InProceedings of the IEEE, volume 78, pages 301–

318, Feb 1990.

[67] D. McGrath. Gartner dataquest analyst gives asic, fpgamarkets clean bill of

health.EE Times, June 2005.

[68] G. Melancon and I. Herman. Dag drawing from an information visualization

perspective. Technical Report INS-R9915, CWI, November 1999.

[69] Seda Ogrenci Memik, E. Bozorgzadeh, Ryan Kastner, and MajidSarrafzadeh. A

super-scheduler for embedded reconfigurable systems. InIEEE/ACM Interna-

tional Conference on Computer-Aided Design, 2001.

[70] Zbigniew Michalewicz.Genetic algorithms + data structures = evolution pro-

grams (2nd, extended ed.). Springer-Verlag New York, Inc., New York, NY,

USA, 1994.

[71] R. Michel and M. Middendorf.New Ideas in Optimization, chapter An ACO

algorithm for the shortest supersequence problem, pages 51–61. McGraw Hill,

London, UK, 1999.

[72] Giovanni De Micheli.Synthesis and Optimization of Digital Circuits. McGraw-

Hill, 1994.

175

[73] Gordon E. Moore. Cramming more components onto integrated circuits. pages

56–59, 2000.

[74] Ralf Niemann and Peter Marewedel. An Algorithm for Hardware/Software Par-

titioning Using MixedInteger Linear Programming.Design Automation for Em-

bedded Systems, 2(2):125–63, March 1997.

[75] Maurizio Palesi and Tony Givargis. Multi-Objective Design Space Exploration

Using GeneticAlgorithms. InProceedings of the Tenth International Symposium

on Hardware/SoftwareCodesign, 2002.

[76] In-Cheol Park and Chong-Min Kyung. Fast and near optimal scheduling in au-

tomatic data path synthesis. InDAC ’91: Proceedings of the 28th conference

on ACM/IEEE design automation, pages 680–685, New York, NY, USA, 1991.

ACM Press.

[77] Rafael S. Parpinelli, Heitor S. Lopes, and Alex A. Freitas. Data mining with an

ant colony optimization algorithm.IEEE Transaction on Evolutionary Compu-

tation, 6(4):321–332, August 2002.

[78] P. G. Paulin and J. P. Knight. Force-directed scheduling in automatic data path

synthesis. In24th ACM/IEEE Conference Proceedings on Design Automation

Conference, 1987.

[79] P. G. Paulin and J. P. Knight. Force-directed scheduling for the behavioral syn-

thesis of asic’s.IEEE Trans. Computer-Aided Design, 8:661–679, 1989.

176

[80] P. Poplavko, C.A.J. van Eijk, and T. Basten. Constraintanalysis and heuristic

scheduling methods. InProceedings of 11th. Workshop on Circuits, Systems and

Signal Processing(ProRISC2000), pages 447–453, 2000.

[81] Gara Pruesse and Frank Ruskey. Generating linear extensions fast. SIAM J.

Comput., 23(2):373–386, 1994.

[82] Stuart Russell and Peter Norvig.Artificial Intelligence: A Modern Approach.

Prentice Hall, New York, NY, 2002.

[83] Ruud Schoonderwoerd, Owen Holland, Janet Bruten, and Leon Rothkrantz.

Ant-based load balancing in telecommunications networks.Adaptive Behavior,

5:169–207, 1996.

[84] J. M. J. Schutten. List scheduling revisited.Operation Research Letter, 18:167–

170, 1996.

[85] Semiconductor Industry Association. National Technology Roadmap for Semi-

conductors. 2003.

[86] Alok Sharma and Rajiv Jain. Insyn: Integrated scheduling for dsp applications.

In DAC, pages 349–354, 1993.

[87] Alena Shmygelska and Holger H. Hoos. An ant colony optimisation algorithm

for the 2d and 3d hydrophobic polar protein folding problem.BMC Bioinformat-

ics, 6, 2005.

177

[88] James E. Smith. Dynamic instruction scheduling and theastronautics ZS-1.

IEEE Computer, 22(7):21–35, 1989.

[89] Michael D. Smith and Glenn Holloway.An Introduction to Machine SUIF and

Its Portable Librariesfor Analysis and Optimization. Division of Engineering

and Applied Sciences, Harvard University, July 2002.

[90] U. Steinhausen, R. Camposano, H. Gunther, P. Ploger andM. Theissinger,

H. Veit, H. T. Vierhaus, and U. Westerholz andJ. Wilberg. System-Synthesis

using Hardware/Software Codesign. InProceedings of the Second International

Workshop on Hardware/SoftwareCodesign, 1993.

[91] T. Stützle and M. Dorigo. A short convergence proof fora class of ACO algo-

rithms. IEEE Transactions on Evolutionary Computation, 6(4):358–365, 2002.

[92] Thomas Stützle and Holger H. Hoos. MAX-MIN Ant System.Future Genera-

tion Comput. Systems, 16(9):889–914, September 2000.

[93] Philip H. Sweany and Steve J. Beaty. Instruction scheduling using simulated

annealing. InProceedings of 3rd International Conference on Massively Paral-

lelComputing Systems, 1998.

[94] Haluk Topcuouglu, Salim Hariri, and Min you Wu. Performance-effective and

low-complexity task scheduling for heterogeneous computing. IEEE Trans. Par-

allel Distrib. Syst., 13(3):260–274, 2002.

178

[95] Frank Vahid, Jie Gong, and Daniel D. Gajski. A Binary-Constraint Search Algo-

rithm for Minimizing Hardwareduring Hardware/Software Partitioning. In Pro-

ceedings of the conference on European design automation conference, 1994.

[96] Frank Vahid and THUY Dm LE. Extending the Kernighan/LinHeuristic for

Hardware and SoftwareFunctional Partitioning.Design Automation for Embed-

ded Systems, 2(2):237–61, March 1997.

[97] W. F. J. Verhaegh, E. H. L. Aarts, J. H. M. Korst, and P. E. R. Lippens. Improved

force-directed scheduling. InEURO-DAC ’91: Proceedings of the conference on

European design automation, pages 430–435, Los Alamitos, CA, USA, 1991.

IEEE Computer Society Press.

[98] W. F. J. Verhaegh, P. E. R. Lippens, E. H. L. Aarts, J. H. M.Korst, A. van der

Werf, and J. L. van Meerbergen. Efficiency improvements for force-directed

scheduling. InICCAD ’92: Proceedings of the 1992 IEEE/ACM international

conference on Computer-aided design, pages 286–291, Los Alamitos, CA, USA,

1992. IEEE Computer Society Press.

[99] Gang Wang, Wenrui Gong, Brian DeRenzi, and Ryan Kastner. Ant colony op-

timizations for resource and timing constrained operationscheduling. IEEE

Transaction on Computer-Aided Design, 26(6):1010–1029, 2006.

[100] Gang Wang, Wenrui Gong, Brian DeRenzi, and Ryan Kastner. Design space

exploration using time and resource duality with the ant colony optimization. In

179

DAC ’06: Proceedings of the 43rd annual conference on Designautomation,

pages 451–454, New York, NY, USA, 2006. ACM Press.

[101] Gang Wang, Wenrui Gong, Brian DeRenzi, and Ryan Kastner. Exploring

time/resource tradeoffs by solving dual scheduling problems with the ant colony

optimization. ACM Transactions on Design Automation of Electronic Systems

(TODAES) (to appear), 2007.

[102] Gang Wang, Wenrui Gong, and Ryan Kastner. A New Approach for Task Level

Computational ResourceBi-partitioning.15th International Conference on Par-

allel and Distributed Computingand Systems, 1(1):439–444, November 2003.

[103] Gang Wang, Wenrui Gong, and Ryan Kastner. System levelpartitioning for

programmable platforms using the antcolony optimization.13th International

Workshop on Logic and Synthesis, IWLS’04, June 2004.

[104] Gang Wang, Wenrui Gong, and Ryan Kastner. Instructionscheduling using

MAX-MIN ant optimization. In 15th ACM Great Lakes Symposium on VLSI,

GLSVLSI’2005, April 2005.

[105] Gang Wang, Wenrui Gong, and Ryan Kastner. Applicationpartitioning on pro-

grammable platforms using the ant colony optimization.Journal of Embedded

Computing, 2(1):119–136, 2006.

[106] Theerayod Wiangtong, Peter Y. K. Cheung, and Wayne Luk. Comparing Three

180

Heuristic Search Methods for FunctionalPartitioning in Hardware-Software

Codesign.Design Automation for Embedded Systems, 6(4):425–49, July 2002.

[107] Kent Wilken, Jack Liu, and Mark Heffernan. Optimal instruction scheduling us-

ing integer programming. InProceedings of the ACM SIGPLAN 2000 conference

on Programming languagedesign and implementation, 2000.

[108] Xilinx, Inc. Virtex-II Pro Platform FPGA Data Sheet, January 2003.

181

	my_UCSB_thesis_title_page.pdf
	I. Page Patterns and Potentials
	A. Column
	B. Working with the Page

	II. New Chapter
	A. Margins
	1. Advertising Margins
	2. Editorial Margins

	B. Continuity

	References
	Appendix

