UNIVERSITY OF CALIFORNIA

Santa Barbara

Ant Colony Metaheuristics for Fundamental Architectural Design Problems

A Dissertation submitted in partial satisfaction of the
requirements for the degree Doctor of Philosophy

in Electrical and Computer Engineering

by

Gang Wang

Committee in charge:
Professor Ryan Kastner, Chair
Professor Malgorzata Marek-Sadowska
Professor Steve Butner
Professor Elaheh Bozorgzadeh

Professor Timothy Sherwood

September 2007

The dissertation of Gang Wang is approved:

Chair

Date

Date

Date

Date

University of California, Santa Barbara

September 2007

Date

Ant Colony Metaheuristics for Fundamental Architecturasiyn Problems

Copyright 2007

by

Gang Wang

To my wife Fang Liu,

my children James, Justin, Jocelyn,

and my parents Tihao Wang and Shuchun Li.

Abstract
Ant Colony Metaheuristics for Fundamental Architecturasiyn Problems
by
Gang Wang
Doctor of Philosophy in Electrical and Computer Enginegrin
University of California, Santa Barbara

Professor Ryan Kastner, Chair

As the fabrication technology advances, the number of istors in modern computer
systems keeps growing exponentially. This growth createsdndous potential while
imposing big challenges to the electronic design automaionmunity on how to con-
struct such complicated systems. In order to effectivelizatthe computing resources,
a number of fundamental problems need to be addressed. Asdleeand complexity
of these problems grow, we must look towards new optimizatimethods, rather than
simply perform iterative improvements on existing tecluas,.

In this dissertation, | will report our research work on doasting new heuristic
algorithms using the Ant Colony metaheuristic for effeetyvand efficiently solving a
range of difficult architectural design problems. We inigate three\P-hard prob-
lems in this context, namely system partitioning, operaticheduling and design space
exploration. Results show that Ant Colony metaheuriste v&ry promising approach
for solving these problems, and the algorithms we proposergdly achieve better

quality solutions with much improved stability compareddonventional methods.

Moreover, by establishing the theoretical link betweenrigrand resource constrained
scheduling, we propose an effective design exploratioméssork that leverages du-
ality between the scheduling problems. To our best knovdedgr work is the first

extensive study on applying the Ant Colony metaheuristicthé architectural design

field.

Vi

Acknowledgments

| would like to show my sincerest gratitude to my advisor Bssbr Ryan Kastner for
giving me copious amounts of insightful guidance, constéatburagement, construc-
tive criticism, and expertise on every subject that arosauiiphout all these years. His
enthusiasm and dedication to his students are truly imgpiit is my very privilege
to have been one of them. | would also like to thank Professalgbtzata Marek-
Sadowska, Professor Elaheh Bozorgzadeh, Professor Reveer, and Professor Tim
Sherwood for being on my Ph.D. committee and for all theipbellong the way.

| am very thankful for the many friends and fellow studentsavé had at UCSB,
including Anup Hosangadi, Yen Meng, Brian DeRenzi, for tmeany stimulating dis-
cussions and warm friendship. Particularly, | want to th&fdarui Gong, who | collab-
orated with on numerous research efforts and became clesel fivith over the years.
Without them, my experience at UCSB won’t be as rewarding ias i

Finally, | want to thank my wife, Fang Liu, for her love, suppe@ncouragement,
sense of humor, and for being an intelligent partner on mgareh journey as well. |
could not have accomplished this without her. Very spetiahks to my parents for

their selfless love and support, and to my lovely childrenelgrdustin and Jocelyn.

vii

Curriculum Vitee

Gang Wang was born in Shaanxi, Chinain 1971. He receiveddbbdor of Electrical
Engineering degree from Xian Jiaotong University in 199%] Master of Computer
Science degree from Chinese Academy of Sciences in 199 jrbGhina. From 1995
to 1997, he conducted research work at Michigan State WsitygiEast Lansing, Ml,
US), and Carnegie Mellon University (Pittsburgh, PA, U8y sing on speech and im-
age understanding. Since 1997, Mr. Wang held positionsfagae architect and tech-
nical manager in different leading companies of medicaligid/, including Computer
Motion, Intuitive Surgical and Karl Storz Endoscope. Hiswincused on the research
and development of complex surgical robotics systems,ismdtlal human-computer
interaction and intelligent operating room. His currerge&ch interests include re-
configurable and embedded computing, optimization algarstand their applications,
novel architectural design for FPGA and nanocomputinggiats, ubiquitous comput-
ing and its applications in medical/healthcare systemshaseauthored or co-authored
more than 20 technical papers in different journals andexamices on related topics.
Related Publications:
Books/Book CHAPTERS
[B1] Gang Wang Wenrui Gong, and Ryan Kastne@peration Scheduling: Al-
gorithms and Design Space Exploratjdo appear irHigh Level Synthesis
Handbook: The State of Armiblished by Springer.

JOURNAL ARTICLES

viii

[J1] Gang Wang Wenrui Gong, Brian DeRenzi, and Ryan KastnExploring
Time/Resource Tradeoffs by Solving Dual Scheduling Pnobheith the Ant
Colony Optimizatiopaccepted byACM Transactions on Design Automation
of Electronic System@ODAEYS).

[J2] Gang Wang, Wenrui Gong, Brian DeRenzi, and Ryan Kastrfent Schedul-
ing Algorithms for Resource and Timing Constrained Operatcheduling
IEEE Transactions of Computer-Aided Design of Integrateduits and Sys-
tems(TCAD), Vol 26, Issue 6, pp 1010-1029, 2006.

[J3] Gang Wang Satish Sivaswamy, Cristinel Ababei, Kia Bazargan, RyastKa
ner and Eli Bozorgzadelttatistical Analysis and Design of HARP Routing
Pattern FPGASIEEE Transactions on Computer-Aided Design of Integrated
Circuits and System(@CAD), Vol 25, Issue 10, pp 2088-2102, October 2006.

[J4] Gang Wang, Wenrui Gong and Ryan Kastnekpplication Partitioning on
Programmable Platforms Using the Ant Colony Optimizatimurnal of Em-

bedded Computin@EC), Vol 2, Issue 1, pp 119-136, 2006.

PEER-REVIEWED CONFERENCHWORKSHOPPAPERS

[C1] Ted Huffmire, Brett BrothertonGang Wang, Ryan Kastner, and Tim Sher-
wood. Moats and Drawbridges: An Isolation Primitive for Reconfigjle
Hardware Based SysteEEE Symposium on Security and Privag@07.

[C2] Gang Wang Wenrui Gong, and Ryan Kastnédn the Use of Bloom Fil-

ters for Defect Maps in Nanocomputintn International Conference on

Computer-Aided DesigfiCCAD), 2006.

[C3] Gang Wang Wenrui Gong, Brian DeRenzi and Ryan Kasti&gsign Space
Exploration using Time and Resource Duality with the Anto@glOptimiza-
tion, In 43rd Design Automation Conferen(i2AC), 2006.

[C4] Gang Wang, Wenrui Gong, and Ryan Kastnédefect-Tolerant Nanocom-
puting Using Bloom Filters for Defect Mappindgn IEEE Symposium on
Field-Programmable Custom Computing Machil@&€CM), pp 277-278,
2006.

[C5] Wenrui Gong,Gang Wangand Ryan KastnerStorage Assignment During
High-level Synthesis for Configurable Achitectyiednternational Confer-
ence on Computer Aided Desi¢lCCAD), 2005.

[C6] Gang Wang, Wenrui Gong and Ryan Kastndnstruction Scheduling us-
ing MAX-MIN Ant Optimizationin ACM Great Lakes Symposium on VLSI
(GLSVLSI), 2005.

[C7] Satish Sivaswamyzang Wang, Cristinel Ababeli, Kia Bazargan, Ryan Kast-
ner, Eli BozorgzadehHARP: hard-wired routing pattern FPGA$n Pro-
ceedings of the ACM/SIGDA 13th International Symposium ietd FPro-
grammable Gate Array§~PGA), 2005.

[C8] Wenrui Gong, Yan MengGang Wang Ryan Kastner, and Timothy Sher-
wood, Data Partitioning for Reconfigurable Architectures withsibuted

Block RAM In International Conference on Engineering of Reconfigurable

Systems and Algorithn{ERSA), 2005.

[C9] Wenrui Gong,Gang Wang and Ryan KastnerData Partitioning for Re-
configurable Architectures with Distributed Block Raim The Fourteenth
International Workshop on Logic and Synthg$WLS), 2005.

[C10] Gang Wang Wenrui Gong and Ryan Kastne®ystem Level Partitioning
for Programmable Platforms Using the Ant Colony Optimiaatiln 13th
International Workshop on Logic and Synthg$WLS), 2004.

[C11] Wenrui GongGang Wangand Ryan Kastne High Performance Appli-
cation Representation for Reconfigurable Systémthe International Con-
ference on Engineering of Reconfigurable Systems and Aigws{ERSA),
2004.

[C12] Gang Wang Wenrui Gong and Ryan KastneA New Approach for
Task Level Computational Resource Bi-Partitioninbp 15th IASTED
International Conference on Parallel and Distributed Cartipg and

Systen{PDCS), 2003. Best paper nomination.)

Xi

Contents

List of Figures XV
List of Tables XVil
List of Algorithms XViii
1 Introduction 1
1.1 Motivation. 1
1.2 ResearchOverview it 6
1.3 Organization of Dissertation 10
2 Ant Colony Metaheuristic 12
2.1 Nature Inspired Metaheuristics 12
2.2 ACO for Travel Salesman Problem 71
2.3 ACO for Other Combinatory Problems 19
2.4 Convergency of ACOMethod 21
2.5 MAX-MIN Ant System (MMAS), 23
3 System Partitioning 26
3.1 Introduction 27
3.2 ACO for System Partitioning 13
3.2.1 Problem Definition oL 31
3.2.2 Augmented Task Graph 34
3.2.3 ACO Formulation for System Partitioning 36
3.24 Complexity Analysis 42
3.2.5 Extending the ACO/ATG method 42
3.2.6 Comparing with the Original ACO 44
3.3 Experimental Results and Performance Analysis 46
3.3.1 Target Architecture and Benchmarks 46
3.3.2 Absolute Quality Assessment 50
3.3.3 Comparing with Simulated Annealing 75

Xii

3.4
3.5

3.3.4 Hybrid ACO with Simulated Annealing
Application: Quick Design Parameter Estimation
Summary ... e e e e

Operation Scheduling

4.1
4.2

4.3

4.4

4.5

4.6

4.7

Introduction
Preliminaries
4.2.1 Operation Scheduling Problem Definition
422 RelatedWork 0.
ACO for Timing Constrained Scheduling
4.3.1 Force-Directed Scheduling
4.3.2 Algorithm Formulation
433 Refinements
434 EXxtensions
4.3.5 ComplexityAnalysis

ACO for Resource Constrained Scheduling

441 ListScheduling
4.4.2 Algorithm Formulation
443 Refinements
444 EXtensions
4.45 ComplexityAnalysis
ExpressDFG Benchmarks
ExperimentalResults
4.6.1 Time Constrained Scheduling
4.6.2 Resource Constrained Scheduling
4.6.3 Comparison with Simulated Annealing
4.6.4 Parameter Sensitivity L.
SUMMmMary e e e

Design Space Exploration

5.1
5.2
5.3

5.4

5.5

Introduction
Related Work

Exploration Using Time and Resource Constrained Dualit . . .
5.3.1 Iterative Design Space Exploration Leveraging Dyali. . . .

5.3.2 Integrate with ACO-based Scheduling Algorithms

Experimentsand Analysis
541 BenchmarksandSetup
5.4.2 QualityAssessment.
SUMMaAary e e e

Conclusions and Future Work

6.1
6.2

Conclusions
FutureWork

R (7

Bibliography 165

Xiv

List of Figures

1.1 A simplified representation of an FPGA fabric is on the. le€on-

2.1

2.2

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

figurable Logic Blocks (CLBs) perform logic level computatiusing
Lookup Tables (LUTSs) for bit manipulations and flipflops feorsge.

The switch boxes and routing channels provide connectiehsden

the CLBs. SRAM configuration bits are used throughout the £PG
(e.g., to program the logical function of the LUTs and cortreeseg-

ment in one routing channel to a segment in an adjacent gpatian-
nel).The FPGA floor plan on the right illustratively shows laygpical

layout of FPGA afterrouting. 4

(a) A laboratory nest of a Leptothorax ant colony; (b) &xment set-
tings used in [25].
An illustration on how ACO-TSP works.

(1) Single ant constructs a solution; (2) Multiple solusoare con-
structed by all the ants individually;

(3) The pheromone trails adaptively adjust their valuesnduthe iter-
ations; (4) The optimal solution emerges as the searchddesm its
experience.

ATG for 3-way Partitioning, 53
Target architecture a7
Example Task Graph 49
Atypicalrunofantsearch 51
Result quality measured by top percentage 52
Execution time distribution
Comparing ACOWwithSA 59
ACO, SA and ACO-SA on big size problems
Estimate Design Parameters with ACO application pangr on de-
sign choice with incremented resources

XV

4.1
4.2
4.3
4.4
4.5

4.6
5.1

5.2

5.3

5.4

5.5

Data Flow Graph (DFG) of theosine2zoenchmark

(‘'r is for memory read and ‘w’ for memory write). 74
Pheromone update windows 87
Distribution of DFG size for MediaBench 105
Execution Time for Timing-Constrained Scheduling.

(Ratiois MMAS time / FDStime) 114

Data Flow Graph of AR Filter.
(The number by the node is the index assigned for the oparatia . . 123
Pheromone Heuristic DistributionforARF 124

Design Space Exploration Using Duality between ScleeBubblems

(Curvel gives the optimal time/cost tradeoffs.) 142
Distribution of the TCS ACO solution quality on idctcaétchmark

with a deadline set to its ASAP time. Each line shows a diffephase

of the algorithm execution where each point gives the nurobsolu-

tions of a particular resource cost. The line “1-200” dendtee first

200 solutions found by the ACO algorithm, while the line “182000”
giveslast200 solutions. 152
Solution quality of the TCS ACO on the idctcol benchmavie run

the TCS ACO algorithm at each deadline ranging from its ASiiet

(19) to (32). The size of the dot indicates the proportionafisons

with a specific resource cost found at each deadline. 153

Design Space Exploration results: MMAS-D, FDS-D and FDS 155
Timing Performance Comparison. 158

XVi

List of Tables

2.1

3.1
3.2

4.1

4.2

4.3

4.4

4.5

Applications of ACO method and their qualitative penfance 21
Comparing ACO results with the random sampling 54
Average Result Quality Comparison 62
ExpressDFG benchmark suite

(Benchmarks with 1 are extracted from MediaBench.)

(Benchmark node and edge count with the operation depth @3D)
sumingunitdelay.) 107
Effect of Look-ahead Mechanism in FDS

(Result shown in MUL/ALU number pair. Deadline is in cycles.. . . 109
Partial detailed results for Timing-Constrained Schied

(Size is given as DFG’s node/edge number pair. Virtual ncates
edges are not counted.

Average and standard deviatiorare computed over 5 runs. Saving is
computed based on FDS results. No weight applied.) 111
Result Summary for Timing-Constrained Scheduling

Data in parenthesis shows the results obtained using Sied.Aaneal-

ing.

Deadline shows the tested range. Averagecomputed over the tested
range.

Saving is computed based on FDS results. No weight applied.. . . 112
Result Summary for Homogenous Resource-Constrainsed8tng
(Heuristic Labels: OM=Operation Mobility OD=0Operation jah,
LWOD-=Latency Weighted Operation Depth, SN=Successor Narinh 117

Xvil

4.6

5.1

Result Summary for Heterogenous Resource-Constr&icleelduling
Schedule latency is in cycles; Runtime is in seconds; t atdg
CPLEX failed to provide final result before running out of neam
(Resource Labels: a=alu, fm=faster multiplier, m=muépli=input,
o=output)

(Heuristic Labels: OM=Operation Mobility OD=0Operation jah,
LWOD-=Latency Weighted Operation Depth, SN=Successor Narinh 119

Summary for Design Space Exploration Results. Each dines

the benchmark name, the tested time range and the resultscbf e
design space exploration algorithm (FDS-D, MMAS-TCS, MMAS
compared to the exhaustive FDS result. (A negative resditates a
smaller resource allocation, whichis desired.) 156

Xvili

List of Algorithms

1 ACO Algorithm for System Partitioning 37
2 Force-Directed Scheduling for Time-Constrained Optatian 81
3 MMAS for Timing Constrained Scheduling 58
4 Resource-Constrained List Scheduling 92
5 MMAS for Resource-Constrained Scheduling 96
6 Simulated Annealing for Timing-Constrained Scheduling 128
7 Iterative Design Space Exploration Algorithm 146

Xix

Chapter 1

Introduction

1.1 Motivation

Due to the rapid advances in VLSI fabrication technologydera computer sys-
tems continue to provide better performance by effectiuéilizing an increasing num-
ber of transistors on a chip. The well-known Moore’s law [#8hich predicts that the
number of transistors on a single chip would grow exponéytiver a relative short
period of time, has been very accurate so far. Over the pagt&@, the transistor den-
sity has doubled every 18-24 months. ITRS estimates thatiWbeevable to integrate
more than half billion transistors on a 468 rhhip by the year of 2009[85]. This
creates tremendous potential for future computing systems

This also imposes big challenges to the Electronic Desigowation (EDA) com-

munity on how to effectively build such complicated systems the complexity of

digital systems increases, so does the complexity of thenyidg EDA problems. One
critical question we need to address is: as computing ressurecome abundant, how
can we effectively utilize these resources so that we cdp &xiploit the technology
advances to solve future computing problem? For examptentestudies by Profes-
sor Cong’s group at UCLA [20, 21], indicate that the resulitatned over a benchmark
circuits with known optimal wire lengths using the curreatranercially available rout-
ing and placement tools are far from the optimal. They arghatljust by improving
these results we are potentially able to move today’s tdolyyane generation ahead.
While these examples are contrived, and follow-up study fwws that real-world
designs are not as dire as initially suggested, this issstithggering difference. As we
move into smaller sub-micro technologies, there existartm improvement for these
algorithms.

In answering this challenge, one trend that seems to be affiimrecent years is
the shift to parallel architectural design or spatial cotapianal model in constructing
computing systems. This differs significantly from timepiey a single active compu-
tation among a large number of operations as we have beelidawiih in traditional
single processor architectures. Spatial computatiorsajde dedicate specific comput-
ing hardware to individual operations [24]. Operationsthes interconnected in space
rather than in time. This model will allow us to exploit thdlfparallelism available
in the applications. The spatial computing model tradeseized area for better time

performance and effective overall usage of the computiaguees.

The trend of shifting to spatial computing has also beenengdd by the steady
market adoption of reconfigurable computing technologgspecially the Field Pro-
grammable Gate Array (FPGA) platform. Reconfigurable haréwsuch as FPGAs,
provides a programmable substrate onto which descriptbegcuits can be loaded
and executed at very high speeds. Because they are ablesidgoam attractive balance
between performance, cost, and flexibility, many criticabedded systems make use
of FPGAs as their primary source of computation. Their atrtryvel flexibility allows
system functionality to be updated arbitrarily and remotebr example, the aerospace
industry relies on FPGAs to control everything from satedlito the Mars Rover.

FPGAs lie along a continuum between general-purpose poceand application-
specific integrated circuits (ASICs). They provide bothHagerformance and well-
defined timing behavior, but they do not require the costhyitation of custom chips.
While general purpose processors can execute any progn&grgenerality comes at
the cost of serialized execution. On the other hand, ASI@samhieve impressive
parallelism, but their function is literally hard wired amthe device. The power of re-
configurable systems lies in their ability to flexibly cusiaman implementation down
at the level of individual bits and logic gates without ratug a custom piece of sili-
con. This can often result in performance improvements erotder of magnitude as
compared to, per unit silicon, a similar microprocessor, [4]. FPGA technology is
now the leading design driver for almost every single foyntr fact it is estimated that

in 2005 alone there were over 80,000 different commerci@A®esign starts [67].

-
Q
=
[

Switchbox

Soft
AES
Core

Soft Soft
uP Core uP Core
Q%ZQm L [1
Mode Bit £
(Read/Write)

Input Data

i
i
i

[

,_
c
=1

I

c
=]

Output
. LI LI eIt
FPGA Fabric FPGA Chip Floor Plan

Figure 1.1: A simplified representation of an FPGA fabric is on the lefbn@gurable Logic
Blocks (CLBs) perform logic level computation using LooKtTgbles (LUTS) for bit
manipulations and flipflops for storage. The switch boxesranting channels provide
connections between the CLBs. SRAM configuration bits aeel tisroughout the FPGA (e.g.,
to program the logical function of the LUTs and connect a s&agnn one routing channel to a
segment in an adjacent routing channel).The FPGA floor phathe right illustratively shows

a physical layout of FPGA after routing.

Figure 1.1 provides a simplified diagram of the modern FPG&higecture. FP-
GAs have very regular gate level patterns which differs fd81C realization. Here
the CLBs (configurable with LUT) are the basic logic/compgtunits. By connecting
the CLBs using the interconnection resources (switchbaxresrouting channels), an
FPGA can be programmed to perform virtually any computatibms worthwhile to
note the tremendous flexibility the FPGA architecture piesito the designers. They

have the capability to implement a wide variety of custorawiiss, ranging from simple

adder/multiplier or multiple instances of them, to an entiomputational function (e.g.
digital filter, video codec), or even a complete CPU core.(BgverPC 4507). This is
very appealing; however, it also brings difficult questioagarding how to effectively
use such flexibility. For example, for a given applicatiod arknown FPGA platform,
what is the optimal configuration that achieves the bestigperformance? Addition-
ally, what is the impact on the system configuration (sucthas\umber of adders and
multipliers) if the requirements are relaxed? Moreovethere a systematic method
to help the designers explore the huge design decision spaated by such increased
flexibility?

Similar questions exist beyond the fine granularity leved #ime scope of pure
FPGA-based platforms. In order to find cost effective waygéb the desired per-
formance and maximize uses of resources, we often find dediigth compose a hy-
brid technologies in today’s systems. The most well-knowaneple is the hard-
ware/software co-design problem, where a system is condpafsa general purpose
CPU and a hardware-based computing resource (either ASKPGA). More gener-
ally, a hybrid system can be organized to hawemputing units with different capabili-
ties and characteristics. How to assist the designer totefédy partition and distribute
the computing tasks of an application over various comgutimits remains a system
level challenge.

In general, as the complexity of digital systems increasesjoes the complexity

of these underlying EDA problems. To make it more difficulgmg of these problems

are\'P-hard, which implies that finding optimal polynomial timegyatithms for these
problems are very unlikely. Due to this fact, almost all &rig EDA systems apply
heuristics to some extent. These heuristics were likely geiccessful and effective
when they were invented. However, as the complexity of tlublems increases, the
conventional heuristic methods may fail in handling toddgiger problems effectively.
To face these challenges, we must look towards new optimarzaiethods, rather than

simply perform iterative improvements on existing tecluas,.

1.2 Research Overview

My dissertation research work is focused on constructirigcge heuristic al-
gorithms for solving difficult and fundamental design optiation problems. More
specifically, the research focuses on devising new desigmeation algorithms based
on the Ant Colony metaheuristics or Ant Colony Optimizat{&&CO) techniques. The
ACO method is a relatively new meta-heuristic approachimespby the ecological
study of social insects (ants) and can be classified as agtopubased, self-organized
meta-heuristic method; it was originally formulated tovedraditional\’ P-hard com-
binatory problems in late 1990’s and has been since suctlysapplied to solve a
number of traditionaf\P-hard combinatory problems.

ACO distinguishes itself from other conventional meta+isic methods (e.g. sim-

ulated annealing and genetic algorithms) with the follayaalvantages:

¢ It formulates an optimization problem as a collaborativ@rsle process;

¢ It provides an effective way to combine global search exqree with problem

specific heuristics using pheromone sharing;

e It utilizes indirect communication in learning and empl@gsitive feedback to

achieve fast convergence;

¢ It offers a new and powerful way for solving optimization pfems modeled as

a graph, which is often the underlying model for various deciural problems.

Similar to other versatile meta-heuristic methods, suclSasiwulated Anneal-
ing(SA), Genetic Algorithm (GA) and A* algorithm, it is pab¢e to apply the Ant
Colony metaheuristics to a slew of problems. However, chrattention has to be
paid to consider the specific characteristics of the probd¢rhand and effectively
integrate them in the final algorithms. In our study, we haskeced to focus on
three fundamental EDA problems, namely the system levditipming problem,
the operation scheduling problem and the design space raxiplo problem. These
problems cover a good range of design granularity and adiitaally considered
to be very difficult. We believe that these problems providgoad set of test cases
for verifying the effectiveness of our methods. By addmegdhese problems with
concretely constructed algorithms using Ant Colony metisilsécs, we hope to enrich
and make contributions to the future system design metlogaks.

As our first effort of applying the Ant Colony metaheuristiege formulate new
algorithms to address the system level task partitionioglem [102, 103, 105]. This

problem is a fundamental{ P-hard challenge in a number of fields including high-level

system synthesis, parallel and distributed computing handware/software co-design.
It attempts to map application tasks onto multiple systesoueces w.r.t. the latency,
hardware cost, power and other performance metrics. Wercaha novel ACO-based
algorithm to address this problem by introducing the Augtednrask Graph model.
The concept can be easily extended to handle a variety oéreystquirements, in-
cluding truly addressing the multi-way partitioning prei. The proposed algorithm
consistently provides near optimal partitioning resultsnoodestly-sized tested sam-
ples with very minor computational cost. For larger sizebpems, our algorithm scales
well and achieves better solutions than the popularly usedlated annealing approach
with substantially less execution time. Furthermore, wippse a hybrid approach that
combines the ACO and simulated annealing together. Thisidiybethod leverages
the complementary behaviors of the two algorithms and gielcen better results than
using them individually.

Operation scheduling is another fundamental architecsyrahesis problem. An
inappropriate scheduling of the operations will fail to Bipthe full potential of the
system. High quality scheduling solutions have direct iotfima number of different
fields, such as compiler design for superscalar and VLIW opic@cessors, distributed
clustering computation architectures and hardware sgigloé ASICs and FPGASs. In
our work, we introduce two novel algorithms [104, 99] usihg ACO approach for the
timing and resource constrained scheduling problems. Wgpide a comprehensive

testing benchmark set (ExpressDFG) to verify the effeotags and efficiency of the

proposed algorithms. For timing constrained scheduling atgorithm achieves better
results compared to force-directed scheduling on almbthaltesting cases attaining
a 19.5% reduction of resources. For resource constrairestiating, our algorithm
outperforms a number of list scheduling heuristics withdrestability, and generates
up to a 14.7% performance improvement. Our algorithms ofdpa the simulated
annealing method for both scheduling problems in terms afityycompute time and
stability.

Finally, we look into the Design Space Exploration (DSE)igdeon, which tries to
generate Pareto optimal tradeoffs among different systamigurations. DSE is an-
other critical challenge of high level synthesis. In pregtiit is often addressed through
ad-hoc probing of the solution space. This is not only timestmning but also very
dependent on the designers experience. We propose a neigh @xploration method
that exploits the duality of the time and resource constgiacheduling problems
[100, 101]. Our exploration automatically constructs ahhggality time/area trade-
off curve in a fast, effective manner. In order to fully beh&bm the duality attribute,
we leverage the ACO-based optimization methods to solvie dteduling problems.
We switch between these two algorithms to quickly travengedesign space. Com-
pared with using force directed scheduling exhaustivedyaty time step, our approach
provides a significant improvement on solution quality (age 17.3% reduction of re-
source counts) with similar run time on a comprehensive terek suite. It also scales

well over different applications and problem sizes.

To summarize our research work, we focus on the essent@ithigic issues of ap-
plying Ant Colony metaheuristics to solve fundamental d@edtural design problems.
We have successfully devised a series of algorithms for aoeumf problems across
different levels of design granularity and achieved vemnpising results. We believe
that Ant Colony metaheuristic is a framework of great patnh solving architec-
tural design problems, and is not limited to the ones we stlidMoreover, we have
developed a software tool, named CODES, to provide a unifarpiementation for
applying the ACO method to these architectural problemsurdbest knowledge, our
work is the first to introduce the Ant Colony metaheuriststte architectural design

field.

1.3 Organization of Dissertation

The dissertation is organized as follows: In Chapter 2, we @i review on the
Ant Colony metaheuristic method with discussion on its abtaristics. We present
our work on applying the Ant Colony metaheuristic to solveteyn partitioning prob-
lem by introducing the Augmented Task Graph as the basic hiwd@ndlingn-way
partitioning problem in Chapter 3. In Chapter 4, we discuss to solve timing and
resource constrained operation scheduling problems. iAlfms chapter, we will in-
troduce the ExpressDFG benchmark suit we constructed. ame denchmark set
will also be used in evaluating the design space exploratigarithm. We look into

the parameter sensitivity issues experimentally. We thtoe the duality based design

10

space exploration approach in Chapter 5. To lay the theatefbundation, we will
first prove an important theorem regarding duality betwesmng and resource con-
strained scheduling. Moreover, we will explain why ACO-bdscheduling algorithms

are favored in the proposed exploration framework. We aateclvith Chapter 6.

11

Chapter 2

Ant Colony Metaheuristic

2.1 Nature Inspired Metaheuristics

As we have indicated in the previous chapter, fundamentiiteictural decisions
often rely on solving\(P-hard combinatory optimization problems. With increasing
complexity of these problems in today’s applications, itdraes impossible to obtain
the exact optimal solutions within a reasonable computatiad we have to use heuris-
tic methods to hopefully obtain close-to-optimal resul@ne important approach for
doing so is to select and utilize a metaheuristic method.

A metaheuristic is a heuristic method for solving a very gahelass of compu-
tational problems. It attempts to provide an efficient frarmek which combines user
given black-box procedures. Such procedures are usugdljcapon specific heuris-

tics themselves. The name combines the Greek prefix “metsy@nd”, here in the

12

sense of “higher level”) and “heuristic” (fromupiokelv, heuriskein, “to find”). Meta-
heuristics are generally applied to problems for whichehgmno satisfactory problem-
specific algorithm or heuristic; or when it is not practicaimplement such a method.
Most commonly used metaheuristics are targeted to contriahbptimization prob-
lems.

The simplest and most well known metaheuristic perhapsasHili Climbing
method [82]. It is an optimization technique that belongthefamily oflocal search
algorithms. The relative ease in implementation makes irg popular first choice.
However, this a simple method often fails to provide highlifuaesults since it can
easily get trapped within local minima.

In the past decades, a series of metaheuristic methods kavedevised and suc-
cessfully applied to a wide range of applications. It isiesting to notice that the best

performing metaheuristics are almost inspired by nature.

Simulated annealing is a generic probabilistic meta-algorithm for finding glbbp-
tima in large search space [56]. It was inspired by the aimgalocess in met-
allurgy, a technique involving heating and controlled coglof a material to in-
crease the size of its crystals and reduce their defectsh@&iecauses the atoms
to move from their initial positions (a local minimum of th&ernal energy) and
wander randomly through states of higher energy; the slairog gives them a

chance of finding configurations with lower internal eneitggrt the initial one.

Genetic algorithms use techniques inspired by evolutionary biology such asrinh

13

tance, mutation, selection, and crossover (also callezhtbmation) [70]. They
essentially solve the problems under consideration bylsitimg the evolutionary
process, in which a population of abstract representafeaiedchromosomesr

the genotype or the genome) of candidate solutions (caligiduals, creatures,

or phenotypes) evolves toward better solutions.

Artificial neural networks borrow the concept from how the human brain processes
information by using an interconnected group of artificiaurons [1]. In solv-
ing an optimization problem, artificial neural networks aseathematical model
or computational model for information processing based oonnectionist ap-

proach, in which each processing unit is to simulate a inldizi neuron.

The Ant Colony Metaheuristic is a relatively new additionthe family of nature
inspired algorithms for solving\'P-hard combinatory problems. Also known as Ant
Colony Optimization (ACO) or Ant System (AS) algorithrand originally introduced
by Dorigoet al.[28] in 1996, it is a cooperative heuristic searching algpon inspired
by the ethological study on the behavior of ants. Figuredd.dows a laboratory nest
constructed by a Leptothorax ant colony. The shown laboyatest is made of two
microscope slides separated by four 1mm thick cardboatdrgjlone pillar at each
corner. It closely approximates the rock crevices thesecalnies choose as nest
sites in nature and facilitates easy observation on theemors. The blue dots are

colored sand blocks from a pile provided outside the nesttkdt the ants have used

LIn the rest of the discussion, we may use these terms integeladly if not otherwise indicated

14

(a) (b)

Figure 2.1: (a) A laboratory nest of a Leptothorax ant colony; (b) Expemt settings used in

[25].

15

for building a perimeter wall of the nest.

It was observed [25] that ants — who lack sophisticated misi@ould manage to
establish the optimal path between their colony and the smadice within a very short
period of time. This is done by an indirect communicationwnasstigmergyvia the
chemical substance, @heromonegleft by the ants on the paths. Though any single
ant moves essentially at random, it will make a decision erditection biased on
the “strength” of the pheromone trails that lie before it,endn a higher amount of
pheromone hints a better path. As an ant traverses a pa#infiorces that path with
its own pheromone. A collective autocatalytic behavior egas as more ants will
choose the shortest trails, which in turn creates an evegerdamount of pheromone
on those short trails, which makes those short trails m&edyito be chosen by future
ants. The experiment setup for the study done in [25] is shiowFigure 2.1(b), in
which the ants converge to the shortest path between thatiand food source amongst
four possible alternatives. The ACO algorithm is inspirgdsbich observation. It is a
population based approach where a collection of agentsecatigptogether to explore
the search space. They communicate via a mechanism ingitéignpheromone trails.

The algorithm can be characterized by the following steps:

1. The optimization problem is formulated as a search prolde a graph;

2. A certain number of ants are released onto the graph. EaiVvidual ant tra-
verses the search space to create its solution based orsthbuded pheromone

trails and local heuristics;

16

3. The pheromone trails are updated based on the solutiand foy the ants;

4. If predefined stopping conditions are not met, then refleaffirst two steps;

Otherwise, report the best solution found.

2.2 ACO for Travel Salesman Problem

One of the first problems to which ACO was successfully apphas the Travel-
ing Salesman Problem (TSP) [28], for which it gave compatitesults compared to
traditional methods.

The objective of TSP is to find a Hamiltonian path for the gigeaph that gives the
minimal length. More specifically, a TSP can be represenjed tomplete weighted
directed graplc = (V,E,d) whereV = {1,2,...,n} is a set of vertexes or citieg, =
{(i,1)](i,]) e VxV}is a set of edges, ardlis a weight function which associates a
numeric weightl;j for each edgéi, j) in E. This weight is naturally interpreted as the
distance between cityand j in TSP. The objective is to find a Hamiltonian path @r
which gives the minimal length.

In order to solve the TSP problem, ACO associates a pherotmaihfor each edge
in the graph. The pheromone indicates the attractivenetseeoddge and serves as a
global distributed heuristic. For each iteration, a cartaimber of ants are released
randomly onto the nodes of the graph. An individual ant whilbose the next node of

the tour according to a probability that favors a decisiorihaf edges that possesses

17

higher volume of pheromone. Upon finishing of each iterattbe pheromone on the
edges is updated. Two important operations are taken ipli@somone updating pro-
cess. First, the pheromone will evaporate, and secondlplieeomone on a certain
edge is reinforced according to the quality of the tours inclwhhat edge is included.
The evaporation operation is necessary for ACO to effelgtieoid local minima and
diversify future exploration onto different parts of thesgh space, while the reinforce-
ment operation ensures that frequently used edges and edigiesned in better tours
receive a higher volume of pheromone, which will have betteance to be selected
in the future iterations of the algorithm. The above progesspeated multiple times
until a certain stopping condition is reached. The bestlirésund by the algorithm is
reported as the final solution.

The algorithm associates a pheromone trigifor each edggi, j) in E. It indicates
the attractiveness of the edge and serves as a global disttibeuristic. Initially;;;
is set with some fixed valur). For each iteratiorm ants are released randomly on the
cities, and each starts to construct a tour. Every ant wilehmemory about the cities
it has visited so far in order to guarantee the constructedisoa Hamiltonian path. If
at stept the ant is at city, the ant chooses the next cityprobabilistically according to
a probability:

O s | not visited
pij = Zk(Tie () Nje) (2.1)
0 otherwise

where edgesi, k) are all the allowed moves from nix is a local heuristic which is

defined as the inverse dfj, a and3 are parameters to control the relative influence of

18

the distributed global heuristigy and local heuristiq)ik. Intuitively, the ant favors a
decision on a edge that possesses higher volume of pherdnadraand better distance
cost. Upon finishing of each iteration, the pheromone tsailpdated according to the
tours in which itis included. In the mean time, a certain amtai the it will evaporate.
More specifically, we have:
m

Tij (t) = p-Tij (t) +kzlAtE‘j (t) where 0< p < 1. (2.2)
Herep is the evaporation ratio, arm}j. = Q/Lk if edge(i, j) is included in the tour ant
k constructed, otherwislkr}‘j =0. Qis afixed constant to control the delivery rate of the
pheromone, whild is the tour length for ank. Two important operations are taken
in this pheromone trail updating process. The evaporatpmraiion is necessary for
AS to be effective and diversified to explore different partshe search space, while
the reinforcement operation ensures that frequently udgeéssand edges contained
in better tours receive a higher volume of pheromone andhaile better chance to be
selected in the future iterations of the algorithm. The &ymocess is repeated multiple

times until certain ending condition is reached. The besiltéound by the algorithm

is reported. Figure 2.2 gives a visual illustration on how éihove process works.

2.3 ACO for Other Combinatory Problems

When compared with existing algorithms over a set of diffitesting cases of the

TSP, the ACO method achieved very competitive results [28pe on result quality

19

ba 7 N
\,,)

X 7
/- i |
1 2 3 4

Figure 2.2: An illustration on how ACO-TSP works.

(1) Single ant constructs a solution; (2) Multiple solusaare constructed by all the ants indi-
vidually;

(3) The pheromone trails adaptively adjust their valuesnguthe iterations; (4) The optimal

solution emerges as the search learns from its experience.

or the computing time. Motivated by this success, reseasdhave since formulated
ACO methods for a variety of tradition&{ P-hard problems. These problems include
the maximum clique problem [34], the quadratic assignmeoiblpm [37], the graph
coloring problem [22], the shortest common super-sequpraaem [61, 71], and the
multiple knapsack problem [35]. ACO also has been appligufdotical problems such
as the vehicle routing problem [36], data mining [77] andwwek routing problem
[83]. More recently, ACO approach was also successfullybfomformatics applica-
tion [87]. Table 2.1 gives a brief summary on the problems$ A0 algorithms have

been devised and related results.

20

Problem Performance

Traveling salesman state-of-the-art / good performance
Quadratic assignment state-of-the-art / good performance
Job-Shop Scheduling state-of-the-art / good performance
Vehicle routing state-of-the-art / good performance
Sequential ordering state-of-the-art performance
Shortest common supersequence good results

Graph coloring and frequency assignmeigood results

Bin packing state-of-the-art performance
Constraint satisfaction good performance

Multi-knapsack poor performance

Timetabling good performance

Optical network routing promising performance

Set covering and partitioning good performance

Parallel implementations and models | good parallelization efficiency
Routing in telecommunications networksstate-of-the-art performance

Protein Folding state-of-the-art performance

Table 2.1: Applications of ACO method and their qualitative perforroan

2.4 Convergency of ACO Method

The convergence property of the ACO approach was investigaf44, 46]. It was
shown that ACO with a time-dependent evaporation factor tima-dependent lower
pheromone bound converges to an optimal solution with gaidibhaexactly one. The
result enhanced the work presented in [45, 43, 91] for ACQrélgms to the strength
of the well-known convergence property of the Simulated dalimg meta-heuristic.

As in Simulated Annealing, it turns out that a convergencargutee can be obtained

21

by a suitable speed of “cooling” (i.e., reduction of the iefige of randomness). First,
in the basic ACO formulation, the geometric pheromone deerd caused by constant
evaporation factor on not reinforced arcs is too fast andd€en general) to premature
convergence to suboptimal solutions. On the other handydating a fixed lower
pheromone bound stops cooling at some point and leads tomassdarch-like behavior
without convergence. In between lies a compromise of aligwiheromone trails to
tend to zero, but slower than geometrically. This can beeag either by decreasing
evaporation factors, or else by “slowly” decreasing lowbeg@mone bounds. In a
certain window of the cooling speed, we get convergenced®fiimal solution with
probability of one.

However, it is worth noting that that the theoretical coglgpeeds indicated in [44]
are also the most efficient ones, where efficiency is meadwdle average runtime
required to find a solution of a sufficiently good quality (sagmly p% worse than the
best solution with some pre-defingll In the typical area of application for ACO, i.e.
the area ofA P-complete combinatorial optimization problems, we cammqgiect to
obtain an algorithm providing optimal solutions in a shastiputation time. Again,
as in Simulated Annealing, it might turn out that faster aogpkhan indicated by the
theoretical scheme is advantageous for finite-time comgutithat is for getting quick
convergence, it may be worthwhile to pay the price of conseog to suboptimal so-
lutions. However, experimental studies with slightly desing evaporation factors or

lower pheromone bounds falling slightly slower than geaioally might be interest-

22

ing, especially for applications where the user is willimgitvest a high amount of
computation time for obtaining excellent solution quality addition to the (so-called
“elitist”) pheromone update mechanisms investigated éhper, the author also sug-
gests computational experiments with decreasing evaporaictors and/or decreasing
lower pheromone bounds for other empirically successfdbaitgmechanisms, such as
the rank-based update rule introduced by Bullheimer, Hawdl Strauss [15]. It would
not be a surprise if some moderate form of retarding the nggdrocess could, in a
considerable number of cases, be able to further improvedhiermance of present

ACO implementations.

2.5 MAX-MIN Ant System (MMAS)

Premature convergence to local minima is a critical alparit issue that can be
experienced by many heuristic optimization algorithms.wkshave discussed in the
previous section, though it was shown [44] that ACO with aetidependent evapora-
tion factor or a time-dependent lower pheromone bound agegeo an optimal solu-
tion with probability of exactly one, it failed in providingny constructive approach.
Balancing exploration and exploitation is not trivial irege algorithms, especially for
algorithms that use positive feedback such as ACO.

The MAX-MIN Ant System (MMAS) [92] is one framework to prowdsuch bal-
ance in an adaptive manner. It is built upon the original AQgpathm and is specifi-

cally designed to address the premature convergence prolilenproves the original

23

ACO by providing dynamically evolving bounds on the pheromdrails such that the
heuristic value is always within a limit to that of the bestipaAs a result, all pos-
sible paths will have a non-trivial probability of being seled and thus it encourages
broader exploration of the search space.

More specifically, MMAS forces the pheromone trails to betéd within evolving
bounds, that is for iteratioh) Tmin(t) < Tjj(t) < Tmax(t). If we usef to denote the cost
function of a specific solutios, the upper boundmax [92] is shown in (2.3). Here

$°(.) represents the global best solution found so far in alliit@na.

1 1

tmadl) = = Frgb 1)) (2:3)

The lower bound is defined as (2.4):

o Tmax(t)(1— /Poest)
Tin(t) = (avg— 1)/ Poest @4)

whereppest € (0, 1] is a controlling parameter to dynamically adjust the bounfdtie
pheromone trails. The physical meaningmts; is that it indicates the conditional
probability of the current global best soluti§P(t) being selected given that all edges
not belonging to the global best solution have a pheromaore ¢ 1,in(t) and all edges

in the global best solution havgax(t). Hereavgis the average size of the decision
choices over all the iterations. For a TSP problenm afties,avg= n/2. It is noted
from (2.4) that loweringppest Will result in a tighter range for the pheromone heuristic.
AS Ppest— 0, Tmin(t) — Tmax(t), which means more emphasis is given to search space

exploration.

24

Theoretical treatment of using the pheromone bounds aret atlbdifications on
the original ACO algorithm are proposed in [92]. These idela pheromone updating
policy that only utilizes the best performing ant, init@hg pheromone with,ax and
combining local search with the algorithm. It was reporteat tMMAS was the best

performing ACO approach and provided very high quality gohs.

25

Chapter 3

System Partitioning

Modern digital systems consist of a complex mix of compotadi resources, e.g.
microprocessors, memory elements and reconfigurable. I8g&tem partitioning — the
division of application tasks onto the system resourcesyg@n important role for the
optimization of the latency, area, power and other perfoiceametrics. With the ad-
vent of complex heterogenous system architectures th&icoe variety of computing
components like microprocessors, memory elements andfigaoable logic, system
partitioning becomes an important step in the system dgsigeess, i.e. how to op-
timally assign computational tasks to the different systemmputing resources while
respecting pre-defined design constraints.

In this chapter, we present a novel approach for this proldaesed on the Ant
Colony Optimization, in which a collection of agents coggerusing distributed and

local heuristic information to effectively explore the sgaspace. The proposed model

26

can be flexibly extended to fit different design requiremeBigperiments show that our
algorithm provides robust results that are qualitativébge to the optimal with minor
computational cost. Compared with the popularly used satedl annealing approach,
the proposed algorithm gives better solutions with sultistareduction on execution
time for large problem instances. Moreover, a hybrid apgimdhat combines our algo-

rithm and SA achieves even better results with great runtedaction.

3.1 Introduction

The continued scaling of the feature size of the transistibsaon yield incredibly
complex digital systems consisting of more than one biltransistors. This allows ex-
tremely complicated system-on-a-chip (SoC), which mayssirof multiple processor
cores, programmable logic cores, embedded memory bloaksledicated applica-
tion specific components. At the same time, the fabricatemhiques have become
increasingly complicated and expensive. Current day desiigelow 150 nm feature
size) already cost over one million dollars to fabricate.e3d forces have created a
sizable and emerging market for programmable platformschvhave emerged as a
flexible, high performance, cost effective choice for endsetlapplications.

A programmable platform is a device consisting of programleaores. Its pro-
grammability allows application development after it ibri@ated. Therefore, the func-
tionality of the device can change over time. This is espgaraportant for embedded

systems where the hardware cannot be easily upgraded @mputers in cars). As

27

standards change, one just need to reprogram the devicer taain physically replace
the hardware. For these reasons, programmable platforonglpra good price point
for low volume applications. It allows “low” end users to ate designs using newest,
highest performance manufacturing process. Furthernpoogrammable devices en-
able fast prototyping, which allows for faster time to marke

Xilinx Virtex [108] and Altera Excalibur devices [6] are twexamples of such pro-
grammable platform. These platforms may consist of hards;g@rogrammable cores
and/or soft cores. A hard core is a dedicated static praugssiit, e.g. ARM processor
in Excalibur or the PowerPC core in Virtex. A programmableecs some kind of
programmable logic device (PLD) (e.g. FPGA, CPLD). A softeis a processing unit
implemented on programmable logic, e.g. CAST DSP core [b8Videx or Nios [7]
on Excalibur. The programmability in these devices rangas fextremely fine grain
control in PLD, to coarse grain control in the microproces$ais allows for fine grain
optimizations (bit level optimizations in the PLD), insttion level optimizations (on
processor cores) and task level optimizations (acrosg@numable cores).

Comparing with the traditional single CPU architecturegsia complex pro-
grammable platforms require more effective computeréiksign (CAD) techniques
to allow design space exploration by application programsm@®ne special challenge
resides at the system level design phase. At this stage piiieation programmer
works with a set of tasks, where each task is a coarse gragtedf €omputations

with a well defined interface based on the application. [Ddffe from single CPU

28

architecture, a key step in the mapping of applications tinése systems is to assign
tasks to the different computational cores.

This partitioning problem is\ P-complete [38]. Although it is possible to use
brute force search or ILP formulations [74] for small prablanstances, generally, the
optimal solution is computationally intractable. Thusauires us to develop efficient
algorithms in order to automatically partition the tasksoathe system resources, while
optimizing performance metrics such as execution timejware cost and power con-
sumption.

It is worth mentioning that though the above partitioninglgem shares certain
similarity with the Job Scheduling Problem (JSP) [40], &eotwell-studied\ P-hard
problem in the operation optimization community, they aradamentally different.
First, thejobsin JSP are independent from each other while the computdtiasks are
interrelated and constrained by data dependencies amffegedt tasks. Secondly, for
every job in JSP, each of its operations is explicitly assted with a resource known
a priori, while a computational task on the programmable platforipassible to be
allocated on different resources as long as the systemresgents are met. Finally,
the optimization target in JSP is only constrained by thedd@m that no two jobs
are processed at the same time on the same resource. Howetleg, above task
partitioning problem, besides this constraint, we alsalirespect other system design
requirements, such as limits on power consumption and leedeost.

Some early works [32, 42, 90, 95] investigate the hardwaf®yare partitioning

29

problem, which is a special case of the system partitioniadplem discussed here
It is difficult to name a clear winner [30]. Partitioning igsufor system architectures
with reconfigurable logic components have also been sty@ietl7, 62]. These works
assume a reconfigurable device coupling with a processer iootheir partitioning
problem.

Different heuristic methods have been proposed to try tecéffely provide sub-
optimal solutions for the problem. These methods includeufated Annealing (SA),
Tabu Search (TS), and Kernighan/Lin approach [32, 52, 3363,Evolutionary meth-
ods [50, 75] using Genetic Algorithm (GA) are also studiedftBare tools based
on these heuristics have been developed for system levidigoaing problem. For
instance, in COSYMA [23], the application tasks are mapp®d the system architec-
ture using Simulated Annealing. Wiangtoeigal. [106] compared three popularly used
heuristic methods, and provided a good survey on the maidivahd the related work of
using task level abstraction. These methods provide padclgorithms for achieving
acceptable the system partitioning solutions, howeveyy #iso have different draw-
backs. Simulated Annealing suffers from long executioretior the low temperature
cooling process. For Genetic Algorithm, special effort traes spent in designing the
evolutionary operations and the problem-oriented chram@srepresentation, which
makes it hard to adapt to different system requirements.

In this chapter, we present a novel heuristic searchingogaprto the system par-

IHardware/software partitioning is equivalent to the syspartitioning problem where there is only
one microprocessor and one “hardware” resource i.e. ASIC.

30

titioning problem based on thent Colony OptimizatiofACO) algorithm [28]. In the
proposed algorithm, a collection of agents cooperate hayéd search for a good parti-
tioning solution. Both global and local heuristics are cameld in a stochastic decision
making process in order to effectively and efficiently explthe search space. Our
approach is truly multi-way and can be easily extended talleaa variety of system
requirements.

The remainder of the chapter is organized as follows. Se@&ia details the pro-
posed algorithm for the constrained multi-way partitianproblem. As the basis of our
algorithm, a generic mathematic model for multi-way paotiing is also introduced in
this section. In Section 3.3.1, we present the experimémiErogenous architecture
and the testing benchmark we used in our work. We analyzexperienent results
and give assessment on the performance of the proposedaigan Section 3.3. We

summarize our work on this topic with Section 3.5.

3.2 ACO for System Partitioning

3.2.1 Problem Definition

A crucial step in the design of systems with heterogenouspeimg resources is
the allocation of the computation of an application ontodiferent computing com-
ponents. This system partitioning problem plays a dominalet in the system cost

and performance. It is possible to perform partitioning attiple levels of abstraction.

31

For example, operation (instruction) level partitionisglone in the Garp project [16],
while the good deal of research work [52, 31, 106, 23] are erfuhctional task level.

In this work, we focus on partitioning at the task or functibkevel. One of the
reasons we select the task level partitioning is that it mm@nly found that a bad par-
titioning in the task level is hard to correct in lower levektraction [53]. Additionally,
task level partitioning is typically requested in the earktage of the design so that
further hardware synthesis can be performed.

We formally define the system partitioning problem as fobow

For a given system architecture, a set of computing resswace defined for the
system partitioning task. We ugtto represent this set where= |R| is the number of
resources in the system. The notatip(i = 1,...,r) refers to theth resourcer.

An application to be partitioned onto the system is given asteof taskslypp =
{t1,...,tn}, where the atomic partitioning unit,task is a coarse grained set of com-
putation with a well defined interface. The precedence camts between tasks are
modeled using a task graph.tAsk graphs a directed acyclic graph (DAG = (T,E),
whereT = {to,tn} N Tapp, @andE is a set of directed edges. Each task node defines a
functional unit for the program, which contains informatiabout the computation it
needs to perform. There are two special nagemndt, which are virtual task nodes.
They are included for the convenience of having an uniquésgeand ending point of
the task graph. An edg®; < E defines an immediate precedence constraint between

ti andtj. For a given partitioning, the execution of a task graph rarthe following

32

way: the tasks of different precedence levels are seqligngéieecuted from the top
level down, while tasks in the same precedence level butakal on different system
components can run concurrently. Notice the precedencgtreant is transitive. That

is, if we let— denote the precedence constraint, we have:
(ta—) At —t) =>ta—tc (3.1)

In a task graph, a task can only be executed when all the tagk$igher precedence
level have been executed.

If a system contains only one processing resource, e.g.exggrurpose processor,
it is trivial to determine the system performance; only tegugential constraints be-
tween tasks need to be respected. For a system that conteterogenous computing
resources, the partitioning of the tasks onto differenbueses becomes critical to the
system performance. There aPeunique partitioning solutions, wheheis the number
of the actual tasks. Some of these solutions may be infeaa#they violate system
constrainté. We call a partitionindeasiblewhen it satisfies the system constraints. An
optimal partitioning is a feasible partitioning that minimizes thigiective function of
the system design.

Thus, the multi-way system partitioning problem is forngalefined as: Find a set
of partitionsP = {P4,...,P} onr resources, wherg C T, B NP; = @for anyi # |

that minimizes a system objective function under a set aesysonstraints.

2For example, a partitioning solution may allocate a largmber of tasks to the reconfigurable logic.
However, the reconfigurable logic has a fixed size, and tree@reupied by those tasks must be less than
the area of the reconfigurable logic

33

The objective function may be a multivariate function ofeiént system parame-
ters (e.g. minimize execution time or power consumptionjevystem cost (e.g. cost
per device must be less than $5) is an example of a systenramstn this work, we
use the critical path execution time of a task graph as thectilsg function and a fixed

amount of area as the constraint.

3.2.2 Augmented Task Graph

To solve the multi-way application partitioning problemewntroduce the Aug-
mented Task Graph as the underlying model. Amgmented Task GragATG) G’ =
(T,E’,R) is an extension of the traditional task gra@tdiscussed above. It is derived
from G as follows: Given a task grap® = (T,E) and a system architectuRe each
nodet; € T is duplicated inG'. For each edge; = (t;,tj) € E, there exist directed
edges front; tot; in G/, each corresponding to a resourcéRinMore specifically, we
have

el = (ti,tj,rk), whereaj € E, andk=1,....r (3.2)

In ATG, an edgee,-’jk represents theinding of edgee;j with resourcery. Our al-
gorithm uses these augmented edges to make a local dedisamkanode; about the
binding of the resource on tas}é. We call this araugmented edgéelhe original task
graphG is called thesupportof G'.

An example of ATG is shown in Figure 3.1(a) for a 3-way pawhing problem. In

3This will be further explained in Section 3.2.3

34

this case, we assume the system contains 3 computing respa&®owerPC micro-
processor, a fixed size FPGA, and a digital signal proce$38PJ. In the graph, the
solid links indicate that the pointed task nodes are alexttd the DSP, while the dotted
links for tasks partitioned onto PowerPC and dot-dashdd liar FPGAs. Itis easy to
see that partitioning algorithm based on the ATG model caedsdly adapted if more
resources are available. All we need to do is add additiongireented edges in the

ATG.

"""" > power PC
—> DSP

—-—-> FPGA

©

(a) (b)

Figure 3.1: ATG for 3-way Partitioning

Based on the ATG model, a specific partitioning for the tagkshe multiple re-
sources is a grapBy, whereGy, is a subgraph o6’ that is isomorphic to itsupport
G, and for every task nodgin Gp, all the incoming edges df are bounded with the
same resource (say) Further, we say that partitio@, allocates task; to resource.

Figure 3.1(b) shows a sample partitioning for the ATG iltastd in Figure 3.1(a). In

35

this partitioning, task 1, 2, and 3 are allocated onto thed?B\&, task 4 is partitioned
on to the DSP and task 5 for the FPGAS. tASs a virtual node, we do not care the
status of the edge fromg to t,,.

To make our model complete dmt operation is defined, which is a bivariate func-

tion between a task and a resource:

fik =tier,Vti e T,VrceR (3.3)

It provides a local cost estimation for assigning thsk resourcey. Assuming we are
only concerned with the execution time and hardware arearipartitioning , we can

let fix be a two item tuple, i.e.

fik =t o1 = {timey, areay } (3.4)

Obviously, other items, such as power consumption estimatian be easily added if
they are considered. The dot operation can be viewed as amaetim of the work

performed by the cost estimator.

3.2.3 ACO Formulation for System Partitioning

Based on the ATG model, our goal is to find a feasible pariitig&,, for G', which
provides the optimal performance subject to the predefigstéms constraints. We in-
troduce a new heuristic method for solving the multi-waytegspartitioning problem

using the ACO algorithm. Essentially, the algorithm is a tirajent* stochastic de-

4We use the terms “agent’and“ant” interchangeably.

36

cision making process that combines local and global h&gesiduring the searching

process.

1: construct ATGG' based orG andR, andPyest < @
2: while ending conditioning is not meto
3:

10: end while
11: returnPyest

procedure ACOSystemPartitiors,R)
input: DFG G(V, E), resource seR
output: system partitiorPyes;to minimize latency under hardware cost constraint

© o N o a &

for 1<l <mdo
Initialize pheromone traitjjc < To for eachef;, in G’
ant(l) crawls ovelrG’ to create a feasible partitioniriy;
EvaluateR based on its execution timtiene(R).
If B is better tharPyes, updatePyest

end for

Update the pheromone trails on the edges as follows:

m
Tijk — (1=P)Tijk + > ATS& (3.5)
=1

0 otherwise

R @0

~—+

where 0< p < 1 is the evaporation rati&c=1,...,r, andQ is a fixed constar
to control the delivery rate of the pheromone.

Algorithm 1: ACO Algorithm for System Partitioning

The proposed algorithm proceeds as illustrated by Algorith Step 5 is an impor-

tant part in the proposed algorithm. It describe how an iiddial ant “crawls” over the

ATG and generates a solution. Two problems must be addrassied step:

1. How does the ant handle the precedence constraints betasenodes?

37

2. What are the global and local heuristics and how can the&ppéed?

3. Finally, how does the ant guarantee to find a feasibletyartior the given ap-

plication?

To answer these guestions, each ant traverses the graplopolagically sorted
manner in order to satisfy the precedence constraints bfrtades. The trip of an ant
starts fromtg and ends at,,, the two virtual nodes that do not require allocation. By
visiting the nodes in the topologically sorted order, weugaghat every predecessor
node is visited before we visit the current node and thatyeeroming edge to the
current node has been evaluated. We can see later that bgiegfthis ordering, we
not only make sure that the found partition could be execabedectly but also provide
an important preparation for the ant to make resource dlmtdecision upon entering
a new task node.

At each task nodg wherei # n, the ant makes a probabilistic decision on the allo-
cation for each of its successor task notjésased on the pheromone on the edge. The
pheromone is manipulated by the distributed global heargk) and a local heuristic
such as the execution time and the area cost for a specifgnassint of the successor
node. More specifically, an ant fitguesses that nodgto be assigned to resourog

according to the probability:
B
TNk
Y-t n?l

Herea andf are parameters to control the relative influence of theitigied global

Pijk = (3.7)

heuristicTjjx and local heuristia) j if tj is assigned to resourag. In our work, we

38

simply use the inverse of the cost of having tagkllocated to resource asn .
We focus on achieving the optimal execution time subjectaiaare area constraint,

therefore a simple weighted combination is used to estithateost:

COStk = W - timejk + W, - areajy (3.8)

wheretimejx andareajy are the execution time and hardware area cost estimates, con
stantsw; andwg are scaling factors to normalize the balance of the exeatitioe and
area cost. It is intuitive to notice that the probabilgy, favors an assignment that
yields smaller local execution time and area cost, and agrasent that corresponds
with the stronger pheromone. Agdimej, andareay are obtained via the dot opera-
tion explained above in Section 3.2.2. Based on the propAs&model, by altering
the dot operation, one can easily adapt the cost functioonsider other constraints
such as power consumption limit, while keep the algorithseasally intact.

Upon entering a new nodg, the ant also has to make a decision on the allocation
of the task node¢j based on the guesses made by all of the immediate precedénts o
Recall that the ant travels the ATG in a topologically someahnner, it is guaranteed
that those guesses are already made. Different strategiebec used on how such
allocation decision is made. For example, we can simply nlaéeassignment based
on the vote of the majority of the guesses. In our implementathis decision is again

made probabilistically based on the distribution of thespes, i.e. the possibility of

39

assigningj torg is:

count of guessy for t;
count of immediate precedentstef

Pjk = (3.9)

The above decision making process is carried by the antalhthe task nodes in the
graph have been allocated.

Of course, during the above resource allocation proceshéarodd;, it is possible
that we encounter the situation where some of the allocatmices become invalid.
For example, we may find that the current available FPGA areat sufficient to hold
the realization of;. For these cases, we simply reject the invalid resourceatilans
by making the number of such guesses zero.

Once task nodg is allocated on resourag, it remains unchanged during the cur-
rent tour for an ant. This ensures that each task is unigquesigiaed to one specific
resource. Furthermore, we can obtain the cost (such asitsig@n time and area cost)
for t; on resourcey by the querying the pre-computed cost informationtfoon ry
using the dot operation discussed previously. In turn, titeeal path of the applica-
tion up to this point will be updated together with the refred resource availabilities.
By carefully applying all the above measurements, we camaguiee that a partition
constructed by the ant is feasible.

As illustrated in Step 5 by the algorithm, at the end of eagfation, the pheromone
trails on the edges are updated according to Equation (Bdb)&6). First, a certain
amount of pheromone is evaporated. From an optimizationtmdiview, the evapo-

ration step helps the system escape from local minimumsorsigg thegood edges

40

are reinforced. This reinforcement creates additionatgrhene on the edges that are
included on partition solutions that provide shorter exiecutime for the task graph.
The given updating policy is similar to that reported in [28Jotice here that every
ant will contribute to the pheromone update independeraield on the quality of the
partition it finds. Alternative reinforcement methods [tah also be applied here. For
example, we explored the strategy of updating the pherortraile on the edges that
are included only in the best tour amongst all the returnetitipms at each iteration,
and we observed no noticeable difference regarding to taktgof the final results.
Finally, each run of the algorithm is composed of multipkrations of the above
steps. Two ending possible stopping conditions are: 1) ltaighm ends after a fixed
number of iterations, or 2) the algorithm ends when there ismprovement found after
a number of iterations. In the same run, the global pheronaiie 1;jx are initialized
once as indicated in step 1 at the start of the algorithm, tepldat the end of each
iteration, and inherited by the next iteration. The bestipan found so far by the
ants is also updated dynamically at the end of each iteratmahreported as the final
result of the run. Because of the stochastic nature of tharigthgn, multiple runs can
be conducted and may provide different results. Anothesaeao have multiple runs
is to test the stability of the proposed algorithm in acheMiigh-quality results, as we
will discuss in Section 3.3. For our experiments reporta@ heach run is independent

and is started from scratch without using any result obthingrevious runs.

41

3.2.4 Complexity Analysis

The space complexity of the proposed algorithm is boundeth&yxomplexity of
the ATG, namelyO(rN?), whereN is the number of nodes in the task graph.

For each iteration, each ant has a run tilm confined byO(rN?). For a run with
| iterations usingn ants, the time complexity of the proposed algorithrfAst + E;) «
m=x |, whereE; is the evaluation time for each generated partitioning.hmpractical
situation,E; > Ant. Comparing with brute force search which has a total run tie

(rN) x E, the speedup ratio we can achieve is:

(MN) % Ey o

~ 3.10
mx |« (Anti+E) mx| (3.10)

speedup=

The number of ants in each iterationdepends on the problem that is being solved
by the ACO algorithm. For the TSP problem, the authors assignto be a constant
multiple of total number of nodes in the TSP problem instd@8. For the multiway
partitioning problem based on the ATG, we propose two péssilays to determine
the ant number: 1) based on the average branching factoe afriinal task grapks;

or 2) the maximum branch number of the original task gr@ph

3.2.5 Extending the ACO/ATG method

Besides the ability to adjust itself as the number of cormgutesource numbers in
the system varies, the ACO/ATG method can be easily extetodfiddifferent system
requirements. Here we will discuss a few possible ways faresoommonly encoun-

tered design scenarios.

42

During system design phase, it is common that certain coatiputl tasks are pre-
determined or preferred to run on certain resources. THatisach taskj € T, it is
associated with a probability sép?, ..., pf } wherer is the size oR. Among the ele-
ments of the set, some of them can be zero when the corresgomdiources have been
determined to be not suitable for the given task. By modgytime decision strategy in
Equation (3.7), we can easily accommodate this requirefmgnising the following

equation:
pE(TiOJ!kn?k
Y1 pETiOJ!I nﬁ

Similar to the above approach, other task dependent inftowmasuch as profiling

Pijk = (3.11)
statistics can also be considered. In this case, the prdgabstribution set is asso-
ciated with the augmented edges in the ATG, instead withdkeurces. That is for

each edge,(jk defined in Equation (3.2), there exists a frequency proltabalue p;jx,

which satisfies the following conditions:

Pijk = Pirjk ifi=i"andj = |’
(3.12)
Yhpij =1 wherel =1,...,r
Using the two approaches discussed here, one can furthefynttoel proposed al-
gorithm to handle more complicated system features, sudiffasent communication
channels, where each channel has a different bandwidthaaewicl. These channels
can either be associated with the augmented edges if thdyoareled with the hard-

ware realization, or may be treated as a task related atribthe task can only use

one certain type channel.

43

Finally, by altering the definition of théot operation in Equation (3.3), better local
cost estimation model can be introduced and integratedealodial heuristics. Simi-
larly, different target objective functions for definingetglobal heuristie) in Equation
(3.7) can be applied. For example, power consumption cagdpegated as part of the

consideration during the process.

3.2.6 Comparing with the Original ACO

In this section, we will summarize the proposed algorithntbsnparing it with the
original ACO approach proposed in [28].

Perhaps the most fundamental contrast between our workharatiginal ACO re-
ported in [28] is that they try to solve different domain plehs. Though the ACO
approach is known as a meta-heuristic method for addresgitignization problems,
one still needs to form specific strategies in order to effebt utilize the domain spe-
cific characteristics for the problem in hand. To our bestwiedge, the method we
proposed here is the first approach in the literatures fatirsgplapplication partitioning
problem using the ACO heuristics. Comparing with the TSPlenm that the original
ACO algorithm was set to address, the application pariitigpproblem poses specific
issues in formulating the ACO algorithm, even though botthem are\P-complete.

First, there is a need to develop an appropriate graph modetmulating an ACO
method for the application partitioning problem such thatglobal and local heuristics

could be meaningfully fitted in. As discussed above, the AT@lef is introduced in

44

our work as the answer, where the extended edges providbdkudttaching points for
the global and local heuristics. In contrast, the modelssge is relatively easier for the
TSP problem since the connection graph of the problem islyeaskd as the model.

Secondly, a different solution construction strategy basetdeveloped in our work
for individual ant to come up with its partition result. Inetloriginal ACO method for
the TSP problem, this issue is also relatively trivial asd¢benection between differ-
ent cities are undirectional and there is no specific comstoa the ordering of how
the cities are visited. However, in the application pastithg problem, to guarantee
the correctness of the application, stringent dependshaaveen tasks have to be re-
spected. In our formulation, a topological sorted orderngsed for individual ant to
transverse the ATG. This also has fundamental impact on heartitioning decision
is made for a task node when it is visited.

Local heuristic definition is by nature problem dependerthimn ACO framework
and has to be formulated in a domain specific manner. In tiggnati ACO method
for the TSP problem, it is straightforward to select theahse between two cities as
the local heuristic. In our work, we use a weighted combarafor this purpose since
multiple considerations are involved in defining the coshapping certain task onto a
resource.

Finally, in our work, we propose a decision making process i different from
that in the original ACO method. In the TSP problem, the ordgidion to make is to

which city the ant shall move to while constructing the Hadariltour. However, in the

45

application partitioning problem, we have to visit all thald nodes in the ATG in a
sorted order. Furthermore, when a task node is visited, wed @ make decision on
which computing resource it shall be mapped to. As discusadgkr, in our algorithm,
a two step decision making process is adopted. First, at magh, the ant makes a
“guess” for each immediate child node on how it should be redfyased on the global
and local heuristics associated with these nodes. The fewsidn is delayed until
the child node is visited by the ant and the partitioning fag hode is done using yet
another probabilistic approach over the previous “guéssesh as the one indicated

by Equation (3.9).

3.3 Experimental Results and Performance Analysis

3.3.1 Target Architecture and Benchmarks

Our experiments address the partitioning of multimedialiegfions onto a pro-
grammable, multiprocessor system platform. The targéti@acture contains one gen-
eral purpose hard processor core, a soft DSP core, and ogeaprmable core (see
Figure 3.2).

This model is similar to the Xilinx Virtex Il Pro Platform FR&[108], which con-
tains up to four hard CPU cores, 13,404 configurable logickdCLBs) and other
peripherals. In our work, we target a system containing awedaPPC 405 RISC CPU

core, separate data and instruction memory, and a fixed arobretonfigurable logic

46

...

PowerPC Shared TMS320C25 Configurable |

: DSP :
RISC Main Logic Blocks -
Processor Distributed
CPU Core Memory Core (FPGAS) Local
Memory

Figure 3.2: Target architecture

with a capacity of 1,232 CLBs, among which, 724 CLBs are aldd to be used as
general purpose reconfigurable logic (FPGA), and the rem@a®B08 CLBs embed an
FPGA implementation (soft core) of the TMS320C25 DSP prsoesore [18]. Pro-

grammable routing switches provide communication betviberdifferent system re-
sources.

This system imposes several constraints on the partigppioblem. The code
length of both the PowerPC processor and the DSP processbibmiess than the size
of the instruction memory, and the tasks implemented on FP@#st not occupy more
than the total number of available CLBs. The execution time @equired resources
for each task on different resources depends on the implatiem of the task. We
assumed the tasks are static and pre-computed. The coratianitme cost between
interfaces of different processors, such as the interfateden the PowerPC and the
DSP processor, are knovarpriori.

Tasks allocated on either the PowerPC processor or the Dffegwor are executed

sequentially subject to the precedence constraints witig@nask (i.e. instruction level

a7

precedence constraints). Both the potential parallelisaray the tasks implemented
on FPGAs and the potential parallelism among all the prasesare explored, i.e.

concurrent tasks may execute in parallel on the differestesy resources. However,
no hardware reuse between tasks assigned to FPGAs is cautsidénis would make

an interesting extension to our work, however, it is outsiteescope of this research.
The system constraints are used to determine whether aydartpartition solution is

feasible. For all the feasible partitions that do not exdéedcapacity constraints, the
partitions with the shortest execution time are considéredest.

Our experiments are conducted in a hierarchical environdogrsystem design.
An application is represented as a task graph in the top.léVe task graph, formally
described in Section 3.2.1, is a directed acyclic graph¢kviescribes the precedence
relationship between the computing tasks. A task node irtakle graph refers to a
function, which could be written in high-level languagescls as C/C++. It is ana-
lyzed using the SUIF [4] and Machine SUIF [89] tools; the tegiimported in our
environment as a control/data-flow graph (CDFG). CDFG refldee control flow in a
function, and may contain loops, branches, and jumps. Eagl im CDFGs is a basic
block, or a set of instructions that contains only one cd#ttamsfer instruction and
several arithmetic, logic, and memory instructions.

Estimation is carried out for each task node to get perfoom@haracteristics, such
as execution time, software code length, and hardware Besed on the specification

data of the Virtex Il Pro Platform FPGA [108] and the DSP pssw® core [18], we

48

Figure 3.3: Example Task Graph

get the performance characteristics for each type of dpasat Using these operation
(instruction) characteristics, we estimate the perforteanf each basic block. This
information for each task node is used to evaluate a partitgpsolution. In each time
an ant finds a candidate solution, we perform a critical fatbed scheduling over the
entire task graph to determine the minimum execution tingdi#onally, we estimate
the hardware cost and software code length for each task nblde software code
length is estimated based on the number of instructionsatetedencode the operations
of the CDFG. The hardware is scheduled using ASAP schedulaged on that we
can determine the approximate area needed to implemerssken the reconfigurable
logic. We assume that there is no hardware reuse betweenetitftasks.

We create a task level benchmark suite based on the MediaBgptications [59].

49

Each testing example is formed via a two step process thabio@® a randomly gen-
erated DAG with real life software functions. The testingqitlemarks are available
online http://express.ece.ucsb.etfuorder to better assess the quality of the proposed
algorithm while the application scales, task graphs okdéht sizes are generated. For
a given task graph, the computation definitions associatdtive task nodes are se-
lected from the same application within the MediaBench seste. Task graphs are
created using GVF tool kit [68]. With this tool, we are abletmtrol the complexity of
the generated DAGs by specifying the total number of nodésenaverage branching
factor in the graph. Figure 3.3 gives a typical example fertdsk graph we used in our

study.

3.3.2 Absolute Quality Assessment

It is possible to achieve definitive quality assessmentliergroposed algorithm
on small task graphs. In our experiments, we apply the pegpad€O algorithm on
the task benchmark set and evaluate the results with thistEtstcomputed via the
brute force search. By conducting thorough evaluation erstarch space, we obtain
important insights to the search space, such as the optiaratipns with minimal
execution time and the distribution of all the feasible piarts. More, the brute force
results can be used to quantify the hardness of the testst@nices, i.e. by computing
the theoretical expectation for performing random sangpbinthe search space. Trivial

examples, for which the number of the optimal partitionstatistically significant,

50

are eliminated in our experiments to ensure that we arettaggthe hard instances.
We also provided an ILP formulation similiar to that repdri@ [51] for the given
problem. However, the size of the problem prohibited it frbeing solvable. Unlike
the brute force search the ILP formulation does not provitaited information about
the distribution of the solution quality over the complegauch space, thus makes it

hard to quantitatively judge the hardness of the testingosesn

typical ant search result
(‘ant number = 5, iteration number = 50)

28000 [T T T

DAG5-62 ——

27000 q

26000 [A

25000 A

best execution time found
(in # of cycles)

24000 b

23000

1 1 1 1 1
0 10 20 30 40 50
number of iterations

Figure 3.4: A typical run of ant search

We give 100 runs of the ACO algorithm on each DAG in order tcaobenough
evaluation data. For each run, the ant number is set as thaga/branch factor of the
DAG. As a stopping condition, the algorithm is set to itefadetimes i.e.l =50. The
solution with the best execution time found by the ants i®regal as the result of each
run. In all the experiments, we sef = 100,Q =1,000,p=08,a=B=1,w =1

andw, = 2.

51

100%

90%

80%

70%

60%

50%

40%

30%

20%

cumulative distribution of partitioning solutions within the top range

0%

10% H

distribution of ant search results for 3-way partitioning
(25 DAGs, 100 runs for each DAG)

task size = 17

task size = 15

task size = 13

0%

2% 4% 6% 8% 10% 12% 14% 16% 18%
solution quality measured by top percentage of the search space

20%

Figure 3.5: Result quality measured by top percentage

A typical run of our algorithm is shown in Figure 3.4. It shothe best execution

time found by the ants after each iteration. In this caseattie found a partition that

provides the optimal execution time for DAG-5 very quicklyer only 20 iterations.

This behavior is consistent over all the runs we conductedagmees with the results

reported in [28] for TSP problems.

Figure 3.5 shows the cumulative distribution of the numtesadutions found by

the ACO algorithm plotted against the quality of those sohs for different problem

sizes. The x-axis gives the solution quality compared t@tlezall number of solutions.

The y-axis gives the total number of solutions (in percesfdgat are worse than the

solution quality. For example, looking at the x-axis vald€% for size 13, less than

10% of the solutions that the ACO algorithm found were owtithe top 2% of the

52

overall number of solutions. In other words, over 90% of tbkitsons found by the
ACO algorithm are within 2% of all possible partitions. Thenmber of solutions drops
quickly showing that the ACO algorithm finds very good sadus in almost every run.
In our experiments, , 263 (or 86%) solutions found by ACO algorithm are within the
top 0.1% range. Totally 203 solutions, or 882% of all the solutions, are within the
top 1% range. The figure indicates that a majority of the tesarke qualitatively close
to the optimal.

With the definitive description on the search space obtafred the brute force
search, we can also evaluate the capability of the algontitimregard to discovering
the optimal partition. Table 3.1 shows a comparison betwberproposed algorithm
and random sampling when the task graph size is 13. The fistncogives the test-
ing case index. The second and third columns are the optixeaLéon time and the
number of partitions that achieve this execution time fertéstcase, respectively. This
information is obtained through the brute force search. fboeth column gives the
derived theoretical possibility of finding an optimal paain in 250 tries over a search
space with a size of'8 = 1,594,323 if random sampling is applied. The last column
is the number of times we found an optimal partition in the f@s of the ACO algo-
rithm. It can be seen that over300 runs across the 25 testcases, we found the optimal
execution time 2,163 times. Based on this, the probabifitinoling the optimal so-
lution with our algorithm for these task graphs is.88%0. With the same amount of

computation time, random sampling method has .21% chance of discovering the

53

Table 3.1: Comparing ACO results with the random sampling

Testcase | Optimal Total # Op-| Random Optimal
Execution | timal Parti- | Sampling # ACO
Time tions Prob. Runs

DAG-1 23991 2187 29.05 100
DAG-2 11507 1215 17.35 100
DAG-3 13941 2187 29.05 100
DAG-4 60120 1664 22.98 3
DAG-5 23004 729 10.80 100
DAG-6 12174 81 1.26 100
DAG-7 26708 2187 29.05 100
DAG-8 51227 486 7.34 71
DAG-9 11449 1458 20.45 100
DAG-10 | 140197 1024 14.84 0
DAG-11 | 138387 1215 17.35 98
DAG-12 | 10810 243 3.74 100
DAG-13 | 33193 2187 29.05 100
DAG-14 | 16460 81 1.26 100
DAG-15 | 30919 1215 17.35 100
DAG-16 | 49910 1856 25.26 92
DAG-17 | 22934 135 2.09 100
DAG-18 | 47161 243 3.74 100
DAG-19 | 152088 1024 14.84 2
DAG-20 | 6157 27 0.42 97
DAG-21 | 29877 610 9.12 100
DAG-22 | 14141 729 10.80 100
DAG-23 | 15718 2187 29.05 100
DAG-24 | 9905 108 1.68 100
DAG-25 | 48141 486 7.34 98

" 100 ACO runs on 25 testing task graphs with size 13.

optimal solution. Therefore, our ACO algorithm is statiatly 6 times more effective
in finding the optimal solution than random sampling. Realatethis, we found that
for 17 testing examples, or 68% of the testing set, our dlgaridiscovers the optimal

partition every time in the 100 runs. This indicates that piheposed algorithm is

54

statistically robust in finding close to optimal solutiorSimilar analysis holds when
task graph size is 15 or 17.

There exist three testcases (DAG-4, DAG-10, and DAG-10Muaich the proposed
algorithm only finds the optimal solution in few times amoihg tL00 runs. Further
analysis of the results shows that all the solutions retlifoethese testing samples are
within the top 3% of the solution space.

Figure 3.6 provides another perspective regarding to tladitgof our results. In
this figure, the x axis is the percentage difference compgdha execution time of the
partition found by the ACO algorithm with respect to the opdl execution time. The
y axis is the percentage of the solutions that fall in thagean

These results may seem somewhat conflicting with the resludteyn in Figure 3.5.
The results in Figure 3.5 show the results on how the ACO dlguarfinds solutions that
are within a top percentage of overall solutions. This grsipbws the solution quality
found by ACO. The results differ because while the ACO aldponi may not find the
optimal solution, it almost always finds the next best feasdmlution. However, the
guality the next feasible solution in terms of executiondimay not necessarily be
close to the optimal solution. We believe that this has mordad with the solution
distribution of the benchmarks than the quality of the alttpon.

For example, larger benchmarks are more likely to have nautisns whose qual-
ity is close to optimal. If this is the case, the ACO algoritiuiti likely find a good so-

lution with a good solution quality as is show in Figure 3.®gardless, the quality of

55

100%

95%

90%

85%

80%

75%

distribution of ant search results for 3-way partitioning
(25 DAGS, 100 runs for each DAG)

LI S —

|

task size = 17

task size = 15

task size = 13

70% T

cumulative distribution of partitioning solutions

65% H B

60% L L L L L L L L L
0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

percentage difference in execution time compared with the optimal

100%

Figure 3.6: Execution time distribution

the solutions that we find are still very good. The majoritpge to 90%) of our results
are within the range of less than 10% worse compared withptienal execution time.
Based on the discussion in Section 3.2, when the ant numidemarsd iteration
number is 50, for a three way partitioning problem over a l@8entask graph, the
proposed algorithm has a theoretical execution time ab®1t596 of that using brute
force search, or 6,300 times faster. The experiments wardumed on a Linux ma-
chine with a 2.80 GHz Intel Pentium IV CPU with 512 MByte memorhe average
actual execution time for the brute force method is 9.1 n@suwthile, on average, our
ACO algorithm runs for 0.072 seconds. These runtimes aredte with the theoreti-
cal speedup report in Section 3.2.4. To summarize the erpatiresults, with a high
probability (8812%), we can expect to achieve a result within top 1% of thechea

space with a very minor computational cost.

56

3.3.3 Comparing with Simulated Annealing

In order to further investigate the quality of the proposkpathm, we compared
the results of the proposed ACO algorithm with that of thewdated annealing (SA)
approach.

Our SA implementation is similar to the one reported in [106 begin the SA
search, we randomly pick a feasible partition that obeystis¢ constraint as the initial
solution. The neighborhood of a solution contains all tresilele partitions that can
be achieved by switching one of the tasks to a different camguesource from the
one it is currently mapped to. The feasibility of the neigitie computed in a similar
way as in our ACO implementation. At every iteration of the &farch, a neighbor is
randomly selected and the cost difference (i.e. execuitiom of the DAG) between the
current solution and the neighboring solution is calcwatéhe acceptance of a more
costly neighboring solution is then determined by applyimg Boltzmann probability
criteria [1], which depends on the cost difference and threealing temperature. In our
experiments, the most commonly known and used geometrlowgoschedule [106] is
applied and the temperature decrement factor is set to 0/8en\Vit reaches the pre-
defined maximum iteration number or the stop temperatueshdist solution found by
SA is reported.

Because of the stochastic nature of the SA algorithm, fovargtooling approach,
the more the iterations the better chance for SA to find highatity results. However,

as the iteration number increases, its execution time besdomger. Figure 3.7 com-

57

pares the ACO results against those that achieved by the@#ahssessions. The graph
is illustrated in the same way as Figure 3.5. The SA sessiansanfigured in the
same way except with different iteration numbers. Here SA&€ roughly the same
execution time of our ACO implementation, while respedfiv&éA500 and SA1000
runs approximately 10 times and 20 times longer. We can ssewtith substantial
less execution time, the ACO algorithm achieves bettertethian the SA approach,
even when it is compared with a much more exhaustive SA sessich as SA1000.
In other words, in order to obtain comparable partition duabA suffers from much
longer execution time. Furthermore, in order to comparesthbility of the two dif-
ferent approaches, we also compared the variance of thiksresturned respectively
by the SA and the proposed algorithm. The is done by carryialjipte runs of ACO
and SA independently. This comparison indicates that th® Aa@proach consistently
provides significantly more stable results than SA. For stasting cases, the variance
on the SA results can be more than 3 times wider. Thus expetaiye we perhaps
can conclude that the ACO approach would have much betteceha obtaining high
quality results than the SA method with the same executish co

Another benefit of conducting comparison between SA and AC@at it provides
a way for us to assess the quality of the proposed algorithiigger size testing cases.
For such problems, it becomes impossible for us to perfomrbtiate force search to
find the true optimal solution for the problem. However, wa stll assess the quality

of the proposed algorithm by comparing relative differebegéween its results with

58

distribution of ACO and SA results for 3-way partitioning
(25 DAGs, DAG size = 13)

100% 7 II T T T T 7T T T T

90%

80%

70%

ACO
60% r

SA1000
50% r
SA500
40%
SA50
30% |

20% rf

cumulative distribution of partitioning solutions

10% H T

O% 1 1 1 1 1 1 1 1 1
0% 2% 4% 6% 8% 10% 12% 14% 16% 18% 20%

solution quality measured by top percentage of the search space

Figure 3.7: Comparing ACO with SA

that obtained by using other popularly used heuristic nethsuch as SA. Figure 3.8
shows the cumulative result quality distribution curvestésk graphs with 25 nodes.
For these problems, it is estimated that the brute force odettould take hundreds
machine hours thus impractical for us to find the optimal #yad¢n the figure, the x
axis now reads as the percentage difference on the exet¢umtief the partition found
by the corresponding algorithm with respect to thestexecution time over all the
experiments using different approaches. Among them, th® A6d SA500 have the
same amount of execution time, while SA5000 runs at aboutd®slower. It is shown

that ACO outperforms SA500 while a much more expensive SAsoomparably.

59

distribution of ACO and SA results for 3-way partitioning
search space size= 847,288,609,443
(50 DAGSs of 25 task nodes)

100% T T T T T T T T T T
90% |- /_/__//—’—I'/P_//_——/—/_’_/_——/_'
80% -

70%

ACO-SA500
60% r|
SA5000
50% r|
ACO
40% H

percetage of solutions that are within the top range

SA500

30% 1 1 1 1 1 1 1 1 1
0% 2% 4% 6% 8% 10% 12% 14% 16% 18% 20%

percentage difference in execution time compared with the optimal

Figure 3.8: ACO, SA and ACO-SA on big size problems

3.3.4 Hybrid ACO with Simulated Annealing

One possible explanation for the proposed ACO approachtedorm the tradi-
tional SA method with regard to short computing time is timatthie formulation of the
SA algorithm, the problem is modeled with a flat represeotati.e. the task/resource
partitioning is characterized as a vector, of which eacimeld stores an individual
mapping for a certain task. This model yields simplicity,losing the critical struc-
tural relationship among tasks as compared with the ATG moltgs further makes
it harder to effectively use structural information durthg selection of neighbor solu-
tions. For example, in the implementation tested, the malezorrelation between tasks
is fully ignored. To compensate this, SA suffers from leygtiw temperature cooling

process.

60

Another problem of SA, which may be more related with the ifitslof the quality
of the results than the long computing time, is its sensytito the selection of the
initial seed solution. Starting with different initial garons may lead to final results of
different qualities, besides the possibility of spendingputing time on unpromising
parts of the search space.

On the other hand, the ACO/ATG model makes effective use @fctire struc-
tural information of the problem. The autocatalytic natof&ow the pheromone trails
are updated and utilized makes it more attractive in dis@egégood” solutions with
short computing time. However, this very behavior raisegsation problem. For
example, it is observed that allowing extra computing tirfftereenough iterations of
the ACO algorithm does not have significant benefit regartinipe solution quality.
This stagnation problem has been discussed in other work28 13, 27] and special
problem-dependent recovery mechanisms have to be foredul@tease this artifact.

These complementary characteristics of the two methodwatetus to investigate
a hybrid approach that combines the ACO and SA together. iShatuse the ACO
results as the initial seed partitions for the SA algorititris, possible for us to achieve
even better system performance with a substantially reaoenputing cost. In Fig-
ure 3.8, curve ACO-SA500 shows the result of this approatchchieves definitively
better results comparing with that of SA5000 while only tekabout 20% of its run-
ning time. Similar result holds for task graphs with biggees, such as 50 and 100 (for

a test case with 100 task node, the computing time can beeddtmm about 2 hours

61

to 18 minutes using the hybrid ACO-SA approach with complaredsult quality).

Table 3.2: Average Result Quality Comparison

SA500| ACO | SA5000| ACO-SA500
(untme)| (® | ® | (100 (1)
size=25| 1 | 0.86| 0.90 0.85
size=50| 1 | 0.81| 0.94 0.77
size=100] 1 | 0.84| 0.92 0.80

Overall, we summarize the result quality comparison withl@s8.2 for problems
with big sizes. It compares the average result qualitiesrted by ACO, SA500,
SA5000 and the hybrid method ACO-SA500. The data is normdlizith that ob-
tained by SA500, and the smaller the better. It is easy tolseMCO always outper-
forms the traditional SA even when SA is allowed a much lore@rcution time, and
the ACO-SA approach provides the best average resultsstently with great runtime

reduction.

3.4 Application: Quick Design Parameter Estimation

One possible application of using the proposed ACO apprimacpplication parti-
tioning is to help make high level design choices by estingadiesign parameters at the
early stage. At this point, a critical problem that the sgstéesigner faces is to make
choice among alternative designs. One common questioththatystem designer has

to answer is whether an extra computing device is needectisytstem design.

62

For instance, considering the following case: assumingd@sggn is realized with
a PowerPC and a FPGA component (Architecture 1), while amredtive design con-
tains an extra DSP core (Architecture 2), one needs to qualdluate design param-
eters associated with each of the two possible approachmss &lding an extra DSP
result in FPGA area reduction and if yes, how much can we s@e&s the second
design provide significant improvement of system’s timimgfprmance? Or by hav-
ing an extra DSP, how much FPGA cost can be saved without tegifite system’s
time performance requirement? In order to address thessigung, quick assessment
on related design parameters is needed. Essentially, thes gdvoblem request us to
provide insights for design parameters when the numbermpcing resources is in-
cremented. The high quality and fast execution time of tloppsed ACO multi-way
application partitioning approach provides a possiblehmétfor certain situations for
such a system level design task.

To see this, we cross examine the results of the proposedthlgmver the testing
cases illustrated in Table 3.1 for the two architectureseflan the available resources,
they can be viewed as 3-way partitioning and bi-partitigrpnoblems under our model
respectively and the proposed ACO approach solves themnif@med way.

Based on this comparison, we find that with the same hardweagecanstraint, our
algorithm robustly provides partitions with better or aidethe same execution time
for Architecture 2 for different test cases in our benchmaifkhe speedup is dependent

on the specific application, i.e. the application’s ATG ahe tasks associated with it.

63

With our testing cases, we have an average execution tineglgpeof 16% over the
25 testing examples, while over 11% speedup is observedximples DAG-6 and
DAG-17. More interestingly, based on the same test, we fiatlttie 3-way partition-
ing results have an average.Q2% save in hardware area for the FPGA component
compared with the bi-partitioning results. In 100 runs, ¢lxpected biggest area save
over 25 DAGs is 151%, which is roughly in agreement with the average savings.

This motivates us to use the proposed ACO algorithm as a gstokator for design
parameters, such as the FPGA area cost constraint, when eongputing resource is
included. The question the designer tries to answer herbass much FPGA area
can we save by adding a DSP core in the system while respebtngystem delay
constraint? Or what is the right FPGA area cost constrainsiaild provide for the
incremented system? Without a quick design parametersasses method, this con-
straint is hard to be made accurately. To address this prghe propose a two step
process using the ACO application partition as such quitiknesor, as the process is
diagramed in Figure 3.9.

First, we notice that Architecture 2, which contains an &SP, is expected to
not make the FPGA cost worse. Based on this observation,ignédesan first con-
duct bi-partitioning for the application over Architectut. The results will provide
critical guidance regarding to the time performance anduger bound of the FPGA
area cost. The designer can then use the FPGA area costregaulied by our algo-

rithm as the “desired” constraint for the 3-way partitiopioroblem over Architecture

64

2. Of course, this step may require multiple iterations & tptimal FPGA saving is
expected. Thanks for the low computing cost of the propos€® Approach, such
iterative process is practical and can be conducted witasanable time. As shown
in Figure 3.9, for each of the iterations, we check if the eystlelay meets the time
performance constraint. If yes, it implies that a more geint area cost constraint can
be used. Otherwise, we have found the optimal saving andridoegs terminates. By
applying this method, without noticeable degradation @ekecution time (less than
2%), our experiments on the testing cases show that an &/eaadware area reduction

of 65.46% for the 3-way architecture comparing with original desivhich only uses

System Delay
> Requiremen

No

PowerPC and FPGA.

Obtain base
runtime and FPGA

cost upper bound
Run ACO on Run ACO on

Architecture 1 Architecture 2
(PowerPc+FPGA) (PowerPC+FPGA+DSH|

Finish

Reduce FPGA area
constraint

Figure 3.9: Estimate Design Parameters with ACO application part@ioon design choice
with incremented resources

Notice this is just one of the possible scenarios that thegsed algorithm could
help. There are other cases such a quick parameter estiowitnt be useful. For
instance, by simply swapping the boxes associated withifecture 1 and Architecture
2 in Figure 3.9, we can help to solve the reverse design prgbiere we try to find

how much extra FPGA resource we would need if we simplify tystesm design by

65

excluding the DSP core from the architecture.

3.5 Summary

In this work, we presented a novel heuristic searching mietbothe system par-
titioning problem based on the ACO techniques. Our algoritoceeds as a collec-
tion of agents work collaboratively to explore the searcaicgp A stochastic decision
making strategy is proposed in order to combine global andllbeuristics to effec-
tively conduct this exploration. We introduced the AugneehTask Graph concept as
a generic model for the system partitioning problem, whiah be easily extended as
the resource number grows and it fits well with a variety oteysrequirements.

Experimental results over our test cases for a 3-way sysgetitipning task showed
promising results. The proposed algorithm consistenttyioled near optimal par-
titioning results over modestly sized tested examples waty minor computational
cost. Our algorithm is more effective in finding the near mati solutions and scales
well as the problem size grows. It is also shown that for lsige problems, with
substantial less execution time, the proposed methodwashieetter solutions than the
popularly used simulated annealing approach. With therghten of the complemen-
tary behaviors of the algorithms, we proposed a hybrid agagrdhat combines the
ACO and SA together. This method yields even better resah thsing each of the

algorithms individually.

66

Chapter 4

Operation Scheduling

Operation scheduling is a fundamental problem in mappirepgatication to a com-
putational device. It takes a behavioral application dpetion and produces a sched-
ule solution for the operations onto a collection of progegsinits to either minimize
the completion time or the computing resources requireddetra given deadline. The
operation scheduling problem % P-hard, thus effective heuristic methods are neces-
sary to provide qualitative solutions. We present novetaten scheduling algorithms
using the Ant Colony Optimization approach for both timimglaesource constrained
scheduling problems. The algorithms use a unique hybridcagh by combining the
MAX-MIN ant system meta-heuristic with traditional schéidg heuristics. We com-
piled a comprehensive testing benchmark set from realdnagplications in order to
verify the effectiveness and efficiency of our proposed @llgms. For timing con-
strained scheduling, our algorithm achieves better resoinpared with force-directed
scheduling on almost all the testing cases with a maximur&%Qeduction of the

number of resources. For resource constrained schedolimglgorithm outperforms

67

a number of different list scheduling heuristics with be#tbility, and generates bet-
ter results with up to 14.7% improvement(on average 6.2%bHetFurthermore, by
solving the test samples optimally using ILP formulatiorg show that our algorithm
consistently achieves a near optimal solution. Our algorg outperform the simulated
annealing method for both scheduling problems in terms afity) computing time

and stability.

4.1 Introduction

As fabrication technology advances and transistors becenare plentiful, modern
computing systems can achieve better system performanget®sasing the amount
of computation units. It is estimated that we will be ablerttegrate more than a half
billion transistors on a 468nt chip by the year of 2009 [85]. This yields tremendous
potential for future computing systems, however, it imposig challenges on how to
effectively use and design such complicated systems.

As computing systems become more complex, so do the apphisahat can run
on them. Designers will increasingly rely on automatedgiesools in order to map
applications onto these systems. One fundamental pro¢elsse tools is mapping
a behavioral application specification to the computingesys For example, the tool
may take a C function and create the code to program a miacepsor. This is viewed
as software compilation. Or the tool may take a transactwallbehavior and create a

register transfer level (RTL) circuit description. Thiscalled hardware or behavioral

68

synthesis [72]. Both software and hardware synthesis floavessential for the use and
design of future computing systems.

Operation scheduling (OS) is an important problem in safw@mpilation and
hardware synthesis. An inappropriate scheduling of theatjpes can fail to exploit
the full potential of the system. Operation scheduling appé a number of different
problems, e.g. compiler design for superscalar and VLIWrogicocessors [54], dis-
tributed clustering computation architectures [5] andawsdral synthesis of ASICs and
FPGAs [72]. In this work, we focus on operation schedulingtfehavioral synthesis
for ASICs/FPGAs. However, the basic algorithms proposee kan be modified to
handle a wide variety of operation scheduling problems.

Operation scheduling is performed on a behavioral desorif the application.
This description is typically decomposed into several kdo(e.g. basic blocks), and
each of the blocks is represented by a data flow graph (DF@ur&i4.1 shows an
example DFG for a one-dimensional 8-point fast discreteneasansformation.

Operation scheduling can be classified gsource constrainedor timing
constrained Given a DFG, clock cycle time, resource count and resouetayd, a
resource constrained scheduling finds the minimum numbeliook cycles needed to
execute the DFG. On the other hand, a timing constrainedisiting tries to determine
the minimum number of resources needed for a given deadline.

In the timing constrained scheduling problem (also callegdi control step

scheduling), the target is to find the minimum computing vese cost under a set

69

of given types of computing units and a predefined latencyldea For example,
in many digital signal processing (DSP) systems, the sangphte of the input data
stream dictates the maximum time allowed for computatiotherpresent data sample
before the next sample arrives. Since the sampling ratead fiie main objective is
to minimize the cost of the hardware. Given the clock cyateeti the sampling rate
can be expressed in terms of the number of cycles that areredqgio execute the
algorithm.

Resource constrained scheduling is also found frequemtpractice. This is be-
cause in a lot of the cases, the number of resources are knpworia For instance, in
software compilation for microprocessors, the computeggpurces are fixed. In hard-
ware compilation, DFGs are often constructed and schedalladst independently.
Furthermore, if we want to maximize resource sharing, edqatkishould use same or
similar resources, which is hardly ensured by time consdaischedulers. The time
constraint of each block is not easy to define since blocksyaieally serialized and
budgeting global performance constraint for each blocloignivial [69].

Operation scheduling methods can be further classifietiatie schedulingnddy-
namic schedulin88]. Static operation scheduling is performed during thkepilation
of the application. Once an acceptable scheduling soligidound, it is deployed as
part of the application image. In dynamic scheduling, a ckeid system component
makes scheduling decisions on-the-fly. Dynamic schedutiethods must minimize

the program’s completion time while considering the ovarcheaid for running the

70

scheduler.

In this chapter, we focus on both resource and timing coingtdastatic operation
scheduling. We propose iterative algorithms based on th&XMAN Ant Colony Op-
timization for solving these problems. In our algorithmsadlection of agents (ants)
cooperate together to search for a solution. Global and lemaristics are combined
in a stochastic decision making process in order to effiyiexplore the search space.
The quality of the resultant schedules is evaluated and el tb dynamically adjust
the heuristics for future iterations. The main contribotxd our work is the formulation

of scheduling algorithms that:

e Utilize a unique hybrid approach combining traditional hstics and the recently

developed MAX-MIN ant system optimization [92];
e Dynamically use local and global heuristics based on thetimpplication to

adaptively search the solution space;
e Generate consistently good scheduling results over dihtesases compared

with a range of list scheduling heuristics, force-direcsetieduling, simulated
annealing and the optimal ILP solution, and demonstratddesijuality over a

variety of application benchmarks of large size.

This chapter is organized as follows. We formally define ilméntg constrained and
resource constrained scheduling problems in Section 4@nh Section 4.3 and Sec-
tion 4.4, we present two hybrid approaches combining tiaud scheduling heuristics
with the MAX-MIN ant system optimization to solve the timirajnd resource con-

strained scheduling problems, respectively. We discussadnstruction of our bench-

71

marks in Section 4.5. Experimental results for the new aigars are presented and

analyzed in Section 4.6. We summarize with Section 4.7.

4.2 Preliminaries
4.2.1 Operation Scheduling Problem Definition

Given a set of operations and a collection of computationasuthe resource con-
strained scheduling (RCS) problem schedules the opesatioto the computing units
such that the execution time of these operations are mieshiwhile respecting the
capacity limits imposed by the number of computational ueses. The operations can
be modeled as a data flow graph (DFG(V, E), where each nodg € V(i =1,...,n)
represents an operatiom;, and the edge; denotes a dependency between operations
vj andv;. A DFG is a directed acyclic graph where the dependenciesalafpartially
ordered relationship (denoted by the symhglamong the nodes. Without affecting
the problem, we add two virtual nodesot andend which are associated with no op-
eration (NOP). We assume thrabt is the only starting node in the DFG, i.e. it has no
predecessors, and noeledis the only exit node, i.e. it has no successors.

Additionally, we have a collection of computing resourcesy. ALUs, adders,
and multipliers. There arR different types and; > 0 gives the number of units for
resource typg (1< j < R). Furthermore, each operation defined in the DFG must
be executable on at least one type of the resources. Whenoédlcl operations is

uniquely associated with one resource type, we cdlbinogenouscheduling. If an

72

operation can be performed by more than one resource tygesalit heterogeneous
scheduling [94]. Moreover, we assume the cycle delays foin egeration on different
type resources are known d§, j). Of courseyoot andendhave zero delays. Finally,
we assume the execution of the operations is non-preemtatas, once an operation
starts execution, it must finish without being interrupted.

A resource constrained schedule is given by the vector

{(S’OOI) f|’00t>7 (817 f1>7 RN (Senda fend)}

wheres and f; indicate the starting and finishing time of the operatam. The
resource-constrained scheduling problem is formally @effesmin(seng) With respect

to the following conditions:

1. An operation can only start when all its predecessors fiaigbed, i.es > fj if

opj < Op;

2. Atany given cyclg, the number of resources needed is constrained,dgr all

1<j<R

The timing constrained scheduling (TCS) is a dual problerthefresource con-
strained version and can be defined using the same terminptegented above. Here
the target is to minimize total resourcgsr; or the total cost of the resources (e.g. the
hardware area needed) subject to the same dependenciesbeaiperations imposed

by the DFG and a given deadlifg i.e. Sgng < D.

73

Figure 4.1: Data Flow Graph (DFG) of theosine2benchmark
(‘'r is for memory read and ‘w’ for memory write).

4.2.2 Related Work

Many variants of the operation scheduling problem®&i€-hard [12]. Although it
is possible to formulate and solve them using Integer Lifkegagramming (ILP) [107],
the feasible solution space quickly becomes intractabliafger problem instances. In
order to address this problem, a range of heuristic methaiilspslynomial runtime
complexity have been proposed.

The integer linear programming (ILP) method [60]tries talfan optimal schedule
using a branch-and-bound search algorithm. It also ingbk@ane amount of back-
tracking, i.e., decisions made earlier are changed lateA@implified formulation of
the ILP method for the time-constrained problem is giverowel

First it calculates the mobility range for each operatMn= {Sj|Ex < j < L},

whereEy andLy are the ASAP and ALAP values respectively. The schedulinglpm

74

in ILP is defined by the following equations:

n
Min(Z(Ck*Nk))whiIe Xij =1
k=1 Bi<J<L

where 1< i < nandnis the number of operations. There arg k < moperation types
available, andNy is the number of FUs of operation typgandC is the cost of each
FU. Eachx;j is 1 if the operation is assigned in control stepand O otherwise. Two

more equations that enforce the resource and data depgnctamiraints are:

n
leij <N
i=

and
((a*xj,q) — (P*Xip)) < —1,p<q

wherep andg are the control steps assigned to the operatipasdx; respectively.

We can see that the ILP formulation increases rapidly withrtmber of control
steps. For one unit increase in the number of control stepsilvbave n additionalx
variables. Therefore the time of execution of the algoritlso increases rapidly. In
practice the ILP approach is applicable only to very smaibjgms.

Many timing constrained scheduling algorithms used in Helel synthesis are
derivatives of the force-directed scheduling (FDS) heigrigsresented by Paulin and
Knight [78, 79]. Verhaeglet al.[97, 98] provide a theoretical treatment on the original
FDS algorithm and report better results by applying grative-frame reduction and
the use of global spring constants in the force calculatidoe to the lack of a look

ahead scheme, the FDS algorithm is likely to produce a stimapsolution. One way

75

to address this issue is the iterative method proposed tkyaParKyung [76] based on
Kernighan and Lin’s heuristic [55] method used for solvihg graph-bisection prob-
lem. In their approach, each operation is scheduled intcadieeor later step using
the move that produces the maximum gain. Then all the opa&isatire unlocked and
the whole procedure is repeated with this new schedule. Tiakty of the result pro-

duced by this algorithm is highly dependent upon the ing@lution. More recently,

Heijligerset al.[48] and InSyn [86] use evolutionary techniques like genelgorithms

and simulated evolution.

There are a number of heuristic algorithms devised for tilseure constrained
problem, including list scheduling [84, 2, 80, 94, 2], fadedirected list scheduling
[78], genetic algorithm [11, 41], tabu search [10], simethiannealing [93], criti-
cal path based heuristic [17], graph theoretic and comjout@tgeometry approaches
[5, 69, 5]. Among them, list scheduling is the most common tuiégs simplicity of
implementation and capability of generating reasonablydg@sults for small sized
problems. The success of the list scheduler is highly degr@rah the priority function
and the structure of the input application (DFG) [93, 72, ®Jfe commonly used pri-
ority function assigns the priority inversely proportibt@the mobility. This ensures
that the scheduling of operations with large mobilities deéerred because they have
more flexibility as to where they can be scheduled. Many gphierity functions have
been proposed [2, 57, 41, 8]. However, it is commonly agreatithere is no single

good heuristic for prioritizing the DFG nodes across a rapigapplications using list

76

scheduling. Our results in Section 4.6 confirm this.

4.3 ACO for Timing Constrained Scheduling

In this section, we introduce our MMAS-based algorithmsdolving the timing
constrained scheduling problem. As discussed in Secti@nfdrce-directed schedul-
ing (FDS) is a commonly used heuristic as it generates “gooudility results for mod-
erately sized DFGs. Our algorithm uses distribution grdpde FDS as a local heuris-
tic. Additionally, we use the results produced by FDS to eat# the quality of our
algorithm. For these reasons, we provide some details ofiREi& following subsec-
tion. The remaining subsections describe our MMAS algaritar timing constrained

scheduling.

4.3.1 Force-Directed Scheduling

The force-directed scheduling algorithm (and its variowsnis) has been widely
used since it was first proposed by Paulin and Knight [78]. gb& of the algorithm
is to reduce the number of functional units used in the imgletation of the design.
This objective is achieved by attempting to uniformly dlaite the operations onto
the available resource units. The distribution ensuresrésource units allocated to
perform operations in one control step are used efficiemtlsli other control steps,
which leads to a high utilization rate.

The FDS algorithm relies on both the ASAP and the ALAP schiedwlgorithms

to determine the feasible control steps for every operatnor thetime frame of op

77

(denoted a¢> t-] wheretS andt" are the ASAP and ALAP times respectively). It also
assumes that each operatimg has a uniform probability of being scheduled into any
of the control steps in the range, and zero probability oh@pesicheduled elsewhere.
Thus, for a given time step and an operationp which needs\; > 1 time steps to

execute, this probability is given as:

(Siloh(i =)/ —t3+1) <<t

pj(op) = (4.1)
0 otherwise

whereh(-) is a unit window function defined ojt® t\].
Based on this probability, a set difstribution graphs can be created, one for each

specific type of operation, denoted@s More specifically, for typé at time stepy,

ak(j) = pj(op) iftype ofop isk (4.2)
op

We can see thaji(j) is an estimation on the number of typeesources that are needed
at control step.

The FDS algorithm tries to minimize the overall concurrenoger a fixed latency
by scheduling operations one by one. At every time step, tleeteof scheduling
each unscheduled operation on every possible time stepfraihe range is calculated,
and the operation and the corresponding time step with ttalesh negative effect is
selected. This effect is equated as the force for an unstdperatiorop at control
stepj, and is comprised of two components: the self-fo8k;, and the predecessor-

successor force®,Sk;.

78

The self-forceSk;j represents the direct effect of this scheduling on the divera

concurrency. Itis given by:
th+A
Skj = I:Zt-s k(D (Hi(1) —pi(1)) (4.3)
where, j € [t5,t4], kis the type of operationp;, andHi(-) is the unit window function
defined onj, j + Aj].
We also need to consider the predecessor and successa $orce assigning op-
erationop to time stepj might cause the time frame of a predecessor or successor

operationop to change fronit>,t-] to [t5,t5. The force exerted by a predecessor or

successor is given by:

,f|L+A| tiL+A|
PSRi()= % (ak(m)-pm(om))— > (a(m)-pm(on)) (4.4)
m=t> m=tS

wherepy,(0op) is computed in the same way as Equation (4.1) except the eghdao-
bility information [t is used. Notice that the above computation has to be carried
for all the predecessor and successor operationgofl he total force of the hypothet-
ical assignment of schedulirggy on time step is the addition of the self-force and all

the predecessor-successor forces, i.e.
total force; = Skj + Z PSFK;(l) (4.5)

whereop is a predecessor or successoio@f. Finally, the total forces obtained for
all the unscheduled operations at every possible time séepoanpared. The operation

and time step with the best force reduction is chosen andati@pscheduling result is

79

incremented until all the operations have been schedulgmbefdo implementation of
FDS is given as Algorithm 2.

The FDS method is “constructive” because the solution ispaed without per-
forming any backtracking. Every decision is made in a gremdyner. If there are
two possible assignments sharing the same cost, the algov@lain cannot accurately
estimate the best choice. Based on our experience, thighagirly often as the DFG
becomes larger and more complex. Moreover, FDS does noirtikaccount future
assignments of operators to the same control step. Consgueis likely that the
resulting solution will not be optimal, due to the lack of @koahead scheme and the
lack of compromises between early and late decisions.

Our experiments show that a baseline FDS implementatioadbas [78] fails to
find the optimal solution even on small testing cases. To #daseproblem, a look-
ahead factor was introduced in the same paper. A secondterdeof the displacement
weighted by a constam is included in force computation, and the valyés experi-
mentally decided to be/B. In our experiments, this look-ahead factor has a positive
impact on some testing cases but does not always work welke Metails regarding

FDS performance can be found in Section 4.6.

4.3.2 Algorithm Formulation

We address the timing constrained scheduling (TCS) prolirean evolutionary

manner. The proposed algorithm is built upon the Ant Systppr@ach and the TCS

80

procedure FDS(G,R)
input: DFG G(V, E), resource seR, and a map of operation to one resourc®in
output: instruction schedule

1: initialize schedule resulk.rent to be empty
2: while exists unscheduled instructiolo
3: perform ASAP and ALAP on partial schedule restrrent

4: update time framéS, t] associated with each instructiom
5. Min=o
6: for each unscheduled instructiom do
7: for t5< j <t-do
8: Smp = schedul€Surrent, 0P, j)
9: Update time frame and distribution graphs base&gi
10: ComputeSkj and setotal_forcq; = Sk;
11: for each predecessor/sucessprof og do
12: ComputePSk; (1)
13: total_forcq;+ = PSk;j(l)
14: end for
15: if total_forcq; < Min then
16: Min = total_force;
17: BestOp=op; BestStep- |
18: end if
19: end for
20: end for

21: Scurrent = SChedul €Scyrrent, BestOpBestStep

22: Update time frame and distribution graphs base&@Rent
23: end while

24: returnSyrrent and the resource cost

Algorithm 2: Force-Directed Scheduling for Time-Constrained Optirtidza

81

problem is formulated as an iterative searching processh Eeration consists of two

stages. First, the ACO algorithm is applied in which a caitetof ants traverse the
DFG to construct individual operation schedules with respethe specified deadline
using global and local heuristics. Second, these resudt®waaluated using their re-
source costs. The heuristics are adjusted based on théossl@bund in the current

iteration. The hope is that future iterations will benefirfr this adjustment and come
up with better schedules.

Each operation or DFG nodwy is associated witld pheromone trails;j, where
j=1,...,DandD is the specified deadline. These pheromone trails indibatglbbal
favorableness of assigning thth operation at thg-th control step in order to minimize
the resource cost with respect to the time constraint. aliytibased on ASAP and
ALAP results,Tj; is set with some fixed valug if | is a valid control step foop;
otherwise, it is set to be 0.

For each iterationm ants are released and each ant individually starts to aantstr
a schedule by picking an unscheduled operation and detiegnits desired control
step. However, unlike the deterministic approach usedeénRRS method, each ant
picks up the next operation probabilistically. The simpleay is to select an operation
uniformly among all unscheduled operations. Once an ojp@rapy, is selected, the ant
needs to make a decision on which control step it should peesto. This decision

is also made probabilistically according to Equation (4.6)

82

(k.
T'”S)inhﬁl if opy can be scheduled k&nd j
Pnj = 21T ®)Ng) (4.6)

0 otherwise

Here j is the control step under consideration, which is betwagys time frame
[t5,tk]. The itemnp; is the local heuristic for scheduling operatiop, at control step
j, anda andf3 are parameters to control the relative influence of theibigtd global
heuristicty; and local heuristiq)nj. In our work, assumingp is of typek, we simply
setnn; to be the inverse dii(j); that is the distribution graph value of tyget control
stepj (calculated in the same way as in FDS). Recalling our dison$s Section 4.3.1,
gk is computed based on partial scheduling result and is anatidh on the number of
computing units of typ& needed at control stejp Intuitively, the ant favors a decision
that possesses higher volume of pheromone and better legastic, i.e. a lowegy. In
other words, an ant is more likely to make a decision thatabally considered “good”
and also uses the fewest number of resources under the tpasrally scheduled
result. Similar to FDS, once an operation is fixed at a time,stewill not change.
Furthermore, the time frames will be updated to reflect thengled partial schedule.
This guarantees that each ant will always construct a vahédule.

In the second stage of our algorithm, the ant’s solution®eaatuated. The quality
of the solution from anh is judged by the total number of resources, (.= Skr«.
At the end of the iteration, the pheromone trail is updatembating to the quality of

individual schedules. Additionally, a certain amount oepfmone evaporates. More

83

specifically, we have:
m
Tj(t)=p-Tj(t)+ Y ATj(t) whereO<p <1, 4.7)
=1

Herep is the evaporation ratio, and

Q/Qn if op is scheduled af by anth
AT = (4.8)
0 otherwise
Q is a fixed constant to control the delivery rate of the phensendwo important
operations are performed in the pheromone trail updatinggss. Evaporation is nec-
essary for ACO to effectively explore the solution spaceileveinforcement ensures
that the favorable operation orderings receive a higharmel of pheromone and will
have a better chance of being selected in the future itexstidhe above process is
repeated multiple times until an ending condition is redchihe best result found by
the algorithm is reported.
In our experiments, we implemented both the basic ACO andMNRAS algo-
rithms. The latter consistently achieves better scheduksults, especially for larger
DFGs. A pseudo code implementation of the final version ofTd@® algorithm using

MMAS is shown as Algorithm 3, where the pheromone boundieg & indicated as

step 23.

84

procedure MaxMinAntSchedulingTCSg,R)

input: DFG G(V,E), resource seR

output: operation schedule

-
Q

11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24
25:
26:
27:

© o N o d kNP

initialize parametep, Tjj, Poest: Tmax Tmin
constructm ants
BestSolution— @
while ending condition is nhot meato
for i=0to mdo
ant(i) constructs a valid schedule timing constrait®gen: as following:
Surrent < @
perform ASAP and ALAP
while exists unscheduled operatido
update time framétS t-] associated with each operatiom and the distributiof
graphso.
select one operatioop, among all unscheduled operations probabilistically
for t< j <tk do
set local heuristie)h; = 1/0k(j) whereop, is of typek
end for
select time stepusingn andt as Equation (4.6).
Scurrent = Schedul€S.yrrent, O ph, 1)
Update time frame and distribution graphs base&@pent
end while
if Surrent IS better than that dBestSolutiorthen
BestSolution— Syrrent
end if
end for
updatetax andtmin based on Equation (2.3) and (2.4)
updaten if needed
updatet;; based on Equation (4.7)
end while

N

returnBestSolution

Algorithm 3: MMAS for Timing Constrained Scheduling

85

4.3.3 Refinements
Updating Neighboring Pheromone Trails

We found that a “better” solution can often be achieved frofgad” scheduling
result by simply adjusting very few operations’ scheduledifions within their time
frames. Based on this observation, we can refine our pheremmpdate policy to en-
courage exploration of the neighboring positions. Morecgmally, in the pheromone
reinforcement step indicated by Equation 4.8, we also asgehe pheromone trails
of the control steps adjacent positiprsubject to a weighted function window. Two
such windowing functions are shown in Figure 4.2. Dependimghe neighbor’s off-
set fromj, the two functions adjust its pheromone trail in a similammer to Equa-
tion 4.8 but with an extra factor applied. Assuming we uge represent the offset,
then Figure 4.2(a) has a weight function of1./3|x| while Figure 4.2(b) provides a
weight function ofe . In our experiments, the latter provides relatively better-
formance. Ideally, the weight function window size shalldmnputed based on the
mobility ranges of the operations. However, to keep therétlym simple, we use a
window size 5 across all our experiments, subject to theatjoer's time frame{tis, tH.

This number is estimated using the average mobility ran§ah testing cases.

Operation Selection

In our algorithm, the ants construct a schedule for the gi¥e® by making two de-

cisions in sequence. First, it needs to select the next tpera hen a specific control

86

weight

0.75

0.5

0.25

weight

0.75

0.5

0.25

(a) (b)

Figure 4.2: Pheromone update windows
step is determined for the selected operation. As discusadir, the simplest ap-
proach for selecting an operation is to randomly pick oneragsball the unscheduled
operations. Though itis simple and computationally effe;it does not appreciate the
information accumulated in the pheromone from the previtarations; it also ignores
the dynamic time frame information. One possible refinengetd make the selection
probability proportional to the pheromone and inverselypartional to the size of the
operation’s time frame at that instance. More preciselypigk the next operationp
probabilistically with the following equation:

(tF—t>+1)

Pi = Z > kTik
P —t5+1)

(4.9)

Here the numerator can be viewed as the average pheromaresovar all possible po-
sitions in the current time frame for operatiop. The denominator is a normalization
factor to bring the result to be a valid probability valuevaeen 0 and 1. It is basically

the addition of the average of pheromone for all the unsdeddperationsp . Notice

87

that as the time frames of the operations change dynamigefignding on the partial
schedule, the average pheromone trail is not constantgltirenschedule construction
process. In other words, we only consider a pherorm;qrwhentiS <j<th.

Intuitively, this formulation favors an operation withetrger pheromone and fewer
possible scheduling alternatives. In the extreme d{ise,tis, which means operation
op is on the critical path, we will have only one choice fop. If the pheromone for
op at this position happens to be very strong, we will have bettance to piclop at
the next step compared with other operations. Our expetsrsow that applying this
operation selection policy makes the algorithm faster @mtdying high quality results.
Compared with the even possibility approach, there is amheaa to perform this
operation selection policy. However, by making the setectnore targeted, it allows
us to reduce the overall iteration number of the algorithusttine additional overhead
is well worth it. In our experiments, we were able to redueettital runtime by about
23% while achieving almost the same quality with our testiegplts by adopting this

biased selection policy.

4.3.4 Extensions

Our proposed TCS algorithm applies the Ant Colony metadiktarat the high
level. It poses little difficulty to extend it to handle difent scheduling contexts. Most
of the methods proposed previously for FDS can be readiljempnted within our

framework.

88

Resource Preference

In our work, the target is to minimize the total count of res®s needed. Ac-
cordingly, we use the inverse of this total count as the tyuafithe scheduling result.
This quality measurement is further used to adjust the phene trails. However, in
practice, we may have unbalanced hardware costs for difeesource types. With
this consideration, we might find that we prefer a schedwé idquires 3 multipliers
and 4 adders rather than one that needs 4 multipliers ande€8sade/en though both
schedules have the same total number (7) of resources.sBhis ¢can be handled in our
algorithm simply by introducing a cost factog for each resource type and modifying

the quality of the schedule to this weighted resource cost,

Qn= Z(Ckrk) (4.10)
By adjusting theck assigned to different resource types, we can control thienerece
in our schedule results.
Multi-cycle Operation

No change is needed for our algorithm to handle multi-cypleration since it uses
dynamically computed time frames. Also, as presented iti@e4.3.1, the distribution

graph handles multi-cycle operations naturally.

89

Mutually Exclusive Operations

Mutually exclusive operations occur when operations amatied in different
branches of the program. This happen#-thhen-elseandcasestatements in high-level
languages. With the proposed algorithm, we do not need taagdextra constraints

for handling such operations; thus the approach proposg@]ns still valid.

Chained Operations

When the total delay of consecutive operations is less thdock cycle, it is pos-
sible to chain the operations during scheduling. The saofetques used in [78] can
be directly applied within our approach, where chainingasdied by extending the

ASAP and ALAP computation to obtain the time frames for theragions.

Pipelining

For pipelined resources, there exists additional parstteprovided by functional
pipelining. Here optimizing an individual control step betes inappropriate and lim-
ited. We have to consider scheduling optimization over gsof control steps. We can
solve this by slicing and superimposing the distributioapgr in a manner depending
on the latency [78]. Again, this method can also be appliegktend our algorithm to

handle the pipelined scenario.

90

4.3.5 Complexity Analysis

As we can see, the construction of individual schedule bytitg, or the body of the
inner loop in the proposed algorithm, is of the complexityn?), wheren is the number
of nodes in the DFG under consideration. Thus the total cerilyl of the algorithm
is determined by the number of antsand the iteration numbed. Theoretically, the
production ofm andN shall be proportional to the production nfand the deadline
D. In this case, we have a total complexity@fDn®) which is the same as the un-
optimized version of FDS. However, in practice, we found ipossible to fixnandN
for a large range of applications (see Section 4.6). Thisyaéaat in practical use the

algorithm can be expected to work wid(n?) complexity for most of the cases.

4.4 ACO for Resource Constrained Scheduling

In this section, we present our algorithm of applying Ant t8ys heuristic, or
more specifically the MAX-MIN Ant System (MMAS) [92], for saihg the operation

scheduling problem under resource constraints.

4.4.1 List Scheduling

List scheduling is a commonly used heuristic for solving dets of scheduling
problems. It is a generalization of the ASAP algorithm wiile inclusion of resource

constraints [57]. A list scheduler takes a data flow graphapdority list of all the

91

nodes in the DFG as input. The list is sorted with decreasiagnitude of priority
assigned to each of the operation. The list scheduler magaready list, i.e. nodes
whose predecessors have already been scheduled. In gatbitethe scheduler scans
the priority list and operations with higher priority areheduled first. Scheduling an
operator to a control step makes its successor operatiadyg,nehich will be added to
the ready list. This process is carried until all of the ofierss have been scheduled.
When there exist more than one ready nodes sharing the s@onigypties are broken

randomly. A pseudo code implementation of list schedulgghiown in Algorithm 4.

procedure ListSchedulingG,R, L)
input: DFG G(V, E), resource seR, priority list L
output: instruction schedule
1: cycle—0
2. ReadyList— successors dftart
3: while nodeendis not scheduledo
4. for op € ReadyListin descending priority ordedo
5 if a resource exists farp to startthen
6 scheduleop at timecycle
7 end if
8 updateReadyList
9: end for
10: cycle—cycle+1
11: end while

12: returncycle

Algorithm 4: Resource-Constrained List Scheduling

It is easy to see that list scheduler always generates feasithedule. Further-

more, it has been shown that a list scheduler is always capébroducing the optimal

92

schedule for resource-constrained instruction scheglypimoblem if we enumerate the
topological permutations of the DFG nodes with the inpubity list [57].

The success of the list scheduler is highly dependent orritvetp function [93, 72]
and the structure of the input application (DFG) [57]. Onage, commonly used
priority function assigns the priority inversely proporial to the mobility, i.e., the
greater the mobility the smaller the priority and vice-wersThis would ensure that
operations with large mobility are deferred to later cohsteps because the number
of control steps into which they could go is greater. Manyeotpriority functions
have been proposed [2, 57, 41, 8]. It is commonly agreed fleaétis no single good
heuristic for prioritizing the DFG nodes across a range @liaptions. Our results in

Section 4.6 confirm this.

4.4.2 Algorithm Formulation

Based on this observation, we address the RCS problem inilaismanner to the
ACO meta heuristic framework used to solve the TCS problene. Key idea is to com-
bine ACO meta-heuristic with the traditional list schedglialgorithm, and formulate
the problem as an iterative searching process over the topetst space. Our pro-
posed algorithm dynamically explores different prioritgn€tions based on the struc-
ture of the input application. This allows us to adaptivelyate a priority function that
is suited to the application at hand.

Similar to the algorithm formulated for the TCS problem, leaperation, or DFG

93

nodeop;, is associated with a set of pheromone trajJs The difference is that now
each trail indicates the global favorableness of assigtiiag-th operation at thg-th
position in the priority list, wherg = 1,...,n. Since it is valid for the operation to be
assigned to any of the position in the priority list, eachrph&one trail will be valid.
This is different from the timing-constrained formulatiainere some trails are fixed
to be zero based on the allowed time frames of the operatloitally, Tj; is set with
some fixed value&.

A pseudo code implementation of our RCS algorithm using MMAShown as
Algorithm 5, where the pheromone bounding step is indicatedtep 12. For each
iteration,m ants are released and each starts to construct an indiypdoaity list by
filling the list with one operation per step. Every ant willMeamemory about the
operations it has already selected in order to guaranteeatitbty of the constructed
list. Upon starting step, the ant has already selectgéd 1 operations of the DFG. To
fill the j-th position of the list, the ant chooses the next operatigrprobabilistically

according to:

Tij(t)uﬂﬁ- f .
— - —p If opcis not scheduled yet
pij = AHORIY (4.11)
0 otherwise

where the eligible operatiornsgp are those yet to be scheduled. Agaig, is a local
heuristic for selecting operatiam, anda and3 are parameters to control the relative
influence of the distributed global heuristig and local heuristig)ix.

The local heuristia) gives the local favorableness of schedulingitiie operation

at the j-th position of the priority list. In our work, we experimeut with different

94

well-known heuristics [72] proposed for operation scheayl

1. Operation Mobility (OM): The mobility of an operation gives the range for
scheduling the operation. It is computed as the differeraterden ALAP and
ASAP results. The smaller the mobility, the more urgent ttieeduling of the

operation is. When the mobility is zero, the operation islendritical path.

2. Operation Dept{OD): Operation depth is the length of the longest path in the
DFG from the operation to the sink. It is an obvious measuréhe priority of

an operation as it gives number of operations we must pass.

3. Latency Weighted Operation DeptbWwOD): LWOD is computed in a similar
manner as OD, except that the nodes along the path are wetighiteg their

operation latencies.

4. Successor NumbdSN): The motivation of using the number of successors is
the hope that scheduling a node with more successors haser lggssibility
of making other nodes in the DFG free, thus increasing thelbeuraf possible

operations to choose from later on.

The second stage of the algorithm, i.e. the result qualggssment and pheromone
trail updating, proceeds similarly as the timing constedialgorithm discussed previ-
ously. The only exception is that now the qual@@y in Equation 4.8 is replaced by the

total latencyLy, of the generated scheduling result.

95

procedure MaxMinAntSchedulingRCS5,R)
input: DFG G(V, E), resource seR
output: operation schedule

1: initialize parametep, Tjj, Pbest Tmax Tmin

2: constructmants

3: BestSolutior— ¢

4: while ending condition is not meto

5. fori=0tomdo

6: ant(i) constructs a list (i) of nodes using andn
7: Q; = ListSchedulingG, R L(i))

8: if Qj is better than that dBestSolutiorthen

9 BestSolution— L(i)
10: end if
11: end for
12: updatetnax andtmin based on Equation (2.3) and (2.4)
13: updaten if needed

14: updatetj; based on (4.7)
15: end while
16: returnBestSolution

Algorithm 5: MMAS for Resource-Constrained Scheduling

96

4.4.3 Refinements
Dynamic Local Heuristics

One important difference between our algorithm and othdr@ystem algorithms
is that we use a dynamic local heuristic in the resource caingtd scheduling process.
It is indicated by step 13 in Algorithm 5. This technique ®alfobetter local guidance
to the ants for making the selection in the next iteration.Wlltillustrate this feature
with the use of the operation mobility heuristic.

Typically, the mobility of an operation is computed by usiAgAP and ASAP
results. One important input parameter in computing the RrAsult is the estimated
scheduling deadline. This deadline is usually obtainethfeystem specifications or
other quick heuristic methods such as a list scheduler. dteigr that more accurate
deadline estimation will yield tighter mobility range thistter local guidance.

Based on the above observation, we use dynamically computaility as the
local heuristic in our algorithm. As the algorithm proceadbenever a better schedule
is achieved, we use the newly obtained scheduling lengtheaddadline for computing
the ALAP result for the next iteration. That is, for iteratit, the local heuristic for

operationi is computed as (see section 2.5 for definitionsffandSP):

1

ni(t) = ALAP(f(S0(t — 1)),i) — ASARI) + 1

(4.12)

97

Topologically Sorted Lists

In the above algorithm, the ants construct a priority lishgghe same traversing
method that is used in the TSP formulation [28]. In fact, thisis out to be a naive
way. To illustrate this, one just need to notice that it witlg a search space of totally
n! possible lists, which is simply all the permutationsrobperations. However, we
know that the resultant schedules of the list scheduler @igeaosmall portion of these
lists. More precisely, they are all the possible permutetiof the operations that are
topologically sorted based on the dependency constrampesed by the DFG. By
leveraging this application dependent feature, it is gmedor us to greatly reduce the
search space. For instance, using this technique on a siipt®de example [72]
reduces the possible number of orderings from 11! to 59400.15%. Though it
quickly becomes prohibitive to precisely compute such ctida for more complex
graph$, it is generally significant. By adopting this technique,ttie final version
of our algorithm, the ant traverses the DFG in a similar mammehe list scheduling
process and fills operation list one by one. At each step,riheid select an operation
based on Equation 4.11 but only from all the ready operatitet is, from all the

operations whose predecessors have all been scheduled.

lwe tried to compute the search space reduction for Figuresiig GenLE [81]. It failed to produce
any result within 100 computer hours.

98

4.4.4 Extensions

So far, our discussion on the operation scheduling problemseen limited to the
thehomogeneousase. In other words, each operation is mapped to a uniqaerces
type, though a resource type might be able to handle diffengerations. In practice,
this means that eesource allocatiorstep needs to precede the operation scheduling
process. We often need to handle Heterogeneousase, where one operation can be
executed with different resource types. For example, a&systight have two different
realizations of multiplier, one is faster but more expeasuhile the other is slower but
cheaper. Both are capable of executing a multiplicatiomatpn. Our challenge is to
determine how to effectively use the resources to achievbéist time performance. In
this situation, separating the resource allocation stap fsperation scheduling may be
not a favorable approach, as the prior step could greatly fhre optimization oppor-
tunity for operation scheduling. This motivates us to cdesithe resource allocation
issue within the operation scheduling problem.

It is possible to address this problem using ILP by extendligILP formulation
for the homogenous case. The basic idea is to introduce a ele®df parametersny
which can take value 0 or 1, and describe the compatibilitween operatiomp and
resource typ&. A set of new constraints are needed to make sure that onlfypeef

resources among all those that are capable of procesgingused, i.e.
ka =1 wherei=1,...,n (4.13)
We can see it makes the ILP problem even more intractable.

99

However, this extra difficulty does not block the list schiedwr the proposed
MMAS approach from working. The basic algorithm could beriea out with almost
no changes except for the list construction. The major @raklk, when there exists
alternative resource types for one specific operationmesitng a certain attribute of
the operation becomes more challenging. For example, ifitlreint execution de-
lay on capable resource types, the mobility of the operatasariable. This has been
studied in previous research, e.g. [94], where the averaigady over a set of het-
erogenous resources is used to carry the scheduling taskur lwork, we simply take
the pessimistic approach by applying the longest execlgimcy amongst the alter-
native resources in computing such attributes. With thteresion, our algorithm can

be applied to heterogenous cases.

4.4.5 Complexity Analysis

List scheduling is a two step process. In the first step, aipribst is built. The
second step takes steps to solve the scheduling problem since it is a constauct
method without backtracking. For different heuristicg domplexity of the first step is
different. When operation mobility, operation depth artdiey weight operation depth
are used, it take®(n?) steps to build the priority list since a depth-first or brésfitst
graph transversal is involved. When the successor node ewisiladopted as the list
construction heuristic, it only takessteps. Thus the complexities for these methods

areO(n?) or O(n) respectively.

100

The force-directed resource constrained scheduling rdethdifferent. Though
it is also a constructive method without backtracking, wechéo compute the force
of each operation at every step since the total latency ismyecally increased based
on whether there is enough resources to handle the readgtmpex. Thus the FDS
method ha®©(n®) complexity.

The complexity of the proposed MMAS solution is determinealmty by the com-
plexity of constructing individual scheduling solutiortse number of antsn and the
total iterationN in every run. In order to generate a schedule solution, eaichegeds to
first loop througm operations and for each operation determine its locatibm;iwhas
a complexity ofO(n). This list is then provided to a list scheduler with a compileaf
O(n) or O(n?). This makes overall complexitp(n?). Obviously, ifmNis proportional
to n, we will have one order higher complexity than the corresiag list scheduling
approach. However, based on our experience, it is possiffilesuch factor for a large
set of practical cases so that the complexity of the MMAS tsmiuis the same as the

list scheduling approach.

4.5 ExpressDFG Benchmarks

In order to test and evaluate our algorithms, we have cortstiia comprehensive
set of benchmarks namedeagpressDFGThese benchmarks are taken from one of two

sources:
e Popular benchmarks used in previous literature;

101

¢ Real-life examples generated and selected from the MediEBsuite [59].

The benefit of having classic samples is that they provideecticomparison be-
tween results generated by our algorithm and that from pusly published methods.
This is especially helpful when some of the benchmarks haegvk optimal solutions.
In our final testing benchmark set, seven samples widely imseperation scheduling
studies are included. These samples focus mainly on freélguesed numeric calcula-

tions performed by different applications. They are:

1. ARF: an implementation of aiuto Regression Filter

2. EWF: an implementation of dglliptic Wave Filter.

3. FIR1 and FIR2: two versions offanite Impulse Response Filter)

4. COSINE1 and COSINEZ2: two implementations for a one dinoerad 8-point
fast discrete cosine transform, where COSINE1 assumedardnoefficients
while the coefficients in COSINEZ2 are given as inputs.

5. HAL: an iterative solution of a second order differentigluation. This perhaps
is the most popularly used example in text books which oalijyrappeared in

[78].

However, these samples are typically small to medium in, simd are considered
somewhat old. To be representative, it is necessary toeceeatore comprehensive set

with benchmarks of different sizes and complexities. Sumichmarks shall aim to:

e Provide real-life testing cases from real-life applicatp

102

e Provide more up-to-date testing cases from modern apjglitgt
¢ Provide challenging samples for operation schedulingrédtyas with regards to
larger number of operations, higher level of parallelisrd data dependency;

e Provide a wide range of synthesis problems to test the algos’ scalability;

For this purpose, we have investigated the MediaBench,switéch contains a
wide range of complete applications for image processiongjrmounications and DSP
applications. We analyzed these applications using thd-$4Jland Machine SUIF
[89] tools, and over 14,000 DFGs were extracted as prelimiosandidates for our
benchmark set. After careful study, thirteen DFG samplesevgelected from four

MediaBench applications. These applications are:

JPEG JPEG is alossy compression technique for digital imagecjgegapplica-
tion performs compression, while tligpegapplication decompresses the JPEG
image.

MPEG2 MPEG?2 is a digital video compression standard, commonlg frsehigh
quality video compression including DVD compression. Tingeg2enapplica-
tion encodes the video, while tinepeg2de@pplication decodes the video.

EPIC EPIC stands for Efficient Pyramid Image Coder and is anothege com-
pression utility.

MESA The Mesa project is a software 3-D graphics package. Theqoyiapplica-
tion that we were concerned with was tieggerutility, which generates a texture

mapped version of the Utah teapot.

103

From the JPEG project, four basic blocks were selected. Téieckhme from the
write_bmp.headerfunction. The basic block was selected for its high level af-p
allelism. The second basic block came from t#2 smoothdownsampldunction.
This function has 51 nodes for only one store operation agtite The store is depen-
dent on all but two of the operations, making it an interegpnoblem for scheduling.
The third basic block was selected from jpeg fdctislowfunction. The function per-
forms an integer forward discrete cosine transform (DCiggis slow-but-accurate
algorithm and was chosen for its popularity amongst DSPiegidns. The final block
was selected from thpeg idct ifastfunction. Like the forward DCT, this was selected
for its commonality. However, this implementation is a fastd much less accurate,
version of the inverse DCT.

Two basic blocks were selected from the MPEG section. Thedae from the
idctcolfunction in thempeg2deapplication. The function implements another version
of the inverse DCT algorithm. In this case, the function ig p&a 2-D inverse DCT,
while the inverse DCT from the JPEG application is only 1-BeTarge size of the DFG
and complicated dependency structure provide a good testcfeeduling algorithm.
The second comes from thmotionvectorsfunction in thempeg2endunction. The
basic block only contains 42 nodes and 38 edges, making ibbtiee smaller blocks
selected from MediaBench, ensuring that the benchmar& puitvides a wide range of

synthesis problems to test scalability.

104

The EPIC project supplied one basic block. It came froncthiapsepyr function,
which is a quadrature mirror filter bank. The block was selédor its medium size
and common use in DSP applications.

distribution of DFG size for MediaBench
(collected over epic, g721, jpeg, mesa, mpeg2dec, and mpeg2enc packages)

25 T T

20 o q

15 B

10 B

number of DFGs (%)

0 ! P — I L ! I

0 10 20 30 40 50 60 70 80 90

DFG size
(99.3% of the DFGs are of a size smaller than 90)

Figure 4.3: Distribution of DFG size for MediaBench

From the MESA application, six basic blocks were selectetddcadded to the
benchmark suite. Thimvert matrix generaland matmulfunctions were selected be-
cause they are general functions, not specific to the MESAicapbion. Matrix oper-
ations, such as inversion and multiplication, are commob$® applications where
many filters are merely matrix multiplications with a set o&fficients. The next block
selected came from tlenoothcolor_z trianglefunction. The basic block is essentially
four parallel computations without data dependenciesjmgakan ideal addition to the

benchmark suite. The fourth benchmark is from ioener beziermethod. With only

105

18 nodes, the small size helps add variety to the benchmaie fifth block comes
from theinterpolateauxfunction. The function performs four linear interpolatical-
culations, which can easily be run in parallel if the hardever available. The final
benchmark is from théeedbackpointsfunction, which calculates texture coordinates
for a feedback buffer.

In order to justify the difficulty and representativenesgwoif testing cases, we ana-
lyze the distribution of the sizes of DFGs in practical s@fte/programs. Our analysis
covers theepic, jpeg, g721, mpeg2enc, mpeg2dmud mesapackages. The result is
shown in Figure 4.3. We find that the maximum size of a DFG caadbig as 632.
However, the majority of the DFGs are much smaller. In faairerthan 98% DFGs
have fewer than 90 nodes. Moreover, the very largest oned #tte interest with re-
spect to system performance. They are typically relateld system initialization and
are executed only once.

Table 4.1 lists all twenty benchmarks that were includedunfmal benchmark set.
Together with the names of the various functions where tseclidocks originated are
the number of nodes, number of edges and operation deptinfass unit delay for
every operation) of the DFG. The data, including relatetisties, DFG graphs and

source code for the all testing benchmarks, is availableefB3].

106

Benchmark Name #Nodes #Edges OD

HAL 11 8 4
hornerbezier 18 16

ARF 28 30 8
motion vectors 32 29 6
EWF 34 47 14
FIR2 40 39 11
FIR1 44 43 11
h2v2 smoothdownsample 51 52 16
feedbackpoints 53 50 7
collapsepyr 56 73 7
COSINE1 66 76 8
COSINE2 82 91 8
write_bmp.header 106 88 7
interpolateaux 108 104 8
matmul 109 116 9
idctcol 114 164 16
jpeg.idctifast 122 162 14
jpegfdctislow 134 169 13
smoothcolor_z_triangle 197 196 11
invert matrix_general 333 354 11

Table 4.1: ExpressDFG benchmark suite
(Benchmarks with T are extracted from MediaBench.)
(Benchmark node and edge count with the operation depth €38)ming unit delay.)

107

4.6 Experimental Results

4.6.1 Time Constrained Scheduling

In order to evaluate the quality of our proposed algorithmtiming constrained
scheduling problem, we compare its results with that olethby the widely used force-
directed scheduling method. For all testing benchmarkes;aijons are allocated on two
types of computing resources, namely MUL and ALU, where MBkapable of han-
dling multiplication and division, and ALU is used for oth@werations such as addition
and subtraction. Furthermore, we define the operationsmgron MUL to take two
clock cycles and the ALU operations take one. This definiely/simplified case from
reality. However, it is a close enough approximation andsdus change the generality
of the results. Other choices can easily be implementedmatlr framework.

Since there is no widely distributed and recognized FDS émgntation, we im-
plemented our own. The implementation is based on [78] asdalidhe applicable
refinements proposed in the paper, including multi-cycleragion support, resource
preference control, and look-ahead using second orderspfatiement in force com-
putation. Actually, based on our experience, the look-dteaction for FDS is very
critical. Without invoking this mechanism, basic FDS pies poor scheduling results
even for small sized examples. In Table 4.2, we show the teffidook-ahead for the
HAL benchmark originally presented in [78], which has onlydperations and 8 data

dependencies. Because of this, in our experiments, thedbekd function is always

108

used to allow FDS to provide better results.

deadline wi/tlook-ahead w/look-ahead

9 1) 2 1)
10 21) (2 1)
11 21) (2 1)
12 (31) 21)
13 (31) (11)
14 (31) (11)

Table 4.2: Effect of Look-ahead Mechanism in FDS
(Result shown in MUL/ALU number pair. Deadline is in cycles.

With the assigned resource/operation mapping, ASAP isdegformed to find the
critical path delayL.. We then set our predefined deadline range toLbe2L ¢, i.e.
from the critical path delay to 2 times of this delay. Thisules 263 testing cases in
total. For each delay, we run FDS first to obtain its schedutsult. Following this, the
proposed MMAS algorithm is executed 5 times to obtain enalagh for performance
evaluation. We report the FDS result quality, the averagebast result quality for the
proposed algorithm and the standard deviation for thesdtsesThe execution time
information for both algorithms is also reported.

We have implemented our MMAS formulation in C for the TCS peoby, with the
refinements discussed in Section 4.3. The evaporatiorprasteonfigured to be Q8.
The scaling parameters for global and local heuristicsetrtodea = 3 = 1 and deliv-
ery rateQ = 1. These parameters are not changed over the tests. We pEinesnted

with different ant numbem and the allowed iteration coui. For example, sahto

109

be proportional to the average branching factor of the DF@eurstudy andN to be
proportional to the total operation number. However, itaarfd that there seems to
exist a fixed value pair fom andN which works well across the wide range of testing
samples in our benchmark. In our final settings, wensed be 10, andN to be 150 for
all the timing constrained scheduling experiments.

Due to the large amount of data, we won’t be able to reportnigsesults for
all 263 cases in details. Table 4.3 compares the testindtsefsum idctcol and in-
vertmatrix.genera) two of the biggest samples. In this table, we provide a side b
side comparison between FDS and our proposed method. Tekdudoiy results are
reported as MUL/ALU number pair required by the obtainedesithing. For MMAS
method, we report both the average performance and theddstipance in the 5 runs
for each testing case, together with the saving percenfHge saving is measured by
the reduction of computing resources. In order to keep thkuation general and ob-
jective, we use the total count of resources as the qualityiecsevithout considering
their individual cost factors.

Besides absolute quality of the results, one differencevéeh FDS and the pro-
posed method is that our method is relatively more stableoumexperiments, it is
observed that the FDS approach can provide worse qualitftsess the deadline is
relaxed. Using thélctcolin Table 4.3 as an example, FDS provides drastically worse
results for deadlines ranging from 25 to 30 though it is ableeaich decent scheduling

qualities for deadline from 19 to 24. The same problem ocfaurdeadlines between

110

Name (size) Deadline FDS Average Savings Best Savings o
19 (68) (5.06.0) 21.43% (56) 21.43% 0.000
20 57) (4.4 6.0) 13.33% (46) 16.67% 0.219
21 47) (4.25.8) 9.09% (46) 9.09% 0.000
22 @7 (4.25.4) 12.73% (45) 18.18% 0.219
23 47) (4.05.4) 14.55% (45) 18.18% 0.219
24 @7 (3.65.2) 20.00% (35) 27.27% 0.335
25 (88) (3.85.0) 45.00% (35) 50.00% 0.179
26 (88) (3.45.0) 47.50% (35) 50.00% 0.219
27 (88) (3.05.0) 50.00% (35) 50.00% 0.00
28 (88) (3.04.6) 52.50% (34) 56.25% 0.219
idctcol 29 (88) (3.04.9) 53.75% (34) 56.25% 0.219
(114 164) 30 (88) (3.04.6) 52.50% (34) 56.25% 0.219
31 (46) (3.04.6) 24.00% (34) 30.00% 0.219
32 (45) (3.04.0) 22.22% (34) 22.22% 0.000
33 (45) (2.84.0) 24.44% (24) 33.33% 0.179
34 (45) (3.04.0) 22.22% (34) 22.22% 0.000
35 (45) (3.04.0) 22.22% (34) 22.22% 0.000
36 (46) (3.03.8) 32.00% (33) 40.00% 0.179
37 (46) (2.63.8) 36.00% (33) 40.00% 0.219
38 (46) (2.83.4) 38.00% (33) 40.00% 0.179
15 (24 23) (26.0 22.0) -2.13% (25 22) 0.00% 0.283
16 (2219) (23.819.0) -4.39% (2319) -2.44% 0.179
17 (1917) (21.817.4) -8.89% (2117) -5.56% 0.335
18 (18 16) (20.416.2) -7.65% (20 16) -5.88% 0.219
19 (17 16) (19.2 16.0) -6.67% (19 15) -3.03% 0.335
20 (17 16) (18.213.4) 4.24% (1813) 6.06% 0.358
invertmatrix.general 21 (16 16) (17.212.8) 6.25% (17 13) 6.25% 0.000
(333 354) 22 (16 16) (16.412.2) 10.63% (1612) 12.50% 0.358
23 (16 16) (16.011.8) 13.12% (16 11) 15.62% 0.179
24 (16 16) (15.411.2) 16.87% (1511) 18.75% 0.219
25 (16 16) (14.410.8) 21.25% (14 11) 21.88% 0.179
26 (16 16) (14.210.2) 23.75% (1310) 28.12% 0.358
27 (16 16) (13.810.0) 25.62% (13 10) 28.12% 0.179
28 (16 16) (13.410.2) 26.25% (13 10) 28.12% 0.219
29 (16 16) (13.09.4) 30.00% (139) 31.25% 0.219
30 (16 16) (12.6 9.6) 30.63% (139) 31.25% 0.179

Table 4.3: Partial detailed results for Timing-Constrained Scheadyli
(Size is given as DFG's node/edge number pair. Virtual naahesedges are not counted.
Average and standard deviatiorare computed over 5 runs. Saving is computed based on

FDS results. No weight applied.)
111

Name Size Deadline Avg. Savings (SA) Best Savings (SA) Avg. 0 (SA)

HAL 11/8 (6-12) 7.1% (7.1%) 7.1% (7.1%) 0.000 (0.000)
hornetbeziersurf 18/16 (11-22) 9.9% (-4.6%) 13.2% (2.1%) 0.015 (0.051)
ARF 28/30 (11-22) 12.4% (-1.2%) 16.9% (3.1%) 0.093 (0.099)
motion.vectors 32/29 (7-14) 13.1% (-3.4%) 16.0% (2.8%) 0.072 (0.177)
EWF 34/47 (17 - 34) 11.5% (-4.4%) 18.1% (4.7%) 0.081 (0.136)
FIR2 40/39 (12 - 24) 16.8% (-15.7%) 22.8% (-1.9%) 0.106 (0.299)
FIR1 44/43 (12-24) 15.2% (-7.7%) 18.0% (-3.3%) 0.047 (0.116)
h2v2 smoothdownsample 51/52 (17 - 34) 19.3% (7.6%) 21.3% (11.0%) 0.042 (0.088)
feedbackpoints 53/50 (11-22) 5.9% (-12.8%) 9.2% (-6.4%) 0.103 (0.196)
collapsepyr 56/73 (8-16) 18.3% (4.6%) 18.9% (9.6%) 0.044 (0.195)
COSINE1 66/76 (10-20) 21.5% (7.4%) 25.9% (14.1%) 0.150 (0.349)
COSINE2 82/91 (10 - 20) 5.6% (-14.8%) 12.0% (-7.3%) 0.232 (0.342)
write_bmp.header 106/88 (8-16) 0.9% (-5.3%) 1.0% (-3.4%) 0.064 (0.093)
interpolateaux 108/104 (10 - 20) 0.2% (-36.5%) 2.0% (-27.9%) 0.109 (0.407)
matmul 109/116 (11-22) 3.7% (-30.8%) 5.1% (-21.4%) 0.088 (0.363)
idctcol 114/164 (19 - 38) 30.7% (12.6%) 34.0% (17.5%) 0.151 (0.231)
jpegidct.ifast 122/162 (17 - 34) 50.3% (36.9%) 52.1% (41.8%) 0.147 (0.336)
jpegfdctislow 134/169 (16 - 32) 31.4% (7.5%) 34.2% (13.0%) 0.171 (0.335)
smoothcolor_z_triangle 197/196 (15-30) 7.3% (-18.7%) 9.2% (-12.0%) 0.136 (0.472)
invertmatrix.general 333/354 (15 - 30) 11.2% (-29.4%) 13.2% (-22.9%) 0.237 (0.743)

Total Avg.

16.4% (-5.1%)

19.5% (1.0%)

0.104 (0.251)

Table 4.4: Result Summary for Timing-Constrained Scheduling
Data in parenthesis shows the results obtained using Siedubnnealing.
Deadline shows the tested range. Average computed over the tested range.

Saving is computed based on FDS results. No weight applied.

112

36 and 38. One possible reason is that as the deadline isdextethe time frame
of each operation is also extended, which makes the forcgutation more likely to
clash with similar values. Due to the lack of backtracking good look-ahead capa-
bility, an early mistake would lead to inferior results. O tother hand, our proposed
algorithm robustly generates monotonically non-incnegsesults with fewer resource
requirements as the deadline increases.

Table 4.4 summarizes the testing results for all of the beracks. We present
the average and the best results for each testing benchitsarésted deadline range,
and the average standard deviations. The table is arranglee increasing order of the
complexity of the DFGs. The average result quality gendriayeour algorithm is better
than or equal to the FDS results in 258 out of 263 cases. Antwarg,tfor 192 testing
cases (or 73% of the cases) our MMAS method outperforms tHe mBthod. There
are only five cases where our approach has worse averageyqeslilts. They all
happened on thavert matrix generalbenchmark and are listed in Table 4.3, indicated
by lines with the italic bold fonts. On average, as shown iblda&.4, we can expect a
16.4% performance improvement over FDS. If only considgtive best results among
the 5 runs for each testing case, we achieve a 19.5% res@duetion averaged over
all tested samples. The most outstanding results provigeoub proposed method
achieve a 75% resource reduction compared with FDS. Theatgare obtained on a
few deadlines for th@eg idct ifast benchmark.

From Table 4.4, it is easy to see that for all the examples, MBbased operation

113

scheduling achieves better or much better results. Oumapprseems to have much
stronger capability in robustly finding better results fdfedent testing cases. Further-
more, it scales very well over different DFG sizes and coxipés. Another aspect
of scalability is the pre-defined deadline. Based on theltepuesented in Table 4.3
and Table 4.4, the proposed algorithm also demonstratésr [seialability over this
parameter.

50 T T T T

" A‘FDS ——
B: Proposed Algorithm —s=—
C: ratio —&—

1 400

1 300

1 200

ratio MMAS/FDS
exceution time in seconds

1 100

0 50 100 150 200 250 300 350
size of DFG

Figure 4.4: Execution Time for Timing-Constrained Scheduling.

(Ratio is MMAS time / FDS time)

All of the experimental results are obtained on a Linux boxhvd 2GHz CPU.
Figure 4.4 diagrams the execution time comparison betweempitesented algorithm
and FDS. Curve A and B shows the run time for FDS and the praposghod (re-

spectively), where we use the average runtime for our MMAIStEmmS over 5 runs.

114

As discussed before, since we use fixed ant numbeand iteration limitN in our ex-
periments to make the algorithm simpler, there exists a dmlgetween the execution
times for the smaller sized cases. For example, for the HAdn®gde, which only has
11 operations, the execution time of FDS is 0.014 secondgwhr method takes 0.66
seconds. This translates into a ratio of 47. However, asiteeas the problem gets
bigger, this ratio drops quickly. For the biggest caseert matrix. genera FDS takes
270.6 seconds while our method spends about 411.7 secohitd) makes the ratio
1.5. To summarize, for smaller cases, our algorithm does halatively larger execu-
tion times but the absolute run time is still very short. Hoe HAL example, it only
takes a fraction of a second. For bigger cases, the proposttbthhas a runtime at the
same scale as FDS. This makes our algorithm practical.

In Figure 4.4, we do see some spikes in the ratio curve. Wibuatitr this to two
main reasons. First, the recorded execution time is basesystem time and it is
relatively more unreliable when the execution time is sm&kcondly but perhaps
more important, the timing performance of both algorithmaat only determined by
the DFG node count but also dependent on the predefined depaead in the DFGs
and the deadlinB. This will introduce variance when the curves are drawnragdhe

node count.

115

4.6.2 Resource Constrained Scheduling

We have implemented the proposed MMAS-based resourcdraoresd scheduling
algorithm and compared its performance with the populasigdulist scheduling and
force-directed scheduling algorithms.

For each of the benchmark samples, we run the proposed talgonith different
choices of local heuristics. For each choice, we also perforuns to obtain enough
statistics for evaluating the stability of the algorithmgain we fixed the number of
ants per iteration 10 and in each run we allow 100 iteraticdDther parameters are
also the same as those used in the timing constrained probléra best schedule
latency is reported at the end of each run and then the avesgdige is reported as the
performance for the corresponding setting. Two differeqiegiments are conducted
for resource constrained scheduling — the homogenous ndgb@heterogenous case.

For the homogenous case, resource allocation is perforrefmiebthe operation
scheduling. Each operation is mapped to a unique resoupee by other words, there
is no ambiguity on which resource the operation shall be leahaluring the scheduling
step. In this experiment, similar to the timing constraicade, two types of resources
(MUL/ALU) are allowed. The number of each resource type edefined after making
sure they do not make the experiment trivial (for examplejgfare too generous, then

the problem simplifies to an ASAP problem).

116

LTT

Name Size Resources FDS List Scheduling MMAS(average over 5 runs) SA
(avg.
oM oD LWOD SN oM oD LWOD SN
10 runs)

HAL (8/11) 21) 8 10 8 8 8 8.0 8.0 8.0 8.0 8.0

hornetbezietsurf (16/18) (21) 12 16 12 13 13 12.0 12.0 12.0 12.0 12.4
ARF (30/28) (31) 18 19 16 18 18 16.0 16.0 16.0 16.0 17.2
motion.vectors (29/32) (34) 12 15 12 12 14 12.0 12.0 12.0 12.0 13.3
EWF (47/34) 12) 21 22 21 21 22 21.0 21.0 21.0 21.0 213
FIR2 (39/40) (23) 17 19 18 17 15 17.0 16.8 17.0 17.0 185
FIR1 (43/44) 23) 16 22 22 21 16 16.0 16.0 16.0 16.0 21.1
h2v2smoothdownsample (52/51) 13) 23 28 23 23 22 224 228 22.8 228 23.6
feedbackpoints (50/53) (33) 16 20 14 19 14 14.4 14.2 14.6 14.6 16.6
collapsepyr (73/56) (35) 11 12 11 11 11 11.0 11.0 11.0 11.0 11.3
COSINE1 (76/66) (45) 16 18 16 17 16 14.0 140 14.0 140 15.2
COSINE2 (91/82) (58) 14 18 14 17 13 12.4 12.4 12.6 12.8 14.9
write_bmp.header (88/106) 19) 12 17 12 12 12 12.8 12.6 12.8 124 134
interpolateaux (104/108) 98) 13 16 12 16 16 11.0 11.8 11.0 11.8 15.6
matmul (116/109) 98) 15 14 13 14 14 13.6 138 138 138 14.7
idctcol (164/114) (56) 21 26 21 21 21 20.6 19.8 20.2 20.0 24.3
jpegidctifast (162/122) (109) 19 21 20 19 19 19.0 19.0 19.0 19.0 20.8
jpegfdctislow (169/134) (57) 21 28 22 22 21 22.0 22.0 21.8 21.8 23.8
smoothcolor_z_triangle (196/197) (89) 24 25 25 23 24 24.0 24.0 24.0 24.0 255
invertmatrix.general (354/333) (1511) 26 28 28 25 25 24.0 24.2 24.2 24.2 27.1

Table 4.5: Result Summary for Homogenous Resource-Constrained Slimgd

(Heuristic Labels: OM=0peration Mobility OD=0peration jith, LWOD=Latency Weighted Operation Depth, SN=Succelsonber)

Table 4.5 shows the testing results for the homogenous ddsebest results for
each case are shown in bold. Compared with a variety of lstdaling approaches and
the force-directed scheduling method, the proposed dlgorgenerates better results
consistently over all testing cases, which is demonstrayetthe number of times that
it provides the best results for the tested cases. This ecefy true for the case when
operation depth (OD) is used as the local heuristic, wheréngehe best results in 14
cases amongst 20 tested benchmarks. For other traditietabas, FDS generates the
most hits (10 times) for best results, which is still lessittiee worst case of MMAS (11
times). For some of the testing samples, our method progigesficant improvement
on the schedule latency. The biggest saving achieved is 22i6.is obtained for the
COSINEZ2 benchmark when operation mobility (OM) is used addlkal heuristic for
our algorithm and also as the heuristic for constructingtinarity list for the traditional
list scheduler. For cases that our algorithm fails to prexfte best solution, the quality
of its results is also much closer to the best than other nastho

Besides the absolute schedule latency, another imporgaetaof the quality of a
scheduling algorithm is its stability over different inpaplications. As indicated in
Section 4.2, the performance of traditional list schedhbsavily depends on the input
application. This is echoed by the data in Table 4.5. Meaatihis easy to observe that
the proposed algorithm is much less sensitive to the chdidédferent local heuristics
and input applications. This is evidenced by the fact thatstiandard deviation of the

results achieved by the new algorithm is much smaller thahdhthe traditional list

118

6TT

List Scheduling MMAS(average over 5 runs
Benchmark Resources CPLEX Force
(nodes/edges) (latency/runtime) DirectedOM | OD | LWOD| SN | OM | OD | LWOD| SN
HAL(21/25) la, 1fm, 1m,| 8/32 8 8 8 9 8 8 8 8 8
3i, 30
ARF(28/30) 2a, 1fm, 2m 11/22 11 11 13 13 13 11 11 11 11
EWF(34/47) la, 1fm, 1m 27 /24000 28 28 |31 |31 28 | 27227227 27.2
FIR1(40/39) 2a,2m, 3i,30 | 13/232 19 19 19 19 18 17.2 | 17.2 | 17 17.8
FIR2(44/43) la, 1fm, 1m,| 14/11560 19 19 21 |21 21 16.2 | 16.4 | 16.2 | 17
3i, 30
COSINE1(66/76) 2a,2m, 1fm, 3i,| T 18 19 20 18 18 174|182 | 176 | 17.6
30
COSINEZ2(82/91) 2a,2m, 1fm, 3i,| T 23 23 23 | 23 23 | 21.2]212|212 |21.2
30

Table 4.6: Result Summary for Heterogenous Resource-Constrainegd8lihg
Schedule latency is in cycles; Runtime is in seconds; T adgCPLEX failed to provide final result before running dunemory.
(Resource Labels: a=alu, fm=faster multiplier, m=muépli=input, o=output)
(Heuristic Labels: OM=0peration Mobility OD=0peration jith, LWOD=Latency Weighted Operation Depth, SN=Succes&mnber)

scheduler. Based on the data shown in Table 4.5, the avetmgiasd deviation for list
scheduling over all the benchmarks and different heurgdtaices is 12, while for the
MMAS algorithm it is only Q19. In other words, we can expect to achieve high quality
scheduling results much more stably on different appleadFGs regardless of the
choice of local heuristic. This is a great attribute desirepractice.

One possible explanation for the above advantage is thereliff ways how the
scheduling heuristics are used by list scheduler and thpogex algorithm. In list
scheduling, the heuristics are used in a greedy manneréondigie the order of the op-
erations. Furthermore, the schedule of the operationsie db at once. Differently, in
the proposed algorithm, local heuristics are used stoiciadlgtand combined with the
pheromone values to determine the operations’ order. Thigemthe solution explo-
ration more balanced. Another fundamental differenceas tie proposed algorithm
is an iterative process. In this process, the pheromone\adts as an indirect feed-
back and tries to reflect the quality of a potential compor@sed on the evaluations
of historical solutions that contain this component. Itracfuces a way to integrate
global assessments into the scheduling process, whichsgngiin the traditional list
or force-directed scheduling.

In the second experiment, heterogeneous computing uritdlakved, i.e. one type
of operation can be performed by different types of resairé®r example, multipli-
cation can be performed by either a faster multiplier or all@gone. Furthermore,

multiple same type units are also allowed. For example, wehmse 3 faster multipli-

120

ers and 2 regular ones.

We conduct the heterogenous experiments with the same ooatiign as for the
homogenous case. Moreover, to better assess the qualityr @lgorithm, the same
heterogenous RCS tasks are also formulated as integer pnegramming problems
and then optimally solved using CPLEX. Since the ILP solui®time consuming to
obtain, our heterogenous tests are only done for the claasiples in our benchmark
set.

Table 4.6 summarizes our heterogenous experiment rebldts.an extended HAL
benchmark is used which includes extra memory access apesatCompared with
a variety of list scheduling approaches and the force-thrtescheduling method, the
proposed algorithm generates better results consistexdly all testing cases. The
biggest saving achieved is 23%. This is obtained for the FiB2chmark when the
latency weighted operation depth (LWOD) is used as the loeafistic. Similar to the
homogenous case, our algorithm outperforms other metmoagyards to consistently
generating high-quality results. In Table 4.6, the averstgadard deviation for list
scheduler over all the benchmarks and different heurisiocoes is 88128, while that
for the MMAS algorithm is only QL673.

Though the results of force-directed scheduler generaitgarform the list sched-
uler, our algorithm achieves even better results. On aeg@@gmparing with the force-
directed approach, our algorithm provides a 6.2% perfonaanhancement for the

testing cases, while performance improvement for indiaidest sample can be as

121

much as 14.7%.

Finally, compared to the optimal scheduling results comguty using the integer
linear programming model, the results generated by thegsegbalgorithm are much
closer to the optimal than those provided by the list schiaduleuristics and the force-
directed approach. For all the benchmarks with known optounaalgorithm improves
the average schedule latency by 44% comparing with the dis¢duling heuristics.
For the larger size DFGs such as COSINE1 and COSINE2, CPLHEttagenerate
optimal results after more than 10 hours of execution on aR8PAvorkstation with
a 440MHz CPU and 384MByte memory. In fact, CPLEX crashesHes¢ two cases
because of running out of memory. For COSINE1, CPLEX doegigea intermediate
sub-optimal solution of 18 cycles before it crashes. Thssiteés worse than the best
result found by our proposed algorithm.

Experiment results of our algorithm are obtained on a LinoxWwith a 2GHz CPU,
as well as those for list scheduling and the force-directbée@duling. For all the bench-
marks, the runtime of the proposed algorithm ranges fromt®I176 seconds. List
scheduling is always the fastest due to its one-pass ndtuaypically finishes within a
small fraction of a second. The force-directed schedules mauch slower than the list
scheduler because its complexity is cubic in the number efatpns. For small testing
cases, it is typically faster than our algorithm as we setefikeration number for the
ants to explore the search space. However, as the problemrews, the force-directed

scheduler has longer runtime than our algorithm. In factCfOSINE1 and COSINEZ2,

122

Figure 4.5: Data Flow Graph of AR Filter.
(The number by the node is the index assigned for the opargtio

the force-directed approach takes 12.7% and 21.2% moretsedime respectively.
The evolutionary effect on the global heuristiGs is illustrated in Figure 4.6. It
plots the pheromone values for the ARF testing sample a@i@nterations of the pro-
posed algorithm. The x-axis is the index of operation nodbdénDFG (shown in Fig-
ure 4.5), and the y-axis is the order index in the prioritypiassed to the list scheduler.
There exist totally 30 nodes with node 1 and node 30 as the qusmrce and sink
of the DFG. Each dot in the diagram indicates the strengthefésultant pheromone

trails for assigning corresponding order to a certain dpmra- the bigger the size of

123

| | | | |

O ‘L
28:;:::::::Q:::::::::::::::::'.;:
26 | s o0 e 000 00 oo o@c oo ..l.‘.l.o
® 0 e 0o 0 0 0 0 . e 00 00 0 0 0 00 oo o0 [XN X
24 - e 0 e 0 00 00 . @ e e 0000 00o.ooo
® e 0 0 0 0 o ® e 0 0 0 0 0 0 0 0-.-
22 - e e e 000 00 e oo 0 0 I NY 'Y KN .
® @ 0 0 0 0 0 0 00 0 0 0 0 oo.o...oo. ooooo
20 oo @ eeccocc0c00@ooo e
............ o-.o.o-.ooo..o-.-.
18 4 N R ecceccococcocce@c oo
Bl eeennriiillillioge et @il
-E -oooo-oo-ooo...o.. -----------
01476.;.. ooooooooooo
12 - eocececccoccocco@@c oo
.o-.ooooo‘.. ;ooo. ooooooooooo
10 4 DR I EIIEY TREY KRR N AR N A
..................
8 — oo--o.o.o..oooo-oo ooooooooooo
@ceccococ@oocccococccocococnoc
6 — ..0.0.........0 oooooooooooooo
oo.o..oo--o..
4 — ooo...oo...
R | LI I)
2 - ooooooooooooooooooooo

0 T T T T T T T T T T T T

T
0 2 4 6 8 1012 14 16 18 20 22 24 26 28 30

Figure 4.6: Pheromone Heuristic Distribution for ARF

node

the dot, the stronger the value of the pheromone.

It is clearly seen from Figure 4.6 that there are a few strdrg@mone trails while
the remaining pheromone trails are very weak. This mightdmpéaéned by the strong
symmetric structure of the ARF DFG and the special implemt@r in our algorithm
of considering operation list only with topologically sedtorder. It is also interesting
to notice that though a good amount of operations have adahiéw alternative “good”
positions (such as operation 6 and 26), for some of the dpasahe pheromone heuris-
tics are strong enough to lock their positions. For exangaeording to its pheromone
distribution, operation 10 shall be placed as the 28-th iteitine list and there is no
other competitive position for its placement. After catefualuation, this ordering

preference cannot be trivially obtained by constructinigny lists with any of the

124

popularly used heuristics. This shows that the proposeatittign has the possibility to

discover better orderings which may be hard to achievetingly.

4.6.3 Comparison with Simulated Annealing

In order to further investigate the quality of the proposkgathms, we compared
them with a simulated annealing (SA) approach. For resorwostrained scheduling,
we implemented the algorithm presented in [93]. The basia id very similar to what
we proposed in our MMAS approach in which a meta-heuristithoe (SA) is used
to guide the searching process while a traditional list dahex is used to evaluate the
result quality. The scheduling result with the best resewsage is reported when the
algorithm terminates.

However, it is more difficult for the timing constrained sdiaéng problem since we
have not found any SA-based approach in previously puldisiwks. Therefore, we
formulated one ourselves. Consequently, we will give monpleasis on our SA based
formulation for the timing constrained scheduling problerthe rest of this section.

A pseudo implementation of SA-based TCS algorithm is gisseAlgorithm 6. The
major challenge here is the construction olgghborselection in the SA process. With
the knowledge of each operation’s mobility range, it isifito see the search space for
the TCS problem is covered by all the possible combinatidiseooperation/timestep
pairs, where each operation can be scheduled into any tepdrsits mobility range.
In our formulation, given a schedulingwhere operatiorop is scheduled at;, we

experimented with two different methods for generating igmeor solution:

125

1. Physical neighbar A neighbor ofSis generated by selecting an operatmm
and rescheduling it to a physical neighbor of its currenesdctted time step,
namely eithet; + 1 ort; — 1 with even possibility. In casg is on the boundary

of its mobility range, we treat the mobility range as a ciecWuffer;

2. Random neighborA neighbor ofSis generated by selecting an operation and
rescheduling it to any of the position in its mobility rangekiding its currently

scheduled position.

However, both of the above approaches suffer from the prolihat a lot of these
neighborswill be invalid because they may violate the data dependeosgd by the
DFG. For example, say, iBa single cycle operatiomp; is scheduled at time step 3, and
another single cycle operati@ap, which is data dependent @p; is scheduled at time
step 4. Changing the scheduleagd, to step 3 will create an invalid scheduling result.
To deal with this problem in our implementation, for each eyated scheduling, we
quickly check whether it is valid by verifying the operati®new schedule against those
of its predecessor and successor operations defined in t8e ORly valid schedules
will be considered.

Furthermore, in order to give roughly equal chance to eaehnatiopn to be selected
in the above process, we try to generate multiple neighbefsré any temperature
update is taken. This can be considered as a local search @ffiich is widely imple-
mented in different variants of SA algorithm. We controktlocal search effort with

a weight parametd. That is before any temperature update taking place, wmptte

126

to generat®N valid scheduling candidates whexes the number of operations in the
DFG. In our work, we seb = 2, which roughly gives each operation two chances to
alter its currently scheduled position in each cooling step

This local search mechanism is applied to both neighborrgéina schemes dis-
cussed above. In our experiments, we found there is no radiealifference between
the two neighbor generation approaches with respect toualkty)of the final schedul-
ing results except that thmndom neighbomethod tends to take significantly more
computing time. This is because it is more likely to come ughan invalid scheduling
which are simply ignored in our algorithm. In our final realion, we always use the
physical neighbomethod.

Another issue related to the SA implementation is how to Isetinitial seed so-
lution. In our experiments, we experimented three diffessaed solutions: ASAP,
ALAP and a randomly generated valid scheduling. We found $#aalgorithm with
a randomly generated seed constantly outperforms thag tisenASAP or ALAP ini-
tialization. It is especially true when thghysical neighboapproach is used. This is
not surprising since the ASAP and ALAP solutions tend totelusperations together
which is bad for minimizing resource usage. In our final mlon, we always use a
randomly generated schedule as the seed solution.

The framework of our SA implementation for both timing caagted and resource
constrained scheduling is similar to the one reported if6]10'he acceptance of a

more costly neighboring solution is determined by appltimgBoltzmann probability

127

procedure SA-TCSG,R)
input: DFG G(V, E), resource seR, and a map of operation to one resourc®in
output: operation schedule

perform ASAP and ALAP on the DFG to obtain mobility ranges.
randomly initialize a valid seed scheduliB8g,rrent

set starting and ending temperatlig@andTe.

set local search weight th

sett to Tg
setSestto beSurrent
while t > Te do

1
2:
3:
4.
5: setN to be the number of operations.
6:
7:
8:
9: for i=0;i <BN;i++do

10: randomly generate a neighbor solutign
11: if §,isinvalidthen

12: continue

13: else

14: compute the resource cost®f

15: randomly accep®, to beSyrrent

16: updateS,eq:if needed

17: end if

18: end for

19: updatet based on cooling scheme
20: end while
21: returnSyest and the resource cost

Algorithm 6: Simulated Annealing for Timing-Constrained Scheduling

128

criteria [1], which depends on the cost difference and thmeealing temperature. In our
experiments, the most commonly known and used geometrltwgoschedule [106] is

applied and the temperature decrement factor is set to 0/®enVit reaches the pre-
defined maximum iteration number or the stop temperatuehdist solution found by
SA is reported.

The experimental results for TCS problem obtained usingtie/e simulated an-
nealing formulation are shown in Table 4.4, where the SAltesue provided in paren-
thesis column by column with those achieved by using MMA&i&ir to the MMAS
algorithm, we perform 5 runs for each benchmark sample goartréhe average sav-
ings, the best savings, and the standard deviation of tletegpscheduling results. It
can be seen from Table 4.4 that the SA method provides muckewesults compared
with the proposed MMAS solutions. In fact, the MMAS approgechvides better re-
sults on every testing case. Though the SA method does hlgniéiint gains on select
cases over FDS, its average performance is actually woaseRBS by 5%, while our
method provides a 16.4% average savings. This is also trwe ionsider the best
savings achieved amongst multiple runs where a modest 1#gsais observed in
SA comparing with a 19.5% reduction obtained by MMAS methBdrthermore, the
quality of the SA method seems to be very dependent on the agplications. This is
evidenced by the large dynamic range of the schedulingtywaid the larger standard
deviation over the different runs. Finally, we also want take it clear that to achieve

this result, the SA approach takes substantially more coimgptime than the proposed

129

MMAS method. A typical experiment over all 263 testing casgsrun between 9 to
12 hours which is 3 to 4 times longer than the MMAS-based T@8raghm.

As discussed above, our SA formulation for resource coimgttlesscheduling is sim-
ilar to that studied in [93]. It is relatively more straigldrivard since it will always
provide valid scheduling using a list scheduler. To be fairandomly generated op-
eration list is used as the seed solution for the SA algoritiifmee neighbor solutions
are constructed by swapping the positions of two neighlgarerations in the current
list. Since the algorithm always generates a valid schedulve can better control the
runtime than in its TCS counterpart by adjusting the cooBogeme parameter. We
carried experiments using execution limit ranging from 1l@times of that of the
MMAS approach. It was observed that SA RCS algorithm pravjol@or performance
when the time limit was too short. On the other hand, once wesase this time limit
to over 5 times of the MMAS execution time, there was no sigaift improvement on
the results as the execution time increased. In the rightowdsmn of Table 4.5, we
present the typical RCS results using SA achieved with 18githe MMAS execution
time. The performance data is averaged over 10 runs for eatihg sample. It is easy
to see that the MMAS-based algorithm consistently outperfoit while using much

less computing time.

130

4.6.4 Parameter Sensitivity

The proposed ACO-based algorithms belong to the categosyochastic search
algorithms. This implies a certain sensitivity of the régalthe choices of parameters
which are at times difficult to determine. In order to bettederstand this issue and
its relationship with the algorithms’ performance, a studytheir sensitivity to the
parameter selection is in order. We have conducted exergperiments in our work

on this topic and will report our major findings in this seatio

e 0, B andQ: Variation on global heuristic weightt, local heuristic weighp and
the pheromone delivery consta@tdoes not have noticeable impact on the per-
formance of our algorithms. The algorithms consistentlyvpte robust results
whena andf3 are in the range ofL, 100 andQ is betweerj1,5000 with small
step size, while performance on benchmarks of smaller $&rebkto have more
fluctuations than the bigger ones. Of course, a numericedlgige limit should be
a concern for parameterandf in algorithm realization because they are used in
power functions. Also, the scaling of local and global hstics could be an issue
with these parameters. In our study, we found setting 3 = 1 worked well in
our implementation over a comprehensive set of testinghmaadks. Moreover,
the benefit is that it essentially eliminates the power fiamctalls in Equation

(2.1) which further reduces computing time.

e p: The pheromone evaporation faciptakes a value in the range of [0,1] and

controls how much the existing pheromone trails will be @®Uubefore any en-

131

hancement. The smaller this number, the more reductiorpiseal(see Equation

(2.2)). When this number is too small, historical inforroataccumulated in the
search process will be essentially lost, and the the algngtbehave close to a
random search. In our experiments, we found a value betw®&nahd 1 seems

to be a good choice. In our final setup, paramepterset to 0.98.

Phest This parameter, together wifh controls how the lower bound and upper
bound of pheromone trails will be computed. Recall that whgs: — 0, the
difference betweemmin(t) andtmaxt) gets smaller, which means the search is
getting more random and more emphasis is given to searck sgatoration. In
our experiments, we found thptes; Should be bigger than 0.5. Once it is above
this threshold, both algorithms for RCS and TCS problem#operrobustly. In

our final setupppestis set to 0.93.

m andN: The ant countm and the iteration numbeX are closely related and
have a direct impact on the algorithms execution time. Roudthe product of

m andN gives an estimation of how many scheduling instances tharigigns

will cover. Theoretically, the bigger this product, the teetthe performance.
Also, it is intuitive to see that these parameters shoulddsatipely correlated
with the complexity of the test sample. In our work, we prefemuse a fixed
setting for these parameters in order to make the algorithmpler. As reported
above, withm= 10 anadN is set to be 150 and 100 for the TCS and RCS problem

respectively, our algorithms work well over a wide rangeesiting samples. In

132

a further study, we variedh between 1 and 10, and from 50 to 1000. We
find that little performance improvement is seen aNas bigger than 250 when
m is reasonable largex(4). We contribute this to the fact that the pheromone
trails converge after a large number of iterationsllis smaller than 100, we
will often miss the optimal solution because of prematurenteation. This is
especially true for the TCS problem. Similarly, whieris bigger than 6, we see
little improvement. The best tradeoff af seems to be between 4 and 6. It is
interesting to notice that these numbers are very closeet@atbrage branching
factor of the testing samples. These results implies thaheaestill have room to
fine tune these two parameters to further improve the pedoo®/cost tradeoff

of the algorithms.

4.7 Summary

In this chapter, we presented two novel heuristic searamietipods for the resource
and timing constrained scheduling problems based on the MAX Ant System. Our
algorithms employ a collection of agents that collaboratexplore the search space.
We proposed a stochastic decision making strategy in ood=rhbine global and local
heuristics to effectively conduct this exploration. As #igorithms proceed in finding
better quality solutions, dynamically computed local l&tigs are utilized to better
guide the searching process.

A comprehensive set of benchmarks was constructed to iecudide range of

133

applications. Experimental results over our test casewathigpromising results. The
proposed algorithms consistently provided higher qualisults over the tested ex-
amples and achieved very good savings comparing to traditemulated annealing,
list scheduling and force-directed scheduling approackesthermore, the algorithm
demonstrated robust stability over different applicagiand different selection of local
heuristics, as evidenced by a much smaller deviation oeerdasults.

To the best of our knowledge, the only other reported work singiAnt Colony
Optimization to solve the operation scheduling problemasalby Kopuriet al. [58].
Compared to our work, their study is limited to the timing stvained scheduling prob-
lem.

To address the TCS problem, their algorithm has a differerhfilation and is
more closely related to the classic force-directed schegldigorithm. They use a
modified self force computation, where predecessor andesgoc forces are dropped
in the overall force consideration. This force is calcuflaby linear combination of
normalized classic self-force and the pheromone trailsceSihe resulting value can be
both negative and positive, it is hard to act as an indicatooperation selection during
the scheduling construction process. In their work, sim@hglom selection is used.

Our algorithm uses a dynamically computed distributiorpréor the correspond-
ing resource for the local heuristic and force calculation is not need&@. believe it

provides the following benefits:

o Itis directly tied with the optimization target, i.e. miniemg the resource cost.

134

e ltis faster to compute.

e The value range for the distributed graph is non-negativéghvenables more ef-

fective operation selection strategy than random seleetsadiscussed in Section

4.3.3.

Moreover, as discussed in Section 4.3, our algorithm carebdily extended to
handle different design scenarios such as multiple-cypdeations, mutually exclusive
operations, operation chaining and pipelining. It is uaclé their algorithm can be
easily extended to do so, and only single cycle operatioms w&ed in their study.

It is known that premature convergence is an important issugnt based ap-
proaches and our experience shows this is an important factihe operation schedul-
ing problem. In order to cope with this, MAX-MIN formulatios used in our algo-
rithms for both timing and resource constrained schedulidg such mechanism was
used in [58].

Finally, the effectiveness and efficiency of our algorithegested over a compre-
hensive benchmark suite compiled from real-world applicest. The performance with
respect to solution quality, stability, scalability, amehing performance is more thor-
oughly studied and reported here. Only limited results omallsnumber of samples

were reported in [58].

135

Chapter 5

Design Space Exploration

Design space exploration during high level synthesis isroftonducted through
ad-hoc probing of the solution space using some schedulgayitam. This is not
only time consuming but also very dependent on designepemance. We propose
a novel design exploration method that exploits the dualitthe time and resource
constrained scheduling problems. Our exploration autmailft constructs a time/area
tradeoff curve in a fast, effective manner. It is a genergkapch and can be combined
with any high quality scheduling algorithm. In our work, weeuthe MAX-MIN ant
colony optimization technique to solve both the time anduese constrained schedul-
ing problems. Our algorithm provides significant solutiamality savings (average
17.3% reduction of resource counts) with similar run timenpared to using force
directed scheduling exhaustively at every time step. i atsales well across a com-

prehensive benchmark suite constructed with classic aldife samples.

136

5.1 Introduction

When building a digital system, designers are faced with unttess number of
decisions. ldeally, they must deliver the smallest, fastewest power device that can
implement the application at hand. More often than not,dh#ssign parameters are
contradictory. For example, making the device run fasteroiakes it larger and more
power hungry. Designers must also deal with increasingigtsime to market issues.
Unfortunately, this does not afford them much time to makeesion.

Designers must be able to reason about the tradeoffs amarsgstof parameters.
Such decisions are often made based on experience, i.avdhied before, it should
work again. Exploration tools that can quickly survey thsige space and report a
variety of options are invaluable.

From optimization point of view, design space exploratian be distilled to identi-
fying a set of Pareto optimal design points according to sobjective function. These
design points form a curve that provides the best tradeoffthie variables in the ob-
jective function. Once the curve is constructed, the desigan make design decisions
based on the relative merits of the various system configuist Timing performance
and the hardware cost are two common objectives in such gsoce

Resource allocation and scheduling are two fundamentalgmgs in constructing
such Pareto optimal curves for time/cost tradeoffs. Thegrablems are tightly inter-
woven. Resource constrained scheduling takes as inputgicatpn modeled as data

flow graph and a number of different types of resources. laista start time for each

137

of the operations, such that the resource constraints angolated, while attempting
to minimize the application latency. Here allocation isfpened before scheduling,
and the schedule is obviously very dependent on the altotas different resource
allocation will likely produce a vastly different schecudiresult.

We could perform scheduling before allocation; this is threetconstrained schedul-
ing problem. Here the inputs are a data flow graph and a timdlideglatency). The
output is again a start time for each operation, such thaatbacy is not violated, while
attempting to minimize the number of resources that areettett is not clear as to
which solution is better. Nor is it clear on the order that Wweldd perform scheduling
and allocation.

One possible method of design space exploration is to vargahstraints to probe
for solutions in a point-by-point manner. For instance, yam use some time con-
strained algorithm iteratively, where each iteration hafi@rent input latency. This
will give you a number of solutions, and their various reseuallocations over a set of
time points. Or you can run some resource constrained #hgoiteratively. This will
give you a latency for each of these area constraints.

An effective design space exploration strategy must usaedsand exploit the rela-
tionship between the time and resource constrained prablegmfortunately, designers
are left with individual tools for tackling either problemhey are faced with questions
like: Where do we start the design space exploration? Whaeidest way to utilize

the scheduling tools? When do we stop the exploration?

138

Moreover, due to the lack of connection amongst the trathtionethods, there
is very little information shared between time constraiaed resource constrained
solutions. This is unfortunate, as we are throwing awaymg@ksolutions since solving
one problem can offer more insight into the other problem.

In this chapter, we describe a design space exploratiotegyréor scheduling and
resource allocation. The ant colony optimization (ACO) adee¢uristic lies at the core
of our algorithm. We switch between timing and resource traireed ACO heuristics
to efficiently traverse the search space. Our algorithmsuayeally adjust to the input
application and produce a set of high quality solutions s&the design space.

The rest of the chapter is organized as follows. We discuatecework in the next
section. In Section 5.3, we present a design space exgraljorithm using duality
between the time and resource scheduling problems. Tagetkewill discuss why
ACO-based scheduling algorithms are suitable to be intedrevithin the proposed
exploration framework. Experimental results for the negoathms are presented and

analyzed in Section 5.4. We summarize with Section 5.5.

5.2 Related Work

The scheduling and resource allocation problems form tisesdar design space
exploration during high level synthesis. These problenmstmaformulated as an Inte-
ger Linear Program (ILP) [107]; however it is typically imgmble to solve large prob-

lem instances in this manner. Much research has been donevirlg use heuristic

139

approaches to address these problems.

In [29], the authors concentrate on providing alternativetiule bags” for design
space exploration by heuristically solving the clique parting problems and using
force directed scheduling. Their work focuses more on the@sons where the opera-
tions in the design can be executed on alternative resaurcdse Voyager system [19],
scheduling problems are solved by carefully bounding trsggthespace using ILP, and
good results are reported on small sized benchmarks. Mereibveveals that clock
selection can have an important impact on the final perfoomaf the application. In
[49, 26, 75], genetic algorithms are implemented for desigace exploration. Simu-
lated annealing [65] has also been applied in this domainur&ey on design space
exploration methodologies can be found in [63] and [66].

Force directed scheduling (FDS) [78] is a popular schedudigorithm. The origi-
nal FDS algorithm is designed to solve the time constraicbdduling (TCS) problem,
i.e. to reduce the number of functional units used in the @mpntation with a given
execution deadline. This objective is achieved by attemgpto uniformly distribute
the operations onto the available resource units. Thaldlision ensures that resource
units allocated to perform operations in one control stepuaed efficiently in all other
control steps, which leads to a high utilization rate. Adetis used to measure the
parallel usage of a resource type. Each force is computestlbas the operation’s
mobility range under the assumption that each operatfpmas a uniform probability

of being scheduled into any of the control steps in this rafgpee algorithm proceeds

140

iteratively by selecting the operation and time step withrttinimal force. The authors
also proposed a method called force-directed list scheglfDLS) to address the re-
source constrained scheduling problem. Here, the prifaritgtion of the list scheduler
is constructed using forces.

The FDS method is constructive since the solution is contpwithout backtrack-
ing. Every decision is made deterministically in a greedynn&a. If there are two
potential assignments with the same cost, the FDS algoraidunmot accurately esti-
mate the best choice. Moreover, FDS does not take into atdotume assignments
of operators to the same control step. Consequently, it $sipte that the resulting
solution will not be optimal due to its greedy nature. FDS ksowell on small sized
problems, however, it often results to inferior solutions fmore complex problems.
This phenomena is observed in our experiments reportedditioBes. 4.

In this work, we focus our attention on the basic design spapéoration problem
similar to the one treated in [78], where the designers axedfavith the task of mapping
a well defined application represented as a DFG onto a seta¥rkmesources where
the compatibility between the operations and the resoypesthas been defined. Fur-
thermore, the clock selection has been determined in time édrexecution cycles for
the operations. The goal is to find the a Pareto optimal tfd@deoongst the design
implementations with regard to timing and resource costst asic method can be
extended to handle clock selection and the use of altemegsources. However, this

is beyond the scope of this study.

141

5.3 Exploration Using Time and Resource Constrained

Duality

5.3.1 Iterative Design Space Exploration Leveraging Dudly

We are concerned with the design problem of making tradéaffeeen hardware
cost and timing performance. This is still a commonly faceabfem in practice, and
other system metrics, such as power consumption, are gladated with them. Based
on this, we have a 2-D design space as illustrated in Figur@p.where the x-axis
is the execution deadline and the y-axis is the aggregatetivage cost. Each point

represents a specific tradeoff of the two parameters.

design space
design space

350
300 -|

250 |

cost

2 200 -
o i
¢l

150 |

100 |

: : ————— : ‘
14 16 18 20 22 24 26 28 30 -l G Ll E
deadline (cycle) deadline (cycle)

(a) (b)
Figure 5.1: Design Space Exploration Using Duality between SchedublEms

(CurvelL gives the optimal time/cost tradeoffs.)

142

For a given application, the designer is givetypes of computing resources (e.g.
multipliers and adders) to map the application to the taigegice. We define a specific
design as &onfiguration which is simply the number of each specific resource type.
In order to keep the discussion simple, in the rest of the telape assume there are
only two resource typell (multiply) andA (add), though our algorithm is not limited
to this constraint. Thus, each configuration can be spedifye@n, a) wherem s the
number of resourckl anda is the number oA.

It is worth noticing that for each point in the design spacevahin Figure 5.1(a),
we might have multiple configurations that could realize For example, assuming
unit cost for all resources, it is possible that a configoratvith 10 multipliers and 10
adders can achieve the same execution time as another gatifiguvith 5 multipliers
and 15 adders, as both solutions have the same cost (20).

Studying the design space more carefully, reveals seveyabkservations. First,
the achievable deadlines are limited to the rafiggp tsed, Wheretasapis the ASAP
time for the application whiléseqis the sequential execution time when we have only
one instance for each resource type. It is impossible to gelwion faster than the
ASAP solution and any solution with a deadline beyond thatsgf are not Pareto
optimal. Furthermore, for each specific configuration weehtne following lemma

about the portion of the design space that it maps to.

Lemma 5.3.1 Let C be a feasible configuration with cost ¢ for the targetlaggpion.

The configuration maps to a horizontal line in the design spstarting at(tmin,C),

143

where hin is the resource constrained minimum scheduling time.

The proof of the lemma is straightforward as each feasilbiigoration has a mini-
mum execution timényin for the application, and obviously it can handle every diead|
longer thartp,,. For example, in Figure 5.1(a), if the configuratigmn,a;) has a cost
c; and a minimum scheduling tinte, the portion of design space that it maps to is
indicated by the arrow next to it. Of course, it is possible daother configuration
(mp, &) to have the same cost but a bigger minimum scheduling timim this case,
their feasible space overlaps beydigc,).

As we discussed before, the goal of design space exploriattorhelp the designer
find the optimal tradeoff between the time and area. Thexakyj this can be done by
finding the minimum areaamongst all the configurations that are capable of producing
t € [tasap tsed. IN Other words, we can find these points by performing tintest@ined
scheduling (TCS) on ali in the interested range. These points form a curve in the
design space, as illustrated by cutvén Figure 5.1(a). This curve divides the design
space into two parts, labeled wikhandU respectively in Figure 5.1(a), where all the
points inF are feasible to the given application whlle contains all the unfeasible

time/area pairs. More interestingly, we have the followatigibute for curve.:

Lemma 5.3.2 Curve L is monotonically non-increasing as the deadlinectéases.

Proof Assume the lemma is false. Therefore, we will have two poftts;) and
(t2,c2) on the curvel wheret; < t; andcy < ¢;. This means we have a specific con-

figurationC with costc; that is capable of producing an execution tithéor the ap-

144

plication. Sincet; < tp, and also from Lemma 5.3.1, we know that configuratidn
can producé,. This introduces a contradiction sincg which is worse thawy, is the

minimum cost at,.

Due to this lemma, we can use the dual solution of finding tahdeoff curve by
identifying the minimum resource constrained scheduliR@$) timet amongst all
the configurations with cost. Moreover, because the monotonically non-increasing
property of curvel, there may exist horizontal segments along the curve. Based
our experience, horizontal segments appear frequentlsaictipe. This motivates us to
look into potential methods to exploit the duality betwedbSRand TCS to enhance the

design space exploration process. First, we consider tlusviag theorem:

Theorem 5.3.31f C is a configuration that provides the minimum cost at timethen
the resource constrained scheduling resplot C satisfiest < t;. More importantly,
there is no configuration Cwith a smaller cost that can produce an execution time

within [to, t1].

Proof The first part of the theorem is obvious. Therefore, we foeuthe second patrt.
Assuming there is a configurati@@i that provides an execution tintg e [to,t1], then

C' must be able to produdg based on Lemma 5.3.1. Sin€ has a smaller cost,
this conflicts with the fact tha is the minimum cost solution (i.e. the TCS solution) at
timet;. Thus the statement s true. This is illustrated in Figui€®.with configuration

(my,a1) and(n, &).

145

This theorem provides a key insight for the design spaceoexfpbn problem. It
says that if we can find a configuration with optimal cost timet;, we can move
along the horizontal segment froff, c) to (t2, c) without losing optimality. Heré, is
the RCS solution for the found configuration. This enablds efficiently construct the
curvelL by iteratively using TCS and RCS algorithms and leveragdiegfact that such
horizontal segments do frequently occur in practice. Basethe above discussion,
we propose a new space exploration algorithm as shown inrifgo 7 that exploits
the duality between RCS and TCS solutions. Noticerthie function in step 10 is
necessary since a heuristic RCS algorithm may not returtidkeoptimal that could be

worse tharig.

procedure DSE
output: curvelL

1: interested time rangémin, tmax, Wheretmin > tasapandtmax < tseq
22 L=0
3: teur = tmax
4: while teyr = tmin do
5. perform TCS ortc, to obtain the optimal configuratiorg.
6: for configurationC; do
7 perform RCS to obtain the minimum tintig,
8: end for
9 tres= Min; (tlss) /* find the best rcs time */
10: teyr = Min(teyr, tres) — 1
11: extendL based on TCS and RCS results
12: end while

13: returnL

Algorithm 7: Iterative Design Space Exploration Algorithm

146

By iteratively using the RCS and TCS algorithms, we can duiekplore the design
space. Our algorithm provides benefits in runtime and swiuguality compared with
using RCS or TCS alone. Our algorithm performs explorattartisag from the largest
deadlinegnax Under this case, the TCS result will provide a configuratuath a small
number of resources. RCS algorithms have a better chanawdtth& optimal solution
when the resource number is small, therefore it providegtarepportunity to make
large horizontal jumps. On the other hand, TCS algorithrke taore time and provide
poor solutions when the deadline is unconstrained. We cangjgnificant runtime

savings by trading off between the RCS and TCS formulations.

5.3.2 Integrate with ACO-based Scheduling Algorithms

The proposed framework is general and can be combined wjtls@mreduling al-
gorithm. We found that in order for it to work in practice, fR€S and RCS algorithms
used in the process require special characteristics., By must be fast, which is
generally requested for any design space exploration kbate importantly, they must
provide close to optimal solutions, especially for the TG8htem. Otherwise, the
conditions for Theorem 5.3.3 will not be satisfied and theegated curvé will suffer
significantly in quality. Moreover, notice that we enjoy thiggest jumps when we take
the minimum RCS result amongst all the configurations thatide the minimum cost
for the TCS problem. This is reflected in Steps 6-9 in AlgamntiA. For example, it is

possible that botlim,a) and(n",a’) provide the minimum cost at tintebut they have

147

different deadline limits. Therefore a good TCS algorithsed in the proposed ap-
proach should be able to provide multiple candidate satstigith the same minimum
cost, if not all of them.

In order to select the suitable TCS and RCS algorithms, wdiedudifferent
scheduling approaches for the two problems, including tbpufarly used force
directed scheduling (FDS) for the TCS problem [78], varilistsscheduling heuristics,
and the recently proposed Ant Colony Optimization (ACO) dshsnstruction
scheduling algorithms [104, 99].

We found that ACO-based scheduling algorithms offer thiefahg major benefits

over FDS, several variants of list scheduling and simulatatealing [99]:

e ACO-based scheduling algorithms generate better quaksylts that are close to

the optimal with good stability for both the TCS and RCS peois;

e ACO-based methods provide reasonable runtime;

e Furthermore, as a population based method, ACO-based Ti@8agh naturally
provides multiple alternative solutions. As we have diseus this feature pro-
vides potential benefit in the proposed DSE process sincawsalect the largest

jump provided by these candidates.

148

5.4 Experiments and Analysis

5.4.1 Benchmarks and Setup
We implemented four different design space exploratiooraigms:

1. FDS: exhaustively step through the time range by perfogniime constrained

force directed scheduling at each deadline;

2. MMAS-TCS: step through the time range by performing onlMAS-based TCS

scheduling at each deadline.

3. MMAS-D: use the iterative approach proposed in Algorithdoy switching be-

tween MMAS-based RCS and TCS.
4. FDS-D: similar to the MMAS-D, except using FDS-based sdlcitiag algorithms.

We implemented the MMAS-based TCS and RCS algorithms agibdedan Section
5.3.2. Since there is no widely distributed and recognizB& kmplementation, we
implemented our own. The implementation is based on [78]rasdall the applicable
refinements proposed in the paper, including multi-cyctruction support, resource
preference control, and look-ahead using second orderspfatiement in force com-
putation.

For all testing benchmarks, the operations are allocatdd/orlypes of computing
resources, namely MUL and ALU, where MUL is capable of hamgliinultiplication

and division, while ALU is used for other operations such@ditton and subtraction.

149

Furthermore, we define the operations running on MUL to takedlock cycles and the
ALU operations take one. This definitely is a simplified casafreality, however, itis
a close enough approximation and does not change the génefdhe results. Other
operation to resource mappings can easily be implementédwvaur framework.

With the assigned resource/operation mapping, ASAP isdegformed to find the
critical path delayL.. We then set our predefined deadline range toLbe2L ¢, i.e.
from the critical path delay to two times of this delay. Thesults in 263 testing
cases in total. Four design space exploration experimeatsaaried out. For the FDS
and MMAS-TCS algorithms, we run force-directed or MMAS-eddime constrained
scheduling on every deadline and report the best schedsidtsaogether with the
costs obtained. For the MMAS-D and FDS-D algorithms, we aaty MMAS-based
or FDS-based TCS on selected deadlines starting friograBd make jumps based on

the RCS results on the configurations previously obtaineggdrforming TCS.

5.4.2 Quality Assessment

We first studied the effectiveness of the ACO approach fagdespace exploration.
Two individual tests are carried out, one to verify its periance on TCS problem
with a specific deadline, while the other tries to confirm gsfprmance over the entire
design space.

In the first tests, MMAS-based TCS is performed onittetcol benchmark, an im-

plementation of inverse discrete cosine transform, wittidiae set to its ASAP time

150

19. We use 10 ants for each iteration, which provides 10 iddal scheduling solu-
tions. The total iteration limit is set to 200, which prods@etotal of 2000 scheduling
results for this TCS problem. We want to examine the effectdss of the algorithm.
In other words, how does the quality of the solutions impragess iterations? Fig-
ure 5.2 shows this result by plotting the solution qualigguency curves over time.
Here each curve aggregates solutions found within cettiaiations. For example, the
curve labeled “1-200” diagrams the quality distribution fiee first 200 scheduling re-
sults obtained in the first 20 iterations. The x-axis is thelhvare cost for the schedule
results, where we simply use resource number counts. Thesyslaows the number of
solutions that iteration range produces at each specific cos

From this graph, we can easily see the MMAS-based TCS is wgrlkor example,
comparing the initial 200 solutions (1-200) and the final 86utions (1801-2000). In
the initial 200 solutions, there are 5 solutions with an @20, and the best solutions
have area of 14 (there are 12 such solutions); by the last@Qfans, there are 0 with
an area of 20, 69 with an area of 14, and one with an area of 1iheAslgorithm pro-
gresses, a positive trend emerges where the ants ignorestsesmlutions and enforce
the better ones.

To show the effectiveness of the algorithm over the wholagmespace, similar
experiments are conducted across the range of interesaellirtes. Figure 5.3 gives
one example on thelctcol benchmark on deadlines from 19 to 32, where the x-axis

is the deadline constraint and y-axis is the cost for schegluksults. The size of

151

solutions per range

* 1-200

= 201-600

x 601-1000
+ 1001-1400
» 1401-1800
e 1801-2000

number of solutions

T
10 12 14 16 18 20
cost

Figure 5.2: Distribution of the TCS ACO solution quality on idctcol bémaark with a deadline
set to its ASAP time. Each line shows a different phase of liperihm execution where each
point gives the number of solutions of a particular resowast. The line “1-200” denotes
the first 200 solutions found by the ACO algorithm, while the[“1801-2000" gives last 200
solutions.

dots are proportional to the number of schedule resultsthi®gatints produce for the
specific cost and deadline. It is easy to see that the focasadralgorithm adjusts as
the constraints change. Moreover, if we inspect each colonore carefully, we can
see that the algorithm effectively explores the “best” drthe design space. This is
evidenced by the movement of the dense area in the graph emdl#tively invariant
vertical spread.

We performed experiments on each benchmark using the ftiereafit design space
exploration algorithms. First, time constrained FDS scitied is used at every dead-
line. The quality of results is used as the baseline for giaisessment. Then MMAS-

TCS, MMAS-D and FDS-D algorithms are executed; the diffeeers that MMAS-

152

TCS steps through the design space in the same way as FDS MWi&S-D and
FDS-D utilize the duality between TCS and RCS. Because af thedomized nature,
the MMAS-TCS and MMAS-D algorithms are executed five timesider to obtain

enough statistics to evaluate their stability.

design space

204 e s e e e L
197 =
187 [
17 - @ O O ¢ o o o o o o o o o o L
16 Q@ O @ 0 ¢ ¢ ¢ o o o o o e . L
151 000®ee s N
g4 00000000 e . .. N
131 000000000000 ¢ . L
1224 +++00000000000 -
11 L
10 4‘ L
9 e e e e e e e o L
8 - L
7 - L
6 T 1 T T T 1T T 1T T T T T T T T 1
171819202122 23 242526 27 28 29 3031323334 35

deadline (cycle)

Figure 5.3: Solution quality of the TCS ACO on the idctcol benchmark. \Wae the TCS
ACO algorithm at each deadline ranging from its ASAP time) {9(32). The size of the dot
indicates the proportion of solutions with a specific resewzost found at each deadline.

Detailed design space exploration results for six of thecherarks are shown in
Figure 5.4, where we compare the curves obtained by MMASES-P and FDS al-
gorithms. Table 5.1 summarizes the experiment resultse&on benchmark we give
the node/edge count, and the average resource saving ob®®FMMAS-TCS and

MMAS-D algorithms comparing with FDS. We report the savingpercentage of total

153

resource counts (a negative result indicates a lower (hegsource cost). We weight
the two resource types M and A equally, though we use diftezest weights to bias
alternative solutions (for example, solution (3M, 4A) ismadavorable than (4M, 3A)
as resource M has a large cost weight. We could easily vamethve costs and num-
ber of the resources types. However, we feel this is woulddhtce confusion caused
by different weight choices. The percentage savings is caegfor every deadline of
every benchmark. The average for a certain benchmark istegpbm Table 5.1. Itis
easy to see that MMAS-TCS and MMAS-D both outperform thesiaBDS method
across the board with regard to solution quality, often witmificant savings. Overall,
MMAS-TCS achieves an average improvement of 16.4% while MBVIA obtains a
17.3% improvement. Both algorithms scale well for diffareenchmarks and problem
sizes. Moreover, by computing the standard deviation dverst different runs, the
algorithms are shown to be very stable. For example, thegeetandard deviation on
result quality for MMAS-TCS is only 0.104. On the other hatite FDS-D algorithms
has a minor performance degradation comparing with the Fi38llme. It outperforms
FDS over 14 out of the 20 benchmarks, gives worse result onmplss, and shows
no change on 2 testing cases. Though it provides modestlrlesults over two test-
ing samples (i.ewbmpheadeandinterpolate when compared to MMAS-D, overall
MMAS-D produces a much better result. Finally, FDS-D is mieds stable with re-
gard to the result quality. It seems to be more applicatiggeddent and yields bad

results in certain cases (e.g. benchnjpdgidictifas).

154

cost

cost

cost

50
45
40
35
30
25
20

80
70
60

50 r

40
30

16
14
12
10
8
6

arf (28/30)

- " MMASD ——— -
R FDS-D |
e FDS = |

10 12 14 16 18 20 22
deadline

(@)

idctcol (114/164)

"'MMAS-D
'~ FDS-D
FDS s

20 25 30 35
deadline

(©)

jpeg_idct (122/162)

ol T TMMASD]
ol - FDSD]
ot

0+t \ 8
O e
16 18 20 22 24 26 28 30 32 34
deadline

(e)

cost

cost

cost

h2v2_smooth (51/52)

L MMASD
16 | FDS-D
15 | vx FDS —» -
14 \ww\"x*w*,f e]
13 \»HHH_HH(** 7
12 | N
bl
16 18 20 22 24 26 28 30 32 34
deadline

(b)

firl (44/43)

36~ , MMASD + |
34 | \j FDS-D 1
32 r FDS -]
30 | 1
28 + \ 1
26 b 1
2b, e
12 14 16 18 20 22 24
deadline
(d)
jpeg_fdct (134/169)
90 F s wx « MMASD «———]
& | FDS-D]
80 r | 1
75 + \ FDS - Koo i
70 + \ 1
65 N 1
60 1
55 L 4—o—§\ .
50 \ 1
45 1 1 1 1 1
16 18 20 22 24 26 28 30 32
deadline
®

Figure 5.4:.Design Space Exploration results: MMAS-D, FDS-D and FDS

155

Name Nodes/Edges Deadline| FDS-D | MMAS-TCS | MMAS-D
HAL 11/8 (6-12) | 14.3% -7.1% -7.1%
hbsurf 18/16 (11-22)| 0.0% -9.9% -13.2%
ARF 28/30 (11-22) | -4.7% -12.4% -18.6%
motionvectors 32/29 (7-14) | -8.0% -13.1% -16.0%
EWF 34/47 (17 -34) | -5.6% -11.5% -21.9%
FIR2 40/39 (12-24)| -4.1% -16.8% -22.8%
FIR1 44/43 (12-24)| -3.9% -15.2% -18.0%
h2v2 smooth 51/52 (17-34)| 4.2% -19.3% -20.5%
feedbackpointg 53/50 (11-22) | -1.2% -5.9% -9.1%
collapsepyr 56/73 (8-16) | -5.3% -18.3% -20.0%
COSINE1 66/76 (10-20) | -3.1% -21.5% -23.5%
COSINE2 82/91 (10-20)| 0.7% -5.6% -8.1%
wbmpheader 106/88 (8-16) | -2.4% -0.9% -1.6%
interpolate 108/104 (10-20) | -2.3% -0.2% -1.8%
matmul 109/116 (11-22) | -4.7% -3.7% -5.6%
idctcol 114/164 (19-38) | -11.2% -30.7% -32.0%
jpegidctifast 122/162 (17 -34) | 35.2% -50.3% -52.1%
jpegfdctislow 134/169 (16-32) | 16.2% -31.4% -34.6%
smoothcolor 197/196 (15-30) | -4.6% -7.3% -8.6%
invertmatrix 333/354 (15-30) | 0.0% -11.2% -11.9%
Total Avg. 0.48% -16.4% -17.3%

Table 5.1: Summary for Design Space Exploration Results. Each linesgilie benchmark
name, the tested time range and the results of each desiga epploration algorithm
(FDS-D, MMAS-TCS, MMAS-D compared to the exhaustive FDSutegA negative result

indicates a smaller resource allocation, which is desired.

156

It is interesting and initially surprising to observe thhe tMMAS-D always had
no-worse performance than MMAS-TCS method. More carefsp@ction on the ex-
periments reveals the reason: using the duality betweenah@&RCS not only reduces
the computation time but can also improves the quality oféisalt. To understand this,
recall Theorem 5.3.3 and Figure 5.1(b). If we achieve amugdtsolution at;, with
MMAS-D we automatically extend this optimality fromto t,, while the MMAS-TCS
algorithm can provide worse quality solutions on deadlimesveert; andto.

This benefit is not specifically associated with MMAS scheudulalgorithms,
rather, it is also observed when other scheduling methoelsused. For example,
consider the curve generated by FDS-D in Figure 5.4(d). We see that the
configuration provided by TCS at deadline 24 can be pusheeadlohe 16. FDS-D
achieves better results over FDS at time stamps of 16, 17nd&4. However, we
will not always obtain this benefit. For the same curve, FD&elually suffers worse
result at time 13 and 14. Extreme examples of this are showsguare 5.4(e) and
Figure 5.4(f), the two worst samples for FDS-D. It is easydalize that if a generous
TCS result is generated at a bigger deadline, the followi$Rstep is misled to
provide a very small deadline result. The effect is that tigerdthm provides a poor
tradeoff curve.

In conclusion, the proposed duality based design spacertn framework is a
general approach and can be combined with any scheduliogithlgn. However, the

selection of such scheduling algorithms has a direct impacthe quality of the result-

157

ing tradeoff curves. This is not surprising in light of ousdussion on Theorem 5.3.3

in Section 5.3.
T T T T T T
6000 [A: FDS ——
B: MMAS-D w/ duality —=—
5500 | C: MMAS-TCS wi/t duality —&—
D: FDS-D w duality 7
5000
S 4500
c
3
2 4000
(2]
£ 3500
()
£ 3000
c
S 2500
>
8 2000
x
(]
1500
1000
500
0

0 ' 50 100 150 200 250 300 350
size of DFG

Figure 5.5: Timing Performance Comparison

Figure 5.5 diagrams the average execution time comparisothé four design
space exploration approaches, ordered by the size of trehbemk. All of the exper-
iment results use the same Linux box with a 2GHz CPU. It is ¢asee that the all
the algorithms have similar run time scale, where MMAS-T@I&t more time, while
MMAS-D and FDS have very close run times—especially on labgmchmarks. The
major execution time savings come from the fact that MMASxPleits the duality
and only computes TCS on selected number of deadlines. ®3eteting cases, we
find on average MMAS-D skips about 44% deadlines with the b&IRCS. The fact
that MMAS-D achieves much better results than FDS with atrtiess same execution

time makes it very attractive in practice.

158

5.5 Summary

We proposed a novel design space exploration method thdgdsithe time and
resource constrained scheduling problems and exploits din@lity. Our algorithm
provides time/cost tradeoff curve in the design space irstegyic manner. We proved
that it is possible to use the duality to help us effectivapstruct such a curve, while
reducing the computing time and improving the quality of thsult. The proposed
method is general and can be combined with any high qualitgduling algorithms.
However, the underlying scheduling algorithms has dinegtact on the quality of the
tradeoffs curve. We showed that ACO-based scheduling itthgas are ideal due to
their robustness, high performance, reasonable exectititmand the capability of
providing multiple scheduling candidates. Our algoritron$performed the popularly
used force directed scheduling method with significantregs/i(average 17.3% sav-
ings on resource counts) and almost the same run time on etbempsive benchmarks
constructed with classic and real-life samples. The dllgor$ also scaled well over

different applications and problem sizes.

159

Chapter 6

Conclusions and Future Work

In this section, we first conclude our work on applying Ant @ol metaheuristics
to solve the architectural design problems. Then we presene thoughts on potential

future work in this area.

6.1 Conclusions

As VLSI technology advances, we have seen the steady shrifdature sizes in
integrated circuits and an exponential increase in capgeit die and per dollar at an
exponential rate. Though we may see the end of the expohésdiare size scaling
in the next 20 years for conventional CMOS-based IC, theeepaonmising evidence
that advances in basic science may keep this trend forwahdemerging technologies
such as nanoscale material and molecular computing. Baségiobservation, we

project that system design techniques will soon become asséyg in order to tame

160

the immense complexity of future computing systems. Thesjsecially true with the
advent of complex system architectures that contain atyasfeomputing components
like microprocessors, memory elements, ASIC, reconfigardgic, even nanoscale
devices. With increasing abundance and flexibility of cotimmuresources, how to
effectively use them to fully exploit the benefits becomesmewed problem for the
EDA community with much more difficult tasks in hand. To answuee challenge,
we must look towards new optimizations methods, rather sivaply perform iterative
improvements on existing techniques.

In this study, we focus on constructing effective and efficegorithms for solving
a number of fundamental architectural design problemgubkie Ant Colony Optimza-
tion, a relatively new meta-heuristic method inspired by skudy of the behaviors of
social insects. Comparing with other conventional metakc methods, ACO-based
approaches pose a set of uniqgue advantages and have been pffactive in solv-
ing a wide range of traditionally hard combinatory probler®e special motivation
for us to applying ACO to design problems is its natural catio& with graph based
modeling, which is often used in various system design jgrokl

To study the effectiveness of ACO method, we investigateeiproblems, namely
system partitioning, operation scheduling and designesgaploration problem, all
of which areA\’ P-hard. By carefully examining the problem specific chanasties,
we construct concrete algorithms to solve these problerdsruine ACO framework.

Our algorithms utilize a unique hybrid approach by comhgnine ant colony meta-

161

heuristic with problem specific knowledge, where a coltattf agents cooperate using
distributed and local heuristic information to effectiyeixplore the search space.

Our experiments over comprehensive benchmark suites sboyvpromising re-
sults. For the system partitioning problem, the proposgdrahm provides robust
results that are qualitatively close to the optimal with arinomputational cost. Com-
paring with popularly used simulated annealing approdehptoposed algorithm gives
better solutions with substantial reduction on execuftimet For the operation schedul-
ing problem, a comprehensive set of benchmarks was corstirtie include a wide
range of applications. The proposed algorithms consigtpndvide higher quality re-
sults over the tested examples and achieved very good saxamgparing to traditional
simulated annealing, list scheduling and force-directdteduling approaches. Fur-
thermore, the algorithm demonstrated robust stabilityr avierent applications and
different selection of local heuristics, as evidenced byuctmsmaller deviation over
the results.

Moreover, we propose a novel design space exploration rddtiat bridges the
time and resource constrained scheduling problems anadiexgheir duality. Our al-
gorithm provides time/cost tradeoff curve in the designcep@a a systemic manner.
We prove that it is possible to use the duality to help us &ffely construct such
a curve, while reducing the computing time and improving dgelity of the result.
The proposed method is general and can be combined with ghyguiality schedul-

ing algorithms. However, the underlying scheduling altjoris have direct impact on

162

the quality of the tradeoffs curve. We showed that ACO-basdekduling algorithms
are ideal due to their robustness, high performance, reb$®execution time and the
capability of providing multiple scheduling candidatesur@lgorithms outperformed
the popularly used force directed scheduling method wghificant savings (average
17.3% savings on resource counts) and almost the same remotincomprehensive
benchmarks constructed with classic and real-life samplag algorithms also scale

well over different applications and problem sizes.

6.2 Future Work

Besides the promising results we have seen in the problemswsstigated, we
believe the Ant Colony metaheuristic method may also befulkelpr the lower level
system synthesis of reconfigurable computing system. Thenegure that the sys-
tem quality is distributively encoded as pheromone trailste system representation
makes it a promising model to handle dynamic changes retjbiye¢he reconfigurable
computing systems. As the system’s computing charadt=ishange, it is natural
to expect that the pheromone parameters accumulated ovemtill better reflect the
dynamics of the system’s behaviors, and thus, lead to quiakiling more effective
configurations for the changed computing requirements. gplieation of this could
be new ways for quickly calculating and deploying new FPG&cpiment and routing
arrangement during the run time.

During our research work discussed above, we strongly lieltnteed of a better

163

application representation in the design process in oteiféctively facilitate the sys-

tem design/synthesis for the modern reconfigurable comgsirstems, which contain
powerful hybrid architectures with multiple microprocessores, large reconfigurable
logic arrays and distributed memory hierarchies. It is ictbat traditional represen-
tations such as CDFG are not capable enough for optimizatiwet exploit fine and

coarse grained parallelism. In our recent paper publisme@&RSA2004 [39], we

present an application representation based on the pragggaendence graph (PDG)
incorporated with the static single-assignment (SSA) yoitisesis to high performance
reconfigurable devices. The PDG effectively describesrobuiependencies, while
SSA yields precise data dependencies. When used togdtase, two representations
provide a powerful, synthesizable form that exploits batle fand coarse grained par-
allelism. Our work showed that an intermediate represiemdiased on PDG+SSA
form supports a broad range of transformations and enabtéscbarse and fine grain
parallelism. We described a method to synthesize this septation to a configurable
logic array. Experimental results indicate that the PDGA &presentation gives faster
execution time using similar area when compared with comynased CFG (Control

Flow Graph) and PSSA (Predicted Static Single Assignmemniy$.

164

Bibliography

[1] E. Aarts and J. KorstSimulated Annealing and Boltzmann Machines: A Stochas-
tic Approachto Combinatoria Optimization and Neural Coripgt John Wiley

& Sons, New York, NY, 1989.

[2] Thomas L. Adam, K. M. Chandy, and J. R. Dickson. A comparisf list sched-

ules for parallel processing systen@mmun. ACM17(12):685—-690, 1974.

[3] Samir Agrawal and Rajesh K. Gupta. Data-flow Assistedd®&tral Partition-
ing for Embedded Systems. Rroceedings of the 34th Annual Conference on

Design Automation ConferencEd97.

[4] Gerald Aigner, Amer Diwan, David L. Heine, Monica S. LantkDavid L.
Moore, Brian R. Murphy, and Constantine SapuntzaHlite Basic SUIF Pro-
gramming Guide Computer Systems Laboratory, Stanford University, Atigus

2000.

[5] Alex Aleta, Josep M. Codina, and Jesus Sanchez araiAmiGonzalez. Graph-

Partitioning based Instruction Scheduling for ClusteredBssors. IfProceed-

165

ings of the 34th Annual ACM/IEEE International Symposiumi@noarchitec-

ture, 2001.

[6] Altera Corporation Excalibur Device Overview Data Shestay 2002.

[7] Altera Corporation. Nios Embedded Processor System Developnizif3.

http://www.altera.com/products/devices/nios.

[8] A. Auyeung, I. Gondra, and H. K. DaiAdvances in Soft Computing: Intelli-
gent Systems Design and Applicatipcisapter Integrating random ordering into

multi-heuristic list schedulinggenetic algorithm. Sgyaén-Verlag, 2003.

[9] Massimo Baleani, Frank Gennari, Yunjian Jiang, Yatiste@nd Robert K.
Brayton, and Alberto Sangiovanni-Vincentelli. HW/SW Rashing and Code
Generation of EmbeddedControl Applications on a Recondigler Architec-
ture Platform. InProceedings of the Tenth International Symposium on Hard-

ware/SoftwareCodesig2002.

[10] Steve J. Beaty. Genetic algorithms versus tabu searcms$truction schedul-
ing. In Proceedings of the International Conference on AtrtificiaukblNets

and Genetic Algorithms1993.

[11] Steven J. Beaty. Genetic algorithms and instructigredaling. InProceedings

of the 24th annual international symposium on Microarctiitee, 1991.

[12] David Bernstein, Michael Rodeh, and lIzidor Gertner. e Complexity of

166

[13]

[14]

[15]

[16]

[17]

[18]

Scheduling Problems for Parallel/PipelinedMachindEEE Transactions on

Computers38(9):1308-13, September 1989.

Eric Bonabeau, Macro Dorigo, and Guy Theraul&warm Intelligence: From

Natural to Artificial SystemsOxford University Press, New York, NY, 1999.

U. Bondhugula, A. Devulapalli, J. Fernando, P. Wyckathd P. Sadayappan.
Parallel fpga-based all-pairs shortest-paths in a didegteph. Inthe 20th IEEE
International Parallel and Distributed Processing Symipas (IPDPS06) April

2006.

B. Bullnheimer, R. F. Hartl, and C. Strauss. A new rankdzhversion of the
ant system: A computational studZentral European Journal for Operations

Research and Economicg(1):25-38, 1999.

T. J. Callahan, J. R. Hauser, and J. Wawrzynek. The Gacpitecture and C

Compiler. Computer 33(4):62—-69.

Raul Camposano. Path-based scheduling for synthéSISE Transaction on

Computer-Aided Desigri0(1):85-93, Janunary 1991.

CAST, Texas Instruments In€€32025 Digital Signal Processor Cqr8eptem-

ber 2002.

[19] Samit Chaudhuri, Stephen A. Blythe, and Robert A. Walkesolution method-

167

[20]

[21]

[22]

[23]

[24]

[25]

ology for exact design space exploration in a three-dinmeradidesign space.

IEEE Trans. Very Large Scale Integr. Sy5{(1):69-81, 1997.

Jason Cong, Michail Romesis, and Min Xie. Optimaligakbility and stability
study of partitioning and placement algorithmsl&#D '03: Proceedings of the
2003 international symposium on Physical desiggiges 88—94, New York, NY,

USA, 2003. ACM Press.

Jason Cong, Joseph R. Shinnerl, Min Xie, Tim Kong, and Xuan. Large-
scale circuit placemenfCM Trans. Des. Autom. Electron. Sy40(2):389-430,

2005.

D. Costa and A. Hertz. Ants can colour graph¥ournal of the Operational

Research Society$8:295-305, 1996.

Achim Osterling, Thomas Benner, Rolf Ernstand Dirk Herrmann, mas
Scholz, and Wei Ye Hardware/Software Co-Design: Principles and Practice

chapter The COSYMA System. Kluwer Academic Publishers7199

Andre DeHon. Very large scale spatial computingUKMC '02: Proceedings of
the Third International Conference on Unconventional Medd Computation

pages 27-36, London, UK, 2002. Springer-Verlag.

J. L. Deneubourg and S. Goss. Collective Patterns amisioa Making.Ethol-

ogy, Ecology & Evolution1:295-311, 1989.

168

[26] Robert P. Dick and Niraj K. Jha. MOGAC: A Multiobjectiv&enetic Algorithm
for the Co-Synthesis of Hardware-Software Embedded SystémiEEE/ACM

Conference on Computer Aided Desigages 522-529, 1997.

[27] Marco Dorigo and Luca Maria Gambardella. Ant Colonyteys: A Cooperative
Learning Approach tothe Traveling Salesman ProbléBEE Transactions on

Evolutionary Computationl(1):53—66, April 1997.

[28] Marco Dorigo, Vittorio Maniezzo, and Alberto ColornAnt System: Optimiza-
tion by a Colony of Cooperating Agent$EEE Transactions on Systems, Man

and Cybernetics, Part-B6(1):29-41, February 1996.

[29] R. Dutta, J. Roy, and R. Vemuri. Distributed designespaxploration for high-
level synthesis systems. DAC '92, pages 644—-650, Los Alamitos, CA, USA,

1992. IEEE Computer Society Press.

[30] Stephen A. Edwards, Luciano Lavagno, Edward A. Lee, and
AlbertoSangiovanni-Vincentelli. Design of Embedded $wyst: Formal
Models Validation, andSynthesisProceedings of the IEEEB5(3):366—390,

March 1997.

[31] Petru Eles, Zebo Peng, and Alexa Doboli. System Levebditare/Software
Partitioning Based on SimulatedAnnealing and Tabu Se&ebkign Automation

for Embedded Systeny1):5-32, 1996.

169

[32]

[33]

[34]

[35]

[36]

[37]

[38]

Rolf Ernst, Jorg Henkel, and Thomas Benner. Hardwaridi\#&re Cosynthesis
for Microcontrollers.IEEE Design and Test of Computet$)(4):64—75, Decem-

ber 1993.

ExpressDFG. ExpressDFG benchmark web site.

http://express.ece.ucsb.edu/benchm&@06.

Serge Fenet and Christine Solnon. Searching for maxiroliques with ant
colony optimization.3rd European Workshop on Evolutionary Computation in

CombinatorialOptimizatiopApril 2003.

S. Fidanova. Evolutionary Algorithm for Multiple Knapck Problem. In
Proceedings of PPSN-VII, Seventh International Confezemic ParallelProb-
lem Solving from Nature_ecture Notes in Computer Science. Springer Verlag,

Berlin, Germany, 2002.

L. M. Gambardella, E. D. Taillard, and G. Agazalew Ideas in Optimizatign
chapter A multiple ant colony system for vehicle routinghgesns with timewin-

dows, pages 51-61. McGraw Hill, London, UK, 1999.

L. M. Gambardella, E. D. Taillard, and M. Dorigo. Ant cwlies for the quadratic

assignmentJournal of the Operational Research Socjéi@(2):167-176, 1996.

Michael R. Garey and David S. Johns@omputers and Intractability: A Guide

to the Theory of NP-Completenedd. H. Freeman, New York, NY, 1979.

170

[39]

[40]

[41]

[42]

[43]

[44]

[45]

Wenrui Gong, Gang Wang, and Ryan Kastner. A high peréorce applica-
tion representation for reconfigurablesystenmternational Conference on En-

gineering of Reconfigurable Systemsand Algorithms, ERISAlhe 2004.

R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. G. R.rKaptimization
and approximation in deterministic sequencing and scliagtal surveyAnnals

of Discrete Mathematic$:287—326, 1979.

Martin Grajcar. Genetic List Scheduling Algorithm f8cheduling and Alloca-
tionon a Loosely Coupled Heterogeneous Multiprocessote8ys In Proceed-

ings of the 36th ACM/IEEE Conference on Design Automatior&ence1999.

Rajesh K. Gupta and Giovanni De Micheli. Constraineth@are Generation for
Hardware-Software systems. Rroceedings of the Third International Work-

shop on Hardware/SoftwareCodesjd®94.

Walter J. Gutjahr. A graph-based ant system and itse@anceFuture Gener.

Comput. Syst16(9):873-888, 2000.

Walter J. Gutjahr. Aco algorithms with guaranteed @gence to the optimal

solution. Inf. Process. Lett.82(3):145-153, 2002.

Walter J. Gutjahr. A generalized convergence resulttie graph-based ant sys-
tem metaheuristicProbability in the Engineering and Informational Sciences

17:545 - 569, 2003.

171

[46]

[47]

[48]

[49]

[50]

[51]

[52]

Walter J. Gutjahrs. A converging aco algorithm for s$tastic combinatorial

optimization. INSAGA pages 10-25, 2003.

J Harkin, T M McGinnity, and L P Maguire. Partitioning mh@dology for dy-
namically reconfigurable embeddedsysteii$ Proceedings - Computers and

Digital Techniques147(6):391-396, November 2000.

M. Heijligers and J. Jess. High-level synthesis scliaduand allocation us-
ing genetic algorithms based on constructive topologiclaéduling techniques.
In International Conference on Evolutionary Computatipages 56-61, Perth,

Australia, 1995.

M. J. M. Heijligers, L. J. M. Cluitmans, and J. A. G. Jestigh-level synthesis

scheduling and allocation using genetic algorithms. pdgd.995.

J I Hidalgo and J Lanchares. Functional PartitioningHardware - Codesign
CodesignUsing Genetic Algorithms. Rroceedings of the 23rd Euromicro Con-

ference 1997.

B. Jeong, S. Yoo, and K. Choi. Exploiting early partiatonfiguration of run-
time reconfigurableFPGAs in embedded systems desigm ACM/SIGDA Int.

Symposium on Field Programmable Gate Arrgyage 247, 1999.

Asawaree Kalavade and Edward A. Lee. A Global Critigdliocal Phase
Driven Algorithm forthe Constrained Hardware/Softwaret®aning Problem.

In codes941994.

172

[53] Ryan Kastner.Synthesis Techniques and Optimizations for Reconfigusgble

tems PhD thesis, University of California at Los Angeles, 2002.

[54] Ken Kennedy and Randy AllenOptimizing Compilers for Modern Architec-

tures: A Dependence-basedApproablorgan Kaufmann, 2001.

[55] B. W. Kernighan and S. Lin. An efficient heuristic procee for partitioning

graphs.Bell System Technical Journ&9(2):291-307, February 1970.

[56] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimizan by simulated an-

nealing.Science, Number 4598, 13 May 19220, 4598:671-680, 1983.

[57] Rainer Kolisch and Sonke HartmannProject Scheduling: Recent models,
algorithms and applicationschapter Heuristic Algorithms for Solving the
Resource-Constrained ProjectScheduling problem: Gieatson and Compu-

tational Analysis. Kluwer Academic Publishers, 1999.

[58] Shekhar Kopuri and Nazanin Mansouri. Enhancing scliregigsolutions through
ant colony optimization. Innternational Symposium on Circuits and Systems

(ISCAS’04) Vancouver, Canada, May 2004. IEEE.

[59] Chunho Lee, Miodrag Potkonjak, and William H. Mangie@mith. Media-
Bench: a Tool for Evaluating and Synthesizing Multimedid &@mmunicatons
Systems. IfProceedings of the 30th annual ACM/IEEE international sgaipm

on Microarchitecture1997.

173

[60] Jiahn-Hung Lee, Yu-Chin Hsu, and Youn-Long Lin. A neveiger linear pro-
gramming formulation for the schedulingproblem in datdysinthesis. IrPro-

ceedings of ICCAD-8%ages 20-23, Santa Clara, CA, USA, Nov 1989.

[61] G. Leguizamon and Z. Michalewicz. A new version of ansteyn for subset
problems. InProceedings of the 1999 Congress of Evolutionary Compniati

pages 1459-1464. IEEE Press, 1999.

[62] Yanbing Li, Tim Callahan, Ervan Darnell, Randolph HamdUday Kurkure,
and Jon Stockwood. Hardware-Software Co-Design of Emhkdizonfig-
urableArchitectures. IRroceedings of the 37th Conference on Design Automa-

tion, 2000.

[63] Youn-Long Lin. Recent developments in high-level $yggis. ACM Trans. Des.

Autom. Electron. Syst2(1):2-21, 1997.

[64] Qinghua Liu and Malgorzata Marek-Sadowska. A studyetfist structure and
placement efficiency. IlISPD '04: Proceedings of the 2004 international sym-
posium on Physical desigpages 198-203, New York, NY, USA, 2004. ACM

Press.

[65] J Madsen, J Grode, P V Knudsen, M E Petersen, and A Hasé¢imau_YCOS:
the Lyngby Co-Synthesis Systenesign Automation for Embedded Systems

2(2):125-63, March 1997.

174

[66] Michael C. McFarland, Alice C. Parker, and Raul CammpasaThe high-level
synthesis of digital systems. Rroceedings of the IEEErolume 78, pages 301—

318, Feb 1990.

[67] D. McGrath. Gartner dataquest analyst gives asic, fpgakets clean bill of

health.EE TimesJune 2005.

[68] G. Melancon and I. Herman. Dag drawing from an informatvisualization

perspective. Technical Report INS-R9915, CWI, Novemb&919

[69] Seda Ogrenci Memik, E. Bozorgzadeh, Ryan Kastner, aajd8arrafzadeh. A
super-scheduler for embedded reconfigurable systemdE=HB/ACM Interna-

tional Conference on Computer-Aided DesigA01.

[70] Zbigniew Michalewicz.Genetic algorithms + data structures = evolution pro-
grams (2nd, extended ed.Springer-Verlag New York, Inc., New York, NY,

USA, 1994.

[71] R. Michel and M. Middendorf.New Ideas in Optimizatigrchapter An ACO
algorithm for the shortest supersequence problem, pagegl5McGraw Hill,

London, UK, 1999.

[72] Giovanni De Micheli.Synthesis and Optimization of Digital CircuitslcGraw-

Hill, 1994.

175

[73] Gordon E. Moore. Cramming more components onto integraircuits. pages

56-59, 2000.

[74] Ralf Niemann and Peter Marewedel. An Algorithm for Haede/Software Par-
titioning Using MixedInteger Linear ProgramminBesign Automation for Em-

bedded System2(2):125-63, March 1997.

[75] Maurizio Palesi and Tony Givargis. Multi-Objective §ign Space Exploration

Using GeneticAlgorithms. IRProceedings of the Tenth International Symposium

on Hardware/SoftwareCodesigh002.

[76] In-Cheol Park and Chong-Min Kyung. Fast and near optsoheduling in au-
tomatic data path synthesis. DAC '91: Proceedings of the 28th conference
on ACM/IEEE design automatippages 680—685, New York, NY, USA, 1991.

ACM Press.

[77] Rafael S. Parpinelli, Heitor S. Lopes, and Alex A. Fasit Data mining with an
ant colony optimization algorithmlEEE Transaction on Evolutionary Compu-

tation, 6(4):321-332, August 2002.

[78] P. G. Paulin and J. P. Knight. Force-directed schedulinautomatic data path

synthesis. Ii24th ACM/IEEE Conference Proceedings on Design Automation

Conferencel987.

[79] P. G. Paulin and J. P. Knight. Force-directed scheduiim the behavioral syn-

thesis of asic’sIEEE Trans. Computer-Aided Desigt661-679, 1989.

176

[80] P. Poplavko, C.A.J. van Eijk, and T. Basten. Constramlysis and heuristic
scheduling methods. IRroceedings of 11th. Workshop on Circuits, Systems and

Signal Processing(ProRISC200@pges 447-453, 2000.

[81] Gara Pruesse and Frank Ruskey. Generating linear sgtenfast. SIAM J.

Comput, 23(2):373-386, 1994.

[82] Stuart Russell and Peter Norvidhrtificial Intelligence: A Modern Approach

Prentice Hall, New York, NY, 2002.

[83] Ruud Schoonderwoerd, Owen Holland, Janet Bruten, asohlLRothkrantz.
Ant-based load balancing in telecommunications netwoddaptive Behaviqr

5:169-207, 1996.

[84] J. M. J. Schutten. List scheduling revisit€dperation Research Lettet8:167—

170, 1996.

[85] Semiconductor Industry Association. National Tedogy Roadmap for Semi-

conductors. 2003.

[86] Alok Sharma and Rajiv Jain. Insyn: Integrated schedyfor dsp applications.

In DAC, pages 349-354, 1993.

[87] Alena Shmygelska and Holger H. Hoos. An ant colony ofgation algorithm
for the 2d and 3d hydrophobic polar protein folding probl&NC Bioinformat-

ics, 6, 2005.

177

[88] James E. Smith. Dynamic instruction scheduling andasionautics ZS-1.

IEEE Computer22(7):21-35, 1989.

[89] Michael D. Smith and Glenn HollowayAn Introduction to Machine SUIF and
Its Portable Librariesfor Analysis and OptimizatiorDivision of Engineering

and Applied Sciences, Harvard University, July 2002.

[90] U. Steinhausen, R. Camposano, H. Gunther, P. PlogeMafdheissinger,
H. Veit, H. T. Vierhaus, and U. Westerholz andJ. Wilberg. t8gsSynthesis
using Hardware/Software Codesign.Rroceedings of the Second International

Workshop on Hardware/SoftwareCodesi$893.

[91] T. Stutzle and M. Dorigo. A short convergence proof éoclass of ACO algo-

rithms. IEEE Transactions on Evolutionary Computatj@g4):358-365, 2002.

[92] Thomas Stutzle and Holger H. Hoos. MAX-MIN Ant Systeffuture Genera-

tion Comput. System$6(9):889-914, September 2000.

[93] Philip H. Sweany and Steve J. Beaty. Instruction schiedwsing simulated
annealing. InProceedings of 3rd International Conference on MassivelaP

lelComputing System&998.

[94] Haluk Topcuouglu, Salim Hariri, and Min you Wu. Perfance-effective and
low-complexity task scheduling for heterogeneous conmgutEEE Trans. Par-

allel Distrib. Syst, 13(3):260-274, 2002.

178

[95]

[96]

[97]

[98]

[99]

[100]

Frank Vahid, Jie Gong, and Daniel D. Gajski. A BinaryfStraint Search Algo-
rithm for Minimizing Hardwareduring Hardware/Softwarertfoning. In Pro-

ceedings of the conference on European design automatideremce 1994.

Frank Vahid and THUY Dm LE. Extending the Kernighan/Liteuristic for
Hardware and SoftwareFunctional Partitionif@esign Automation for Embed-

ded System£(2):237-61, March 1997.

W. F. J. Verhaegh, E. H. L. Aarts, J. H. M. Korst, and P. ELRpens. Improved
force-directed scheduling. BURO-DAC '91: Proceedings of the conference on
European design automatippages 430-435, Los Alamitos, CA, USA, 1991.

IEEE Computer Society Press.

W. F. J. Verhaegh, P. E. R. Lippens, E. H. L. Aarts, J. H.KHdrst, A. van der
Werf, and J. L. van Meerbergen. Efficiency improvements @wcé-directed
scheduling. INCCAD '92: Proceedings of the 1992 IEEE/ACM international
conference on Computer-aided desigages 286—291, Los Alamitos, CA, USA,

1992. IEEE Computer Society Press.

Gang Wang, Wenrui Gong, Brian DeRenzi, and Ryan KastAet colony op-
timizations for resource and timing constrained operasoheduling. IEEE

Transaction on Computer-Aided Desjd6(6):1010-1029, 2006.

Gang Wang, Wenrui Gong, Brian DeRenzi, and Ryan Kastieesign space

exploration using time and resource duality with the anbogloptimization. In

179

[101]

[102]

[103]

[104]

[105]

[106]

DAC '06: Proceedings of the 43rd annual conference on Desigtomation

pages 451-454, New York, NY, USA, 2006. ACM Press.

Gang Wang, Wenrui Gong, Brian DeRenzi, and Ryan KastnExploring
time/resource tradeoffs by solving dual scheduling pnaisievith the ant colony
optimization. ACM Transactions on Design Automation of Electronic System

(TODAES) (to appearR007.

Gang Wang, Wenrui Gong, and Ryan Kastner. A New ApprdacTask Level
Computational ResourceBi-partitioning5th International Conference on Par-

allel and Distributed Computingand Systerhgl):439-444, November 2003.

Gang Wang, Wenrui Gong, and Ryan Kastner. System leagltioning for
programmable platforms using the antcolony optimizati@Bth International

Workshop on Logic and Synthesis, IWLS'0dne 2004.

Gang Wang, Wenrui Gong, and Ryan Kastner. Instrucsicimeduling using
MAX-MIN ant optimization. In15th ACM Great Lakes Symposium on VLSI,

GLSVLSI'2005April 2005.

Gang Wang, Wenrui Gong, and Ryan Kastner. Applicagiartitioning on pro-
grammable platforms using the ant colony optimizatidournal of Embedded

Computing2(1):119-136, 2006.

Theerayod Wiangtong, Peter Y. K. Cheung, and Wayne IGidmparing Three

180

Heuristic Search Methods for FunctionalPartitioning inrdH@are-Software

Codesign Design Automation for Embedded Syste@(d):425—-49, July 2002.

[107] Kent Wilken, Jack Liu, and Mark Heffernan. Optimaltngtion scheduling us-
ing integer programming. IRroceedings of the ACM SIGPLAN 2000 conference

on Programming languagedesign and implementat2io0.

[108] Xilinx, Inc. Virtex-Il Pro Platform FPGA Data Sheglanuary 2003.

181

	my_UCSB_thesis_title_page.pdf
	I. Page Patterns and Potentials
	A. Column
	B. Working with the Page

	II. New Chapter
	A. Margins
	1. Advertising Margins
	2. Editorial Margins

	B. Continuity

	References
	Appendix

