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Abstract

The advances in the programmable hardware has lead
to new architectures where the hardware can be dynami-
cally adapted to the application to gain better performance.
There are still many challenging problems to be solved be-
fore any practical general-purpose reconfigurable system
is built. One fundamental problem is the placement of
the modules on the reconfigurable functional unit (RFU).
In reconfigurable systems, we are interested both in on-
line placement, where arrival time of tasks is determined
at runtime and is not known a priori, and offline in which
the schedule is known at compile time. In the case of of-
fline placement, we are willing to spend more time during
compile time to find a compact floorplan for the RFU mod-
ules and utilize the RFU area more efficiently. In this paper
we present offline placement algorithms based on simulated
annealing and greedy methods and show the superiority of
their placements over the ones generated by an online algo-
rithm.

1. Introduction

As the FPGAs get larger and faster, both the number and
complexity of the modules which can be loaded onto them
increase, hence better speedups can be achieved by exploit-
ing FPGAs in hardware systems. Gokhale et. al. report
speedups of 200x in [5] for the string matching problem
(i.e., the program runs 200 times faster when run on the
FPGA board than when run on a Sparc machine). Further-
more, the ability to partially reconfigure the chip as it is
running, enables the implementation of dynamically recon-
figurable hardware systems which adapt themselves to the
application for better performance [5, 9, 14]. Hauck has
reported many applications for reconfigurable systems in
[7]. Such systems usually consist of a host processor and

an FPGA “co-processor” called Reconfigurable Functional
Unit (RFU) which can be programmed in the course of the
running time of the program with varying configurations at
different stages of the program. An example is shown in
Figure 1. Figure 1-a, shows three parts of the code which
are mapped to RFU operations (or RFUOPs, also called
modules). When the program is running the loop containing
RFUOP2 (time t1 in Figure 1-a) two RFUOPs are loaded
on the chip. Later on, when the program is about to enter
the loop at time t2, there is no space on the RFU to place
RFUOP3. Hence RFUOP2 is swapped out of the chip and
RFUOP3 is loaded. RFUOP1 is still on the chip and may
be called later in the program.
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Figure 1. (a)The running code (b)RFU con-

guration at time t1 (c) RFU conguration

at a later time t2

Unfortunately, rather long delays in reprogramming
RFUs keeps us from achieving very high speedups in gen-
eral purpose computing. Wirthlin and Hutchings [14] report
an overall speedup of 23x, while the speedup could be 80x if
configuration time was zero (the configuration time is 16%
to 71% of the total running time).

A number of methods have been proposed to overcome
the delays in reconfiguring the RFUs, e.g., [6, 8]. Although
these algorithms are necessary for a practical reconfigurable
system, we still need fast and powerful physical design
CAD tools to do RFU real estate management both offline
and online. In the offline version, the flow of the program is
known in advance (e.g., in DSP applications, or loops con-
taining basic blocks) and hence the configuration manage-



ment component can do various optimizations in the con-
figuration of the RFU before the system starts running. On
the contrary, in the online version the decision on what op-
erations should be launched is not known a priori. The flow
of the program is not known in advance and hence the RFU
configuration management should be done on the fly.

Both online and offline versions of the placement algo-
rithms are important for reconfigurable computing systems.
The importance of the online version is that due to the hard
nature of accurately predicting the run time behavior of a
general program at compile time, one needs online place-
ment algorithms for at least parts of the RFU manager ker-
nels. The offline algorithm can be exploited to generate
compact placements for a group of RFU operations which
will execute in sequence, e.g., part of the code in a basic
block (the compact placement of the group of RFU modules
can be seen as one atomic module when the online place-
ment method is running). Furthermore, placements gener-
ated by an offline method can serve as baseline solutions
for the online versions, and help us devise better online al-
gorithms. Hence, the most important feature of an offline
placement algorithm is the quality of placement it gener-
ates, even though it is a slow method.

To this date the place and route algorithms proposed for
FPGAs are generally very slow or do not generate high
quality placements. Examples are [10, 12, 11] The only
fast placement algorithm reported in the literature is a work
by Callahan et. al. [4] which is a linear time algorithm
for mapping and placement of data flow graphs on FPGAs.
Their algorithm utilizes the FPGA area efficiently, but it is
limited to datapaths only.

Our goal is to devise efficient methods for placing RFU
operations on the chip as compactly as possible so that the
results can be used both by the online algorithm and as a
baseline for assessing the quality of online methods. We
propose simulated annealing as well as greedy offline algo-
rithms for placement of the modules on RFU, and show the
effectiveness of the proposed methods by comparing their
placements with some online algorithms (See [1]).

The rest of the paper is organized as follows: In Section 2
we have described our model of the reconfigurable system.
We have also defined measures to compare effectiveness of
different RFUOP placement algorithms. Our methods are
described in Section 3. Experimental results are shown in
Section 4. Section 5 contains conclusion and discussion on
possible ways to improve our algorithms and further exper-
iments to give us more insight on the nature of the problem.

2. Our Model of a Reconfigurable Computing
System

Brebner [2] suggests an environment in which the run-
time system dynamically chooses between hardware (RFU

operation) and software (main host CPU instructions) im-
plementations of the same function based on profile data
or other criteria. We use the same paradigm in our model.
An RFUOP ri can be either accepted or rejected based on
availability of RFU real estate. If an RFUOP is rejected, the
same function should be performed by the host CPU and
hence a running time penalty is incurred. We use set ACC
to represent RFUOPs which are accepted (See Equation 1).

Unlike [3], our model allows no rotation or flipping of
the modules. They should be placed on the RFU as they are
represented in the library. Furthermore, we assume there
is only one representation for each RFUOP in the library.
There is no connection between RFUOPs. The data to be
processed by the RFUOP is loaded onto chip registers be-
fore the RFUOP starts execution. After the RFUOP is done,
the result is read back to the CPU.

Our model which deals with the placement engine of the
RFU configuration management interface, assumes that the
RFUOPs have been scheduled during compile time. Fur-
thermore, it does not consider any caching of the modules
on the chip during the run-time.

The set

RFUOPS =

�
r1; r2; � � � ; rn j ri = (wi; hi; si; ei)

	

represents all the RFU operations defined in the system,
where wi; hi; si and ei are all positive integers with the ad-
ditional constraint that si < ei. wi and hi are the width and
height of the implementation of the RFUOP ri in the library
respectively. si is the time the operation ri is invoked and
ei � si is the time-span it is resident in the system.

The placement engine can be invoked in only two ways:
insert a module which is not currently on the chip (at time
si) and delete a currently placed module from the chip (at
time ei). If there is a cache manager in the system (See
Figure 2), it will issue insertion/deletion requests to the
placement engine only when such operations should actu-
ally take place. For example if an RFUOP is invoked and
the cache manager detects that the module is already on the
chip, it will issue no requests to the placement engine. On
the other hand, if a module which was previously swapped
out (placement engine had received a delete command on
that RFUOP) and is invoked again, the cache manager will
request the placement engine to insert the RFUOP as if it
was the first time this RFUOP is being invoked.

At any given time, there might be a number of mod-
ules on the RFU which can perform different operations
concurrently. If in such a case a new RFUOP is invoked
(cache manager sends an insert request to the placement en-
gine) and there is no space and no idle RFUOP on the chip,
then the request is rejected. Since the RFU cannot perform
the operation, the main CPU should execute instructions to
perform the same function, incurring some penalty to the
running time. Otherwise (if the RFUOP is accepted), it is
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Figure 2. A sample model of a recongurable

computing system

loaded onto RFU and executed. We assume that higher lev-
els of the RFU configuration management will block inser-
tion requests for RFUOPs which have not shown perfor-
mance gains, i.e., the application profile data shows that the
time to load the RFUOP plus its execution on the RFU is
more than the time to perform the same function on the host
CPU on the average.

The set ACC represents all the RFUOPs which are ac-
cepted, in addition to their locations on the chip. Given
RFUOPS and RFU dimensions W and H , the placement
engine decides where to place RFUOPs.

ACC =
�
(ri; xi; yi) j ri 2 RFUOPS ;

xi � 0; xi + wi < W

yi � 0; yi + hi < H
	

(1)

where (xi; yi) is the coordinate on the RFU where RFUOP
ri is placed. Obviously, the conditions

W � wi; 8i = 1 � � �n

H � hi; 8i = 1 � � �n

must be met for all the RFUOPs. Note that the cardinality
of ACC set could be equal to that ofRFUOPS . Also, it is
important to note that the placements in ACC do not allow
modules to be placed out of chip boundary (See Equation
1), but some RFUOP boxes might overlap. We will deal
with this issue in Section 3.

The placement of RFUOPs on the RFU can be modeled
as a three dimensional floorplanning problem. In a 3-D
floorplanning, we have a box whose base is a rectangle with
the same dimensions as the RFU (W �H) and its height is
the time axis (See Figure 3-a). RFUOPs are also modeled
as 3-D boxes (we use box(ri) to refer to the corresponding
box of the RFUOP ri). The base of the box correspond-
ing to RFUOP ri is a wi � hi rectangle and its height is the

time-span the RFUOP resides on the RFU, i.e., (ei�si). So,
the end points of the diagonal of box(ri) have coordinates
(xi; yi; si) and (xi + wi � 1; yi + hi � 1; ei � 1).
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Figure 3. (a) The oorplanning box (b) A
3-D oorplan

Horizontal cuts with the floorplanning box correspond to
RFU configurations at different points in time. For example,
the cut t = t1 in Figure 3 corresponds to Figure 1-b and the
cut t = t2 corresponds to Figure 1-c. Boxes corresponding
to RFUOPs cannot be placed at any arbitrary point in the
RFU box. The base of the RFUOP should be placed on the
cut plane corresponding to t = si. However, the base can
slide on the cut plane as long as it does not cross the chip
boundary.

The penalty in rejecting an RFU operation depends both
on the complexity of the operation (we assume the com-
plexity to be linearly proportional to the size of the mod-
ule implementing the RFUOP) times number of cycles the
RFUOP was supposed to take on the RFU. The number of
RFU cycles could be an indication of how many times (for
example in a loop) the RFUOP is supposed to be executed.
We can formulate the penalty of rejecting an RFUOP ri as
penalty(ri) defined as:

penalty(ri) = wi � hi � (ei � si)

= volume(box(ti)) (2)
The penalty of a placement P 2 calACC is defined as the
sum of penalties of the rejected modules:

Penalty(P ) =

X

ri2RFUOPS and 69(ri;x;y)2P
penalty(ri) (3)

The overlap of a placement P 2 calACC is defined as
the total overlapping volume of all the RFUOP boxes:

Overlap(P ) =

X
(ri;xi;yi);(rj ;xj ;yj)2P

box(ri) \ box(rj) (4)

3-D floorplanning is the problem of finding the place-
ment P 2 ACC with minimum Penalty(P ) and the
additional constraint that no two RFUOP boxes overlap,
i.e.,Overlap(P ) = 0.



3. 3-D Floorplanner

We implemented four different offline algorithms for the
3-D floorplanning problem. The four methods are listed be-
low.

1. KAMER-BF Decreasing: In this method, we first sort
the RFUOPs based on their box volumes, and elimi-
nate (100 � X)% smallest RFUOP boxes (X being
a parameter. We tried X = 5; 10; � � �). Then keep-
ing the same temporal order as the original input,
give the remaining RFUOPs (largest X% modules)
as the input to our best online algorithm. For a de-
scription of the KAMER-BF online algorithm see [1].
Intuitively, we are willing to eliminate small modules
to The reason behind eliminating the small RFUOP
boxes is that, intuitively, small modules fragment the
3-D floorplan and block larger ones (with higher vol-
ume and hence larger penalties of rejection) from be-
ing placed.

2. Simulated Annealing (SA): Starting from an empty
3-D floorplan, use a simulated annealing method to
accept or reject RFUOPs, trying to minimize the
penalty of the 3-D placement.

3. Low-temperature Annealing (LTSA): Starting from
the placement generated by KAMER-BF Decreasing-
X% use low-temperature annealing to add/remove
RFUOPs to/from ACC list. All RFUOPs are consid-
ered for placement (not only the X% largest placed
by the online method). An RFUOP accepted by the
online method might be rejected or Displaced based
on the annealing decisions.

4. Zero-temperature Annealing (ZTSA): Starting from
the placement generated by KAMER-BF Decreasing-
X% use zero-temperature annealing to add as many
(100�X)% smallest RFUOP boxes to theACC list as
you can, trying to monotonically decrease the penalty
of the placement. In contrast to LTSA method, the
RFUOP boxes placed by the online algorithm are not
removed or displaced. This method is greedy and
much faster than LTSA.

The annealing core is the same for SA, LTSA and ZTSA
methods. Their only difference is in the starting temperature
of the annealing process. The annealing core starts with
an element P0 2 ACC and applies three different moves
to generate other placements P1; P2; � � � where Pi 2 ACC
trying to minimize Penalty(P ). The moves are:

1. Op1: Accept RFUOP

� Precondition: ri 2 RFUOPS; (ri; x; y) 62 P

� Operation:

P  P [

n�
ri; rand(0;W � wi);

rand(0; H � hi)
�o

where rand(a; b) generates a random integer
number in the range (a; b� 1).

� Post-condition: Overlap(P ) = 0

In fact, we use a more mature way than generat-
ing random coordinates to choose the location of the
RFUOP box. We look for all possible empty boxes
which can accomodate box(ri) (See [1] for similar
methods in two dimensions) and choose one ran-
domly.

2. Op2: Reject RFUOP

� Precondition: (ri; xi; yi) 2 P

� Operation: P  P n
�
(ri; xi; yi)

	

3. Op3: Displace RFUOP

� Precondition: (ri; xi; yi) 2 P

� Operation:

xinew  xi + rand(��; �)

yinew  yi + rand(��; �)

P  

�
P n

�
(ri; xi; yi)

	�
[

n�
ri; xinew; yinew)

�o

� Post-condition:

xinew � 0 and xinew < W � wi

yinew � 0 and yinew < H � hi

Overlap(P ) = 0

The selection of the RFUOPs to add to theACC list (i.e.,
accept) or remove from theACC list (i.e., reject) or displace
is done randomly. In Section 5 we will discuss the effect
of choosing RFUOPs with different probabilities. We have
also discussed the effect of choosing the annealing opera-
tions with different probabilities.

Penalty(Pi) is used as the cost for each placement.
Note that we could have allowed overlaps between RFUOP
boxes and try to resolve it towards the end of the an-
nealing process. In that case, the cost would have been
Penalty(P )+�(T )�Overlap(P ), where � is an increas-
ing function of annealing temperature T , to ensure that the
overlap cost converges to zero at the end of the annealing
process. We did perform experiments with this method, but
the method which allows no overlaps to occure is faster.
(The authors in [13] report that 2-D placement methods
which allow/prevent overlaps generate placements of fairly
equal qualities).



Data Min Max Avg Chip
class len len len D Size Distribution

Tiny 3 30 16.5 5 50� 50 Uniform
Small 3 30 16.5 10 70� 70 Uniform

A 3 30 16.5 30 100� 100 Uniform

Table 1. Description of different data classes.

D is the density (average number of RFUOPs

in the system at any time-slice).

4. Experimental Results

We use the model described in Section 2 for our in-
sert/delete events. We generated different data sets con-
taining the invocation of the RFUOPs. Each data set is a
sequence of insertion and deletion of RFUOPs sorted by
the time they occur. The events are uniformly distributed
on the timeline with average density of D RFUOPs on the
chip at any given time, D being a parameter of the input
file. We have simulated the running of a program on the re-
configurable computing system by placing as many RFUOP
boxes on the 3-D floorplan as we can. The modules which
we cannot place on the RFU-time volume are rejected.

The data files are called Cnnnn (see Table 1) where ’C’ is
the class of RFUOP module width/height distributions and
’nnnn’ is number of insertion events (we have done experi-
ments with ’nnnn’ being 50, 100, 200, 1024 and 2048).

The penalty reported in the following tables is the same
as Equation 3 (sum of box volumes of rejected RFUOPs).
The tables show the ratio of accepted RFUOPs to the total
number of RFUOPs as well.

The experiments with different values of X for
KAMER-BF Decreasing method showed that using X <

93 result in higher penalties than X = 100. In the cases
where X � 93, slight improvements in the penalty of the
placement was seen, and hence we did not report the results
of these experiments. Also, pure annealing took long times
(e.g., hours for Small100 data set) and hence we did not re-
port the results of SA either. However, LTSA and ZTSA
methods yielded good results.

Table 2 shows the ratio of accepted RFUOPs when the
output of KAMER-BF Decreasing with X=100% is used as
input to the low-temperature annealing method. The results
of LTSA are compared to the online algorithm (KAMER-
BFD with X=100, see [1]). In the same table, the penalties
of the two methods are also shown. As can be seen, the
acceptance rate decreases in some cases but the penalty al-
ways improves. The reason is that smaller RFUOP boxes
are replaced by larger ones, hence increasing number of re-
jected modules but decreasing the penalty. Table 3 is simi-
lar to Table 2, but X is set to 20, instead of 100. As can be
seen, the LTSA method is able to improve the online results
substantially.

Data LTSA-100 Online Ratio
Set acc. rate acc. rate

Tiny50 70 84 83.33%
Tiny100 72 83 86.75%

Small100 86 84 102.38%
Small200 81 89.5 90.50%

Small1024 84.47 84.57 99.88%
A100 87 89 97.75%

Data LTSA-100 Online Ratio
Set penalty penalty

Tiny50 147287 213153 69.10%
Tiny100 253566 307879 82.36%

Small100 464049 508923 91.18%
Small200 539435 612623 88.05%
Small1024 4468662 4643786 96.23%

A100 427761 456627 93.68%

Table 2. The LTSA-100 columns show the

acceptance rates and penalties for different

data sets when the result of KAMER-BFDwith

X=100% is used as input to LTSA. The on-

line column shows the acceptance rates and

penalties for KAMER-BFD with X=100

Table 4 shows the acceptance rate and penalties for the
case where KAMER-BF Decreasing with X = 20% is run
first, and its placement is used as starting point for the ZTSA
method. The ZTSA only accepts the RFUOPs which are
not placed by the online algorithm, and hence is very fast.
It can be seen that although it is a greedy method, it still can
improve the results of the online method.

5. Conclusion and Future Work

We summarized the results of previous work on floor-
planning for reconfigurable systems and showed why it is
important to deal with both online and offline placement
algorithms. We devised simulated annealing and greedy
placement methods for the 3-D placement of the RFUOPs
and showed their effectiveness.

The effect of different representations of RFUOPs in the
library should be addressed in future work. Also, extensive
studies should be done to find realistic benchmarks for re-
configurable computing environments. These benchmarks
should address the distribution of module dimensions for
RFUOPs, pattern of invocation, penalty of rejection and
performance gains when performing RFUOPs.

Another important issue to be addressed is the effect of
weighting different modules when choosing them for inser-
tion/deleting into the active tasks. It would be interesting to
observe how the result of our method changes if modules
with smaller volumes are more likely to be removed from



Data LTSA-20 Online Ratio
Set acc. rate acc. rate

Tiny50 76 84 90.48%
Tiny100 82 83 98.79%

Small100 81 84 96.43%
Small200 85.5 89.5 95.53%

A100 81 89 91.01%

Data LTSA-20 Online Ratio
Set penalty penalty

Tiny50 148975 213153 69.89%
Tiny100 225603 307879 73.28%
Small100 287153 508923 56.42%
Small200 359980 612623 58.76%

A100 213036 456627 46.65%

Table 3. The LTSA-20 columns correspond to

KAMER-BFD with X=20% followed by LTSA.

Online columns correspond to KAMER-BFD

with X=100.

the active tasks list. The small modules probably fragment
the floorplanning box and cause rejection of larger modules
and hence increase the overall penalty. Also, the effect of
selecting the four annealing moves (See Section 3) with dif-
ferent probabilities should be examined.
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