
GPU Acceleration of Optical Mapping Algorithm for Cardiac
Electrophysiology

Pingfan Meng, Ali Irturk, Ryan Kastner, Andrew McCulloch, Jeffrey Omens, and Adam Wright

Abstract— Optical mapping is an increasingly popular tool
for experimentally analyzing the electrical activity in the heart.
The optical mapping algorithm is computationally intense and
consumes a considerable amount of time even with a highly
optimized program running on a state-of-the-art multi-core
microprocessor. For example, one second of data requires
approximately 5 minutes of computation time (3.66 FPS) with
a C++ program parallelized by OpenMP running on a 3.4GHz
Quad-Core CPU. This article presents a GPU implementation
of the optical mapping algorithm. Our result indicates that
the GPU implementation is capable of processing the optical
mapping video at 578 FPS which achieves 157.92X speed against
the OpenMP optimized CPU implementation.

I. INTRODUCTION

Optical fluorescence imaging of cardiac electrical impulses
on the surface of isolated animal hearts has been proven as
an effective tool [1][2] in cardiac physiology for studying the
mechanisms of rhythm disturbances (dysrhythmia), which
cause heart attacks. The optical mapping technique can
record heart motion without interfering with it since the
technique does not require physical contact. Moreover,the
optical mapping technique can provide spatial electrical
activity maps that include the information across the entire
heart surface which provides more information for medical
study than the conventional electrode technique does.

Unfortunately, optical mapping analysis in cardiac physiol-
ogy is computationally intensive due to two factors: (1) high
input data rate; (2) high accuracy requirement for the study of
depolarization properties. Firstly, for a typical experimental
setup, a high-speed camera (about 1, 000 FPS, 100 × 100
pixels/frame in our case) feeds the video data to the optical
mapping processing system. Secondly, in order to conserve
the depolarization properties, a complex phase detection
process is required. In the phase detection process, the video
data is interpolated temporally. Typically, the interpolation
factor is 10. Thus, the phase detection process expands the
data throughput to 10, 000 FPS. With such a high throughput,
the optical mapping algorithm takes high performance multi-
core processors hours to process just a few seconds of
data. This attribute makes the optical mapping technique
impractical to use in application such as high throughput
screening, immediate experimental feedback and real-time
feedback control [2].

Manuscript received March 29, 2012
P. Meng, A. Irturk and R. Kastner are with Department of Computer

Science and Engineering, University of California, San Diego, 9500 Gilman
Dr. La Jolla, CA 92093

A. McCulloch, J. Omens and A. Wright are with Department of Bioengi-
neering, University of California, San Diego, 9500 Gilman Dr. La Jolla, CA
92093

Fig. 1. Experimental setup for optical mapping video data capturing.

Graphic Processing Units (GPUs) employ many-core ar-
chitectures which highly parallelize the operations and hide
the memory access latencies. GPUs are proven to be effective
in accelerating high throughput applications in many fields
[3][4][5]. Computer Unified Device Architecture (CUDA) is
an environment provided by NVIDIA for GPU programming.
Although the CUDA programming environment is easy to
manage, it still requires the designer to have a certain level
of knowledge about the GPU architecture to achieve a high
performance. In the optical mapping algorithm, the ultra high
throughput causes the high performance CUDA development
to be even more challenging. Moreover, the optical mapping
algorithm has several different processing stages which have
different computational characteristics and memory access
patterns temporally and spatially (e.g. temporal phase shift
followed by the spatial Gaussian filter). Due to the complex-
ity of the algorithm, a naive CUDA implementation prevents
the GPU hardware from distributing its computing resources
efficiently and hiding the memory access latency effectively.
Thus, optimizations on each accelerating kernel and a high
entire system throughput design are needed. Ultimately, the
complex temporal and spatial computational features of the
optical mapping algorithm and the entire system throughput
design strategy distinguish our implementation from other
image processing acceleration works [6][7].

In this article, we present a high performance implemen-
tation (578 FPS processing speed) of the optical mapping
algorithm using GPU for cardiac electrophysiology. The
performance of the GPU implementation is evaluated by
comparison to a Matlab CPU implementation, a serial C++
CPU implementation and an OpenMP C++ CPU implemen-
tation.

II. OPTICAL MAPPING ALGORITHM

In this section, we briefly introduce the optical mapping
image processing algorithm for cardiac physiology.

The video input data is captured with an experimental
setup depicted in figure 1. In the experimental setup, with



the aid of a set of optical lenses and filters, a CMOS camera
records a rabbit heart which is filled with voltage-sensitive
fluorescent dye. The fluorescence intensity, which represents
transmembrane potential, is converted to digital 8-bit images
at 1, 000 FPS with a spatial resolution of 100× 100 pixels.

The raw video data, which is collected by the high speed
camera, is covered by noise. It is impossible to extract any
biological information for medical studies with this noisy
video data. Thus, the optical mapping technique applies an
image processing algorithm to remove the noise on the raw
video data [8]. The effect of the image processing is shown
in figure 2.

We measured the performance of the CPU implementation
of the optical mapping image processing algorithm using
both Matlab and C++ programming language on a 3.40 GHz
Quad-Core Intel Core i7-2600 CPU. To process 1 second of
input video data, the Matlab program took 39 minutes; the
serial C++ program took 22 minutes; the multi-core CPU
C++ program with OpenMP (an API for multi-core parallel
programming in C/C++) took 4.6 minutes. The optimized
C++ program also used direct access tables to avoid com-
putation such as trigonometric functions and the FFT output
indices. However, even with multi-core parallelization and
direct access tables (O(1)), the best CPU implementation
could only achieve 3.66 FPS. This processing rate is only a
tiny fraction of the 1,000 FPS camera data capturing rate.
At this processing rate, a biomedical researcher has to spend
hours and even days on processing a reasonable amount of
useful data.

The major stages in the image processing are demonstrated
in figure 2. Firstly, the image data passes through a phase
shift spatial filter which includes interpolation by a factor
of 10, phase shifting and spatial filtering. The phase shift-
ing operation, which is implemented by FFT, conjugation
multiplication and IFFT, is used to correct the temporal
differences among pixels before any filtering in order to
conserve the depolarization properties [8]. The phase shifted
data is spatially filtered by a 5 × 5 Gaussian (σ = 1.179)
window to cancel the noise. Finally, a temporal median filter
is performed on the spatially filtered data to preserve the
steep upstroke of the optical action potential.

III. GPU IMPLEMENTATION OF THE OPTICAL MAPPING
ALGORITHM

In this section, we present our GPU implementation of
the optical mapping algorithm. First, we discussed how we
partitioned the optical mapping algorithm for the design.
Second, we present how we implemented and optimized the
CUDA kernels. Third, we described how the optical mapping
program runs on the GPU.

A. Application Partition

The overview of the GPU implementation of the optical
mapping algorithm is illustrated in figure 3. The optical
mapping algorithm consists of several sequential stages of
operations. We studied the data throughput for each stage.
We partitioned the optical mapping algorithm into three types

Fig. 2. The image processing of the optical mapping technique. And effect
on the real images after the image processing.

of modules: CPU function, CUDA accelerating kernel and
CUDA throughput kernel.
CPU function module : the phase difference compute is

the only module of this type in the optical mapping algorithm
as shown in figure 3. This module computes the absolute
phase differences by using the relative phase differences
produced by the temporal peak search stage. The phase
differences compute module has two features: (1) high data
dependency (e.g. Given tab, tac and tbd by the peak search
module to calculate tdc in the phase difference compute
module. We get two computations/threads: tbc = tab − tac
and tdc = tbd−tbc. Obviously, the second computation/thread
depends on the output of the first one. One can argue to
replace tbc with tab−tac. this will force the second thread to
complete one more calculation, which will result in the same
latency as waiting for the completion of the first thread.);
(2) instruction branches (middle pixels need to calculate
23 phase differences while the edge ones are given 5 and
only need to calculate 19 phase differences). With these
two features, this stage is completely unsuitable for CUDA
kernel implementation. Moreover, the input throughput and
the output throughput are both significantly low. This means
it will not cause intensive data transferring between the CPU
and the GPU if it is implemented on the CPU. Therefore,
we implemented this stage as a CPU function.
CUDA accelerating kernel : these modules highly

occupy the GPU computing resource to accelerate the com-
plex computations in the optical mapping algorithm. These
modules usually have complex computational characteristics
and memory access patterns that need to be specifically
optimized in the design. Once the appropriate optimization
techniques are applied on these kernels, they usually gain
tremendous speedups. For example, in the optical mapping
algorithm, the highly optimized accelerating kernels such as
FFT , IFFT and peak search gained hundreds of times of
speedups against the CPU implementation of these functions.
CUDA throughput kernel : these modules focus on low

latency instead of high GPU computing resources occupancy



Fig. 3. GPU implementation overview. For each stage, the data throughput
is demonstrated. For the FFT stage, the high data throughput is due to the
padded zeros and the complex number data type.

in order to sustain the high throughput of the entire system.
For example, the spatial Gaussian filter kernel consumes
a high throughput input (800MB/s) by downsizing it to
36MB/s as shown in figure 3. Similarly, the kernels that up-
size the throughput, such as the interpolation kernel, serve
the system as a high speed data generator. Usually, the
computations in these kernels are relatively simple ones that
do not require any characteristic specific optimization. With
the aid of these throughput kernels, the GPU implementation
doubled or even tripled the speedups gained by the acceler-
ating kernels.

In our design, with these three types of modules, a
significant amount of data is generated and consumed within
the GPU; the complex computations with high parallelism
are accelerated on the GPU; the operations with high data de-
pendency or the operations filled with branches are executed
on the CPU. The GPU to CPU communication is minimized
to the inevitable data transferring such as the original input
video data loading and the final processed data storing.

B. CUDA Kernels

In this section, we discuss how we implement and optimize
the CUDA accelerating kernels. The principles of GPU
acceleration are (1) provide the GPU enough threads; (2)
maximize the operation to memory access ratio. The first
principle is to ensure that the GPU always has a sufficient
amount of threads. The second principle is to ensure that the
GPU is able to hide the memory access [9].

In the implementation, we developed accelerating kernels
for the computationally complex stages in the algorithm
according to their specific computational characteristics and
memory access patterns. Using this design methodology,
each accelerating kernel can achieve high performance in-
dividually. For example, we highly optimized the tempo-
ral peak search kernel according to its temporal reduction
and spatial independency characteristics. The temporal peak
search kernel is based on the CUDA reduction method [10].
However, the conventional reduction method only computes

Fig. 4. The temporal peak search kernel demonstration and its CUDA
pseudo code.

an individual array for one final result. In the temporal peak
search kernel, there are multiple peak values to be obtained
spatially. Each peak value is computed by a CUDA reduction
method. Therefore, we assigned multiple reductions operat-
ing on the GPU concurrently. As shown in figure 4, index i
maps the kernel to the video data spatially while index j does
so temporally. Most of the general reduction optimizations,
such as using shared memory, hard code reductions and
memory access coalescing (i.e. adjacent threads accessing
adjacent memory locations), are still effective in our temporal
peak search kernel. Thus, we applied these optimizations on
the temporal peak search kernel as described in the CUDA
pseudo code in figure 4. The optimized peak search CUDA
kernel gains 11× speedup against the non-optimized one.

C. Running on the GPU

Due to the size limitation of the memories on GPU cards
(usually 512MB-6GB), the input data is not able to be
entirely transferred to the GPU memory at one time. For
example, 1 second of video data (1024 frames, 100 × 100
pixels/frame) needs 2.25GB for the input array and another
2.25GB for the output array at the same time in the FFT
stage. The GPU memory cannot provide such a large space
for an entire 1 second of video data to be processed.
Therefore, we divided the video data into several smaller
chunks so that each chunk of data is able to stay on the GPU
and be processed as shown in figure 5. Then the processed
chunks will be assembled to produce a complete output
video. After each chunk is processed, the graphic memory
is released and loaded with the next chunk of data.

In this approach, we selected the appropriate chunk size to
ensure that each chunk occupies the GPU cores efficiently.
With multiple experiments, we discovered that the optimal



Fig. 5. Divide, process and assemble method.

chunk for our target GTX590 GPU is 40× 40× 1024.
Furthermore, since the chunks are completely independent

of each other, it is easy to adapt this approach on a multi-
GPU system with a high scalability.

IV. PERFORMANCE

In this section, we present the performance of our GPU
implementation. We report the performance of the GPU
implementation in comparison to that of three different CPU
implementations.

We chose NVIDIA Geforce GTX590 as the hardware to
test our GPU implementation. Since GTX590 has the most
CUDA cores among all the recent NVIDIA GPUs, it matches
our high throughput design goal. The GTX590 graphic
card has two GPU chips. In this implementation, we only
utilized one GPU chip. However, our GPU implementation
is potentially able to be ported on multi-GPU systems to gain
even more speedup as discussed in section III-C.

The performance of our design is shown in figure 6. The
results indicate that the GPU implementation has a significant
speed up against the CPU implementations. Even in compar-
ison to the OpenMP parallelized CPU implementation, the
GPU implementation still performs 157.92× faster.

V. CONCLUSION

We have presented a GPU implemenation of the optical
mapping algorithm for cardiac electrophysiology. We have
reported a test of our implementation on the GTX590 GPU.
The result indicates that the GPU implementation is signifi-
cantly faster than the parallelized multi-core CPU implemen-
tation. We developed the CUDA kernels by considering the
computational characteristics of the individual accelerating

Fig. 6. The performance of the GPU implementation in comparison to
the Matlab CPU implementation, the serial C++ implementation and the
OpenMP C++ implementation.

kernels and the features of the entire system throughput.
Running the CUDA program on the GPU, we used a divide,
process and assemble method to avoid the GPU memory
space limitation.

REFERENCES

[1] S. Iravanian and D. J. Christini, Optical mapping system with real-
time control capability, American Journal of Physiology - Heart and
Circulatory Physiology, 2007, pp. H2605-H2611.

[2] H. N. Pak, Y. B. Liu, H. Hayashi, Y. Okuyama, P. S. Chen, and
S. F. Lin, Synchronization of ventricular fibrillation with real-time
feedback pacing: implication to low-energy defibrillation, American
Journal of Physiology - Heart and Circulatory Physiology, 2003, pp.
H2704-H2711.

[3] J. Fung, S. Mann, Using graphics devices in reverse: GPU-based Image
Processing and Computer Vision, IEEE International Conference on
Multimedia and Expo, 2008, pp. 9-12.

[4] M.C. Schatz, C. Trapnell, A.L. Delcher, A. Varshney, High-throughput
sequence alignment using Graphics Processing Units, BMC Bioinfor-
matics, 8:474, 2007.

[5] S.S. Stonea, J.P. Haldarb, S.C. Tsaoa, W.-m.W. Hwua, B.P. Suttonc and
Z.-P. Liangb, Accelerating advanced MRI reconstructions on GPUs,
Journal of Parallel and Distributed Computing Volume 68, Issue 10,
October 2008, pp. 1307-1318.

[6] A. Ruiz, M. Ujaldon, J.A. Andrades, J. Becerra, Kun Huang, T.
Pan, J. Saltz, The GPU on biomedical image processing for color
and phenotype analysis, Bioinformatics and Bioengineering, 2007, pp.
1124-1128.

[7] Timothy D. R. Hartley, Umit Catalyurek, Antonio Ruiz, Francisco
Igual, Rafael Mayo, Manuel Ujaldon, Biomedical image analysis on
a cooperative cluster of GPUs and multicores, In ICS ’08: Proceed-
ings of the 22nd annual international conference on Supercomputing
(2008), pp. 15-25.

[8] D. Sung, J. Somayajula-Jagai, P. Cosman, R. Mills, and A. D.
McCulloch, Phase shifting prior to spatial filtering enhances optical
recordings of cardiac action potential propagation, Ann Biomed Eng,
2001, vol. 29, pp. 854-61.

[9] S. Hong and H. Kim, An analytical model for GPU architecture
with memory-level and thread-level parallelism awareness, In Proc.
International Symposium on Computer Architecture, 2009

[10] D. Kirk and W. Hwu, Programming Massively Parallel Processors,
Morgan Kaufmann, 2010.


