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Abstract 
 

 Carry Save Adder (CSA) trees are commonly used for 
high speed implementation of multi-operand additions. 
We present a method to reduce the number of the adders 
in CSA trees by extracting common three-term 
subexpressions. Our method can optimize multiple CSA 
trees involving any number of variables. This 
optimization has a significant impact on the total area of 
the synthesized circuits, as we show in our experiments. 
To the best of our knowledge, this is the only known 
method for eliminating common subexpressions in CSA 
structures. Since extracting common subexpressions can 
potentially increase delay, we also present a delay aware 
extraction algorithm that takes into account the different 
arrival times of the signals. 
 
1. Introduction 
  
The increasing complexity of semiconductor devices has 
led to new directions in the research of Design 
Automation tools. The implementation of 
computationally intensive applications is an area that is 
receiving increasing attention. Modern embedded 
devices such as portable music and video players, cell 
phones and video cameras are computationally intensive. 
System designers often rely on precompiled libraries for 
implementing arithmetic functions. But such an approach 
may not be the best option with the available resources 
and for meeting the tight constraints on area, latency and 
power consumption. 
 Multi-operand adder structures are commonly used 
for the summation of partial products in multiplication, 
as in the Wallace and Dadda tree multipliers [1]. They 
are also used in the implementation of arithmetic 
expressions arising from the conversion of constant 
multiplications into shifts and additions [2-4]. Carry 
Save Adders (CSAs) are commonly used to implement 
these multi-operand adder structures. An n-bit CSA takes 
three n-bit operands as inputs and produces an n+1-bit 
carry output and an n-bit sum output. The CSA is made 
up of n Full Adder (FA) cells, where each FA takes in 
one bit from each of three inputs and produces a sum bit 
and a carry bit. This is illustrated in Figure 1. Since there 
is no carry propagation this addition is very fast.  
A CSA tree is made up of a tree of CSAs, taking N 
inputs and then reducing it to two numbers, which can 
then be added using a fast adder such as a Carry 
Lookahead Adder (CLA). As an example of CSA trees, 
consider the set of expressions arising from a matrix 

multiplication, shown in Figure 2. The CSA trees for 
these expressions are shown in Figure 3.  
 

  
 

Fig 1. Carry Save Adder (CSA) 
 
 
 
 
 

 
 
 
 
 
 
 

Fig 2. Example arithmetic expressions 
 

 
  
 
 
 
  
 
 

 
 
 
 
 

Fig 3. CSA trees for example expressions 
 
 Each CSA can be seen as a 3:2 compressor, since it 
takes three inputs and reduces it to two numbers. The 
CSA tree reduces N numbers to two numbers and can be 
considered as two separate trees of 3:2 compressors, each 

reducing  





2
N  numbers to one number. The height of 

the CSA tree can hence be described by the formula [1] 

 
              Y1      =     5    7            X1 
              Y2                     4  12       X2 
  
     Y1 = X1 + X1<<2 + X2 + X2<<1 + X2<<2 
      Y2 = X1<<2 + X2<<2 + X2<<3  
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If we observe the expressions carefully, we can see that 
there is a common three-term expression D1 = X1 + X2 + 
X2<<1. By extracting this subexpression, we can reduce 
the number of CSAs by one, as shown in Figure 4.  
 There is no known automated technique for 
performing such an optimization. In this paper, we 
present a technique for extracting three-term common 
subexpressions aimed at reducing the number of CSAs 
and thereby area. Our technique can be used for 
optimizing multiple expressions involving any number of 
variables. The rest of the paper is organized as follows. 
In Section 2, we present some related work on the 
optimization of CSA structures. In Section 3, we present 
our algorithm for extracting three-term common 
subexpressions. In Section 4, we present experimental 
results, where we observe the effect of our optimizations 
on the area and latency after logic synthesis and place 
and route. In Section 5, we present a delay aware 
optimization algorithm, where we consider the different 
arrival times of the signals. Finally we conclude the 
paper in Section 6. 
 
 
 
 
 
 
 
 
 
 

 
 
 

Fig 4. CSA trees after extracting a common 
subexpression 

 
2. Related Work 
  
 The most recent work  on using CSAs is in [2], where 
the authors have developed a technique to restructure 
dataflow graphs in programs to cluster as many  
arithmetic operators as possible and then implement 
them using CSA trees. The major contribution of the 
paper was in making most use of CSA structures for high 
speed, but there was no attempt in optimizing the CSA 
structures. [5] is one of the early works in this area, and 
presents a set of transformations to transform a dataflow 
graph to maximize the utilization of CSAs. In [6], an 
optimal algorithm for designing a CSA structure with 
shortest delay is presented, given the arrival times of all 
inputs.  
 In [7], algorithms for timing and low power driven 
synthesis of CSA structures are presented, where the 
optimizations are done at bit-level. For low power 
synthesis, the authors consider switching probabilities of 
the inputs, and allot the inputs to the CSAs to minimize 
the switching probabilities of various signals. In [4],  

some layout driven optimizations like converting half 
adders and merging them into full adders is suggested for 
layout improvement.  
 None of these works explore redundancy elimination 
as an optimization technique thought it can have a 
significant impact on the total area of circuits, as we 
show in our experimental results. Our techniques for 
redundancy elimination can be combined with the 
arithmetic clustering techniques in [2] and [5] for 
optimizations across design boundaries and non-
arithmetic operators. There has been a lot of work on 
redundancy elimination for two input operators [8-10], 
but none of them has been applied to multi-input 
operators such as CSAs. 
 
3.  Three-Term Extraction Algorithm 
  
 We use a polynomial transformation of the arithmetic 
expressions that helps us to perform our optimizations. 
This polynomial transformation has been used for 
optimizing multiple-variable linear systems using two- 
input adders [9, 11]. We first generate a set of all 
potential three-term common subexpressions, which we 
call as divisors. We then use an iterative algorithm for 
eliminating common subexpressions. 
 
3.1 Polynomial transformation of linear systems 
 Using the given representation of the constant C, the 
multiplication with the variable X (assuming only fixed 
point representation) can be represented as a summation 
of terms denoting the decomposition of the constant 
multiplication into additions and shifts as 

C*X = ∑ ±
i

iXL   (II) 

The terms can be either positive or negative when the 
constants are represented using signed digit 
representations such as the Canonical Signed Digit 
(CSD) representation. The exponent of L represents the 
magnitude of the left shift and the i’s represent the digit 
positions of the non-zero digits of the constants. For 
example the multiplication 7*X = (100-1)CSD*X = X<<3 
– X = XL3 – X, using the polynomial transformation. 
This polynomial transformation helps to find 
subexpressions involving any number of variables. 
Furthermore, it helps to detect common subexpressions 
that are shifted forms of each other. For example (X1 + 
X2 + X3) and (X1<<2 + X2<<2 + X3<<2) are equivalent 
except for the common shift by 2. 
 The example expressions in Figure 2 can be rewritten 
using our polynomial transformation as shown in Figure 
5.  
 
 
 
 

Fig 5. Polynomial transformation of example 
expressions 

 
3.2 Three-term divisor extraction 
 We extract divisors for every expression by 
considering every combination of three terms and then 
dividing by the minimum exponent of L. For example, 

Y1 = X1 + X1L2 + X2 + X2L + X2L2

Y2 = X1L2 + X2L2 + X2L3 



consider the expression Y2 in Figure 5. The minimum 
exponent of L in this case is L2. Dividing by L2 gives us 
the divisor d = X1 + X2 + X2L. The number of divisors in 

an expression with N terms is 





3
N

. Figure 6 shows the 

algorithm for extracting three-term divisors. The 
importance of these three-term divisors is illustrated by 
the following theorem. 
 
Theorem: There exists a three-term common 
subexpression iff there exists a non-overlapping 
intersection among the set of three-term divisors. 
This theorem states that there is a three-term common 
subexpression if and only if there are at least two non-
overlapping divisors that intersect. Two divisors are said 
to intersect, if their absolute values are equal. For 
example, (X1 + X2 + X2<<1) intersects with (X1 + X2 + 
X2<<1). Two divisors are said to be overlapping if at 
least one of the terms from which they are derived is 
common. For example, consider the expression F = X1 + 
X1<<2 + X1<<4 + X1<<6 = X1 + X1L2 + X1L4 + X1L6. 
From the first three terms we obtain the divisor d1 = X1 + 
X1L2 + X1L4. From the last three terms we obtain the 
divisor d2 = (X1 + X1L2 + X1L4), by dividing those three 
terms by L2. Even though these divisors (d1 and d2) 
intersect, they are said to overlap since two of the terms 
from which they are derived are common.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6. Algorithm for generating three-term divisors 
 
The proof of this theorem is quite straightforward. 
Proof:  
(If case): If M of the divisors in the set of all divisors 
intersect and are non-overlapping, then there are M 
instances of the same three-term expression in the set of 
expressions. 
(Only If case): Suppose there are M non-overlapping 
instances of the same three-term expression d1 = (ti +      
tj+ tk) among the set of expressions. Now consider two 
different cases. In the first case, assume the minimum 
exponent of L among the terms in d1 is 0. Then d1 

satisfies the definition of a divisor. Since our divisor 
generation algorithm extracts all possible three-term 
divisors, there will be M non-overlapping divisors 
representing d1.  
 In the second case, assume that d1 does not satisfy the 
definition of a divisor (i.e., there are no terms in d1 with a 
zero exponent of L).  Then we have d1’ = (ti’ + tj’ + tk’) 
which is obtained by dividing each term in d1 by the 
minimum exponent of L. Now d1’ satisfies the definition 
of a divisor, and reasoning as above, there will be M 
non-overlapping divisors representing d1’. 
 
3.3 Iterative common subexpression elimination 
algorithm 
 Figure 7 shows our algorithm for three-term 
extraction. In the first step, frequency statistics of all 
distinct divisors is computed and stored. By frequency 
statistics we mean the number of instances of each 
distinct divisor. This is done by generating divisors 
{Dnew} for each expression and looking for intersections 
with the existing set {D}. For every intersection, the 
frequency statistic of the matching divisor d1 in {D} is 
updated and the matching divisor d2 in {Dnew} is added to 
the list of intersecting instances of d1. The unmatched 
divisors in {Dnew} are then added to {D} as distinct 
divisors.  
   
  
 
 
  
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 7. Algorithm for three-term extraction 

   
 In the second step of the algorithm, the best three-
term divisor is selected and eliminated at each iteration. 
The best divisor is the one that has the most number of 

Divisors({Pi}) 
{ 
     {Pi} = Set of expressions in polynomial form; 
     {D} = Set of divisors and co-divisors = {Φ}; 
      
    for (every expression Pi in {Pi}) 
   { 
       for (every combination of 3 terms (ti, tj, tk, ) in Pi) 
      { 
         MinL = Minimum exponent of L in(ti, tj, tk, ); // co-
divisor 
            ti1 =   ti/MinL; 
            tj

1 =  tj/MinL; 
      tk

1 = tk/MinL;  
            d  = (ti1 + tj

1 + tk
1  ); // divisor; 

           {D} = {D} ∪ (d, MinL); 
         } 
   } 
 return {D}; 
} 

Optimize ({Pi})
{ 
      {Pi} = Set of expressions in polynomial form; 
     {D} = Set of divisors = ϕ ; 
    // Step 1. Creating divisors and their frequency statistics 
      for each expression Pi in {Pi} 
     { 
          {Dnew} =  Divisors(Pi); 
          Update frequency statistics of divisors in {D}; 
          {D} = {D} ∪ { Dnew}; 
    } 
 
   //Step 2. Iterative selection and elimination of best divisor     
   while (1) 
   { 
         Find d = divisor in {D} with most number  
                        of non-overlapping intersections; 
          if (d == NULL) break; 
         Rewrite affected expressions in {Pi} using d;  
 
         Remove divisors in {D} that have become invalid; 

 
    Update frequency statistics of affected divisors; 
    {Dnew} = Set of new divisors from new terms added 
                  by division; 
      {D} = {D} ∪ {Dnew}; 

      } 
} 



non-overlapping divisor intersections. Those expressions 
that contain this best divisor are then rewritten. Since 
each CSA produces two outputs, a sum and a carry, each 
divisor also produces two numbers representing the two 
outputs. Figure 8 shows the rewriting of the expressions 
after the selection of the subexpression D1 = X1 + X2 + 
X2<<1, where D1 is the extracted divisor, and D1

S and 
D1

C represent the sum and the carry outputs of D1, 
respectively. 
 After selecting the best divisor, those divisors that 
overlap with it, no longer exist and have to be removed 
from the dynamic list {D}. As a result the frequency 
statistics of some divisors in {D} will be affected, and 
the new statistics for these divisors is computed and 
recorded. New divisors are generated for the new terms 
formed during division of the expressions. The frequency 
statistics of the new divisors are computed separately and 
added to the dynamic set of divisors {D}. 
 The algorithm terminates when there are no more 
useful divisors. For our example expressions, after 
rewriting the expressions as shown in Figure 8, the set of 
dynamic divisors {D} is updated. No more useful 
divisors are found after this, and the algorithm 
terminates. The optimized circuit is shown in Figure 4.  
 
 
 
 
 

Figure 8. Expression rewriting 
 
Algorithm complexity and quality: The algorithm 
spends most of its time in the first step where the 
frequency statistics of all distinct divisors are computed 
and stored. For an expression with N terms, the number 
of 3-term divisors is Θ(N3). Therefore, the complexity of 
the first step, for the case of M expressions is Θ(MN3). In 
the second step of the algorithm, each time a divisor is 
selected, the number of terms in the affected divisor is 
reduced by one. In the worst case, all expressions are 
reduced from N terms to two terms at the end of the 
algorithm. The number of steps to reduce from N terms 
to two terms is (N-2). Since there are M expressions, the 
complexity of this step is Θ(MN).   The algorithm that 
we presented is a greedy heuristic. To the best of our 
knowledge, there has not been any work on finding the 
optimal solution to the common subexpression 
elimination problem. An optimal solution can be 
achieved by a brute force search of the entire space, 
where all possible subexpressions in different selection 
orderings are explored. Since this is impractical for even 
moderately sized examples, we do not compare our 
results with the optimal one. 
 
4. Experimental Results 
 
 The goal of our experiments was to observe the 
impact of our optimizations on the total area and delay of 
the synthesized examples. We considered six examples, 
the H.264 Video transform [12], 8-point Discrete Cosine 
Transform (DCT), 8-point Inverse Discrete Cosine 
Transform (IDCT) and three Finite Impulse Response 

(FIR) filters (6-tap, 20-tap and 41-tap) [13]. All these 
examples consist of a number of multiplications with 
constants, which we decompose into additions and shift 
operations. We view these examples as a set of 
arithmetic expressions of the form shown in Figure 5 
after using the polynomial transformation. We then 
optimize these expressions by doing three-term 
extraction using the algorithms described in Section 3.  
 Table 1 compares the number of CSAs for both the 
unoptimized and optimized expressions, calculated at the 
end of our algorithm. From these results it can be seen 
that the number of CSAs reduces on an average by 
38.4%. We built CSA trees for both the unoptimized and 
optimized expressions and generated Verilog code for 
them. We considered the implementation of these CSA 
trees both as a Standard Cell based design as well as on 
Field Programmable Gate Arrays (FPGAs). For the 
standard cell designs, we used a 0.25 µm technology 
library.  

 
Table 1. Comparing number of CSAs 

 
 
 
 
 
 
 
 
 
  
The area and delay estimates after synthesis is compared 
in Table 2.  Due to limitations of the tools available to 
us, we could not get the numbers after placement and 
routing. But from the post synthesis phase, we can 
observe significant reductions in the total area (average 
32.7%). The delay increases a little bit for all cases, but 
it is only 3.7% on the average. 
  
 Table 2. Area and delay for Standard cell designs 
 
 
 
 
 
 
 
 
 
  
  

We also implemented these expressions using 
FPGAs. In addition to synthesis, we also performed 
place and route of the circuits. Table 3a shows the 
reduction in the number of occupied slices and Look Up 
Tables (LUTs), for the same set of six examples. The 
results show an average reduction of 14.1% in the total 
number of slices occupied, and about 12.9% reduction in 
the total number of LUTs used after optimizing the 
circuits with our extraction algorithm. In table 3b, we 
compare the critical path of the unoptimized and 
optimized designs. 

D1 = X1 + X2  + X2<<1 
Y1 =  (D1

S + D1
C) + X1<<2 + X2<<2 

Y2 = (D1
S + D1

C)<<2 

Example Original 
# CSAs 

Optimized 
# CSAs 

Reduction 
% 

H.264 105 78 25.7 
DCT8 266 222 16.5 
IDCT8 88 34 16.7 

6-tap FIR 22 11 50.0 
20-tap FIR 88 34 61.4 
41-tap FIR 198 79 60.1 
Average 152.2 103.2 38.4 

Area (units) Delay (ns) % Reduction Example Orig Opt Orig Opt Area Delay 
H.264 627 497 9.9 10.5 20.7 -6.0 
DCT8 1650 1345 11.6 12.2 18.5 -5.8 
IDCT8 1417 113 11.6 12.1 16.5 -4.0 

6 tap FIR 188 107 10.3 11.0 43.1 -6.4 
20 tap FIR 719 364 12.1 11.4 49.4 +5.6 
41 tap FIR 1558 812 11.2 11.8 47.9 -5.4 
Average 1027 718 11.1 11.5 32.7 -3.7 



 
Table 3a. Area comparison for FPGA 

 
 
 
 
 
 
 
 
 
 

 
Table 3b. Latency comparison for FPGA 

 
 
 
 
 
 
 
 
 
 
5. Delay Aware Extraction 
 
 The three-term extraction algorithm presented in 
Section 3 did not consider the impact of the 
optimizations on the total delay of the CSA tree. But 
performing extraction among the expressions can create 
certain dependencies among the signals that can cause 
the overall delay to increase. This delay can be reduced 
by reversing some of the optimizations using algorithms 
such as Tree Height Reduction (THR) [14], but these 
algorithms involve extensive backtracking and hence are 
very expensive. Instead, the delay can be controlled 
during the extraction algorithm.  
 
5.1 Delay model 
 We use a simple delay model similar to the one used 
in [6]. We use a unit delay for both the sum and the carry 
outputs of a CSA, and use integer numbers for the arrival 
times of the various signals in the circuits. This model 
can be easily generalized to handle actual values for 
arrival times and delays of the CSAs. The authors in [6] 
present an optimal polynomial time algorithm for finding 
the fastest CSA tree for every expression. This algorithm 
is an iterative algorithm where in each step the terms of 
the expression are sorted according to non-decreasing 
availability times. The first three terms are then allotted 
to a CSA. This continues till only two terms remain. 
 We use this algorithm to find the minimum delay of 
given expressions, using our delay model. We then 
perform extraction, such that at each step, the delay of 
the expressions does not exceed this minimum delay. 
 
5.2 Example 
 Consider the evaluation of the following arithmetic 
expressions, 
 
 
 

 
All signals are available at time t = 0, except for a, which 
is available at time t = 2. Using the optimal CSA 
allocation algorithm in [6], the minimum delay for both 
F1 and F2 is calculated as 3 + D(Add), where D(Add) is 
the delay of the final two input adder. 
 Figure 9a shows the evaluation of the two 
expressions after performing delay ignorant extraction. 
The arrival times of signals are shown along the edges of 
the circuit. In this example, the subexpression D1 = (a + b 
+ c) is first extracted and then the subexpression D2 = 
D1

S + D1
C + d is extracted. This leads to an 

implementation with only four CSAs, but the delay of 
the circuit is now 5 + D(Add), which is two units more 
than the optimal delay. 
 Figure 9b shows the result of delay aware extraction. 
Here the subexpression (a + b + c) is not extracted 
because by doing so the delay increases. The divisor D1 
= (b+c+d) does not increase the delay so it is extracted. 
After rewriting the expressions, the common 
subexpression (D1

S + D1
C + a) is considered, but is not 

selected because it increases the delay. The delay aware 
extraction has one more CSA than the delay ignorant 
one, but it has the minimum delay.  
 
 
 
   
 
 
 
 
 

 
 
 
 

 
Figure 9a. Delay ignorant extraction 

 
  
 
 
 
 
 
 
 
 

 
 
 
 

Figure 9b. Delay aware extraction 
 
5.3 Algorithm 
 The delay aware extraction algorithm is a 
modification of the original algorithm that does not 
consider delay. In the algorithm shown in Figure 6, 

# of Slices # of LUTs % Reduction Example 
Orig Opt Orig Opt Slices LUTs 

H.264 1186 1090 2146 2007 8.1 6.8 
DCT8 3202 2917 5929 5429 8.9 8.4 
IDCT8 2786 2597 5133 4814 6.8 6.2 

6 tap FIR 184 163 338 303 11.4 10.4 
20 tap FIR 1533 867 2522 1548 43.4 38.6 
41 tap FIR 1528 1440 2560 2379 5.8 7.1 
Average 1736 1512 3105 2747 14.1 12.9 

Example Original  
(ns) 

Optimized  
(ns) % Reduction 

H.264 11.6 13.1 -12.5 
DCT8 26.8 28.4 -5.8 
IDCT8 24.2 26.9 -11.5 

6 tap FIR 13.1 13.1 0.0 
20 tap FIR 15.9 16.7 -5.1 
41 tap FIR 15.3 15.2 0.6 
Average 17.8 18.9 -5.7 

F1 = a + b + c + d + e 
F2 = a + b + c + d + f 
Arrival times (a,b,c,d,e,f) = {2,0,0,0,0,0} 

D1 = a + b + c  
Delay(D1) = 3 
F1 = D1

S + D1
C + d + e 

F2 = D1
S + D1

C + d + f 
 
Delay(F1,F2) = 5 + D(Add) 
 
D2 = D1

S + D1
C + d 

Delay(D2) = 4 
F1 = D2

S + D2
C + e 

F2 = D2
S + D2

C + f 
 
Delay(F1,F2) = 5 + D(Add) 

D1 = b + c + d 
Delay(D1)  = 1 
F1 = D1

S + D1
C + e + a 

F2 = = D1
S + D1

C + f + a 
 
Delay(F1,F2) = 3 + D(Add) 



instead of finding the divisor that has the most number of 
non-overlapping instances, the divisor that has the most 
number of non-overlapping instances that do not increase 
the minimum delay is selected. This requires that the 
delay be calculated for every candidate divisor. The 
complexity of calculating the delay of an expression 
using the algorithm in [6] is quadratic in the number of 
terms in the expression. 
 
5.4 Results 
 We experimented with the same set of examples that 
we presented in Section 4. Using the delay model 
described in 5.2, we compared the delay and the number 
of CSAs produced by the delay ignorant algorithm (I) 
and the delay aware algorithm (II). The results are 
presented in Table 4.    
 From the results, one can see that the delay ignorant 
algorithm produces the least number of CSAs, but the 
delay is increased in all examples. The delay aware 
algorithm produces the optimal delay according to our 
delay model and [6], but due to the selective extraction 
of common subexpressions, the number of CSAs is 
increased by an average of 15.5% over the delay 
ignorant algorithm. The delay aware algorithm still 
reduces the number of CSAs by 31.1% over the original 
unoptimized expressions, for the same delay. The 
average CPU time for the delay aware algorithm is 11.4s, 
compared to 2.05s for the original algorithm 

 
Table 4. Comparing delay ignorant (I) and delay 

aware (II) extraction 
 

 
 
 
 
 
 
 
 
6. Conclusions 
  
 We presented optimization techniques for high speed 
arithmetic circuits aimed at reducing the total area. Our 
optimization was achieved by extracting common three-
term subexpressions and thereby reducing the number of 
Carry Save Adders. This is the only known method for 
performing such an optimization. We observed 
significant reductions in the total area after synthesizing 
the benchmark examples. We also modified our main 
algorithm to control the delay while performing the 
three-term extraction.  
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Example # CSAs Delay CPU time (s) 
 (I) (II) (I) (II) (I) (II) 

H.264 78 79 9 8 0.2 1.95 
DCT8 222 232 14 13 8.5 44.9 
IDCT8 34 201 14 13 3.3 20.9 

6 tap FIR 11 15 5 4 0.01 0.03 
20 tap FIR 34 45 6 5 0.04 0.16 
41 tap FIR 79 91 6 5 0.26 0.7 
Average 103.2 110.5 9 8 2.05 11.4 
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