
Optimizing High Speed Arithmetic Circuits Using Three-Term Extraction

Anup Hosangadi Farzan Fallah Ryan Kastner
University of California, Fujitsu Labs of America, Inc. University of California,

Santa Barbara farzan@fla.fujitsu.com Santa Barbara
anup@ece.ucsb.edu kastner@ece.ucsb.edu

Abstract

 Carry Save Adder (CSA) trees are commonly used for
high speed implementation of multi-operand additions.
We present a method to reduce the number of the adders
in CSA trees by extracting common three-term
subexpressions. Our method can optimize multiple CSA
trees involving any number of variables. This
optimization has a significant impact on the total area of
the synthesized circuits, as we show in our experiments.
To the best of our knowledge, this is the only known
method for eliminating common subexpressions in CSA
structures. Since extracting common subexpressions can
potentially increase delay, we also present a delay aware
extraction algorithm that takes into account the different
arrival times of the signals.

1. Introduction

The increasing complexity of semiconductor devices has
led to new directions in the research of Design
Automation tools. The implementation of
computationally intensive applications is an area that is
receiving increasing attention. Modern embedded
devices such as portable music and video players, cell
phones and video cameras are computationally intensive.
System designers often rely on precompiled libraries for
implementing arithmetic functions. But such an approach
may not be the best option with the available resources
and for meeting the tight constraints on area, latency and
power consumption.
 Multi-operand adder structures are commonly used
for the summation of partial products in multiplication,
as in the Wallace and Dadda tree multipliers [1]. They
are also used in the implementation of arithmetic
expressions arising from the conversion of constant
multiplications into shifts and additions [2-4]. Carry
Save Adders (CSAs) are commonly used to implement
these multi-operand adder structures. An n-bit CSA takes
three n-bit operands as inputs and produces an n+1-bit
carry output and an n-bit sum output. The CSA is made
up of n Full Adder (FA) cells, where each FA takes in
one bit from each of three inputs and produces a sum bit
and a carry bit. This is illustrated in Figure 1. Since there
is no carry propagation this addition is very fast.
A CSA tree is made up of a tree of CSAs, taking N
inputs and then reducing it to two numbers, which can
then be added using a fast adder such as a Carry
Lookahead Adder (CLA). As an example of CSA trees,
consider the set of expressions arising from a matrix

multiplication, shown in Figure 2. The CSA trees for
these expressions are shown in Figure 3.

Fig 1. Carry Save Adder (CSA)

Fig 2. Example arithmetic expressions

Fig 3. CSA trees for example expressions

 Each CSA can be seen as a 3:2 compressor, since it
takes three inputs and reduces it to two numbers. The
CSA tree reduces N numbers to two numbers and can be
considered as two separate trees of 3:2 compressors, each

reducing 





2
N numbers to one number. The height of

the CSA tree can hence be described by the formula [1]

 Y1 = 5 7 X1
 Y2 4 12 X2

 Y1 = X1 + X1<<2 + X2 + X2<<1 + X2<<2
 Y2 = X1<<2 + X2<<2 + X2<<3

3-9810801-0-6/DATE06 © 2006 EDAA

Delay (N) = 













2
log 5.1

N (I)

If we observe the expressions carefully, we can see that
there is a common three-term expression D1 = X1 + X2 +
X2<<1. By extracting this subexpression, we can reduce
the number of CSAs by one, as shown in Figure 4.
 There is no known automated technique for
performing such an optimization. In this paper, we
present a technique for extracting three-term common
subexpressions aimed at reducing the number of CSAs
and thereby area. Our technique can be used for
optimizing multiple expressions involving any number of
variables. The rest of the paper is organized as follows.
In Section 2, we present some related work on the
optimization of CSA structures. In Section 3, we present
our algorithm for extracting three-term common
subexpressions. In Section 4, we present experimental
results, where we observe the effect of our optimizations
on the area and latency after logic synthesis and place
and route. In Section 5, we present a delay aware
optimization algorithm, where we consider the different
arrival times of the signals. Finally we conclude the
paper in Section 6.

Fig 4. CSA trees after extracting a common
subexpression

2. Related Work

 The most recent work on using CSAs is in [2], where
the authors have developed a technique to restructure
dataflow graphs in programs to cluster as many
arithmetic operators as possible and then implement
them using CSA trees. The major contribution of the
paper was in making most use of CSA structures for high
speed, but there was no attempt in optimizing the CSA
structures. [5] is one of the early works in this area, and
presents a set of transformations to transform a dataflow
graph to maximize the utilization of CSAs. In [6], an
optimal algorithm for designing a CSA structure with
shortest delay is presented, given the arrival times of all
inputs.
 In [7], algorithms for timing and low power driven
synthesis of CSA structures are presented, where the
optimizations are done at bit-level. For low power
synthesis, the authors consider switching probabilities of
the inputs, and allot the inputs to the CSAs to minimize
the switching probabilities of various signals. In [4],

some layout driven optimizations like converting half
adders and merging them into full adders is suggested for
layout improvement.
 None of these works explore redundancy elimination
as an optimization technique thought it can have a
significant impact on the total area of circuits, as we
show in our experimental results. Our techniques for
redundancy elimination can be combined with the
arithmetic clustering techniques in [2] and [5] for
optimizations across design boundaries and non-
arithmetic operators. There has been a lot of work on
redundancy elimination for two input operators [8-10],
but none of them has been applied to multi-input
operators such as CSAs.

3. Three-Term Extraction Algorithm

 We use a polynomial transformation of the arithmetic
expressions that helps us to perform our optimizations.
This polynomial transformation has been used for
optimizing multiple-variable linear systems using two-
input adders [9, 11]. We first generate a set of all
potential three-term common subexpressions, which we
call as divisors. We then use an iterative algorithm for
eliminating common subexpressions.

3.1 Polynomial transformation of linear systems
 Using the given representation of the constant C, the
multiplication with the variable X (assuming only fixed
point representation) can be represented as a summation
of terms denoting the decomposition of the constant
multiplication into additions and shifts as

C*X = ∑ ±
i

iXL (II)

The terms can be either positive or negative when the
constants are represented using signed digit
representations such as the Canonical Signed Digit
(CSD) representation. The exponent of L represents the
magnitude of the left shift and the i’s represent the digit
positions of the non-zero digits of the constants. For
example the multiplication 7*X = (100-1)CSD*X = X<<3
– X = XL3 – X, using the polynomial transformation.
This polynomial transformation helps to find
subexpressions involving any number of variables.
Furthermore, it helps to detect common subexpressions
that are shifted forms of each other. For example (X1 +
X2 + X3) and (X1<<2 + X2<<2 + X3<<2) are equivalent
except for the common shift by 2.
 The example expressions in Figure 2 can be rewritten
using our polynomial transformation as shown in Figure
5.

Fig 5. Polynomial transformation of example
expressions

3.2 Three-term divisor extraction
 We extract divisors for every expression by
considering every combination of three terms and then
dividing by the minimum exponent of L. For example,

Y1 = X1 + X1L2 + X2 + X2L + X2L2

Y2 = X1L2 + X2L2 + X2L3

consider the expression Y2 in Figure 5. The minimum
exponent of L in this case is L2. Dividing by L2 gives us
the divisor d = X1 + X2 + X2L. The number of divisors in

an expression with N terms is 





3
N

. Figure 6 shows the

algorithm for extracting three-term divisors. The
importance of these three-term divisors is illustrated by
the following theorem.

Theorem: There exists a three-term common
subexpression iff there exists a non-overlapping
intersection among the set of three-term divisors.
This theorem states that there is a three-term common
subexpression if and only if there are at least two non-
overlapping divisors that intersect. Two divisors are said
to intersect, if their absolute values are equal. For
example, (X1 + X2 + X2<<1) intersects with (X1 + X2 +
X2<<1). Two divisors are said to be overlapping if at
least one of the terms from which they are derived is
common. For example, consider the expression F = X1 +
X1<<2 + X1<<4 + X1<<6 = X1 + X1L2 + X1L4 + X1L6.
From the first three terms we obtain the divisor d1 = X1 +
X1L2 + X1L4. From the last three terms we obtain the
divisor d2 = (X1 + X1L2 + X1L4), by dividing those three
terms by L2. Even though these divisors (d1 and d2)
intersect, they are said to overlap since two of the terms
from which they are derived are common.

Figure 6. Algorithm for generating three-term divisors

The proof of this theorem is quite straightforward.
Proof:
(If case): If M of the divisors in the set of all divisors
intersect and are non-overlapping, then there are M
instances of the same three-term expression in the set of
expressions.
(Only If case): Suppose there are M non-overlapping
instances of the same three-term expression d1 = (ti +
tj+ tk) among the set of expressions. Now consider two
different cases. In the first case, assume the minimum
exponent of L among the terms in d1 is 0. Then d1

satisfies the definition of a divisor. Since our divisor
generation algorithm extracts all possible three-term
divisors, there will be M non-overlapping divisors
representing d1.
 In the second case, assume that d1 does not satisfy the
definition of a divisor (i.e., there are no terms in d1 with a
zero exponent of L). Then we have d1’ = (ti’ + tj’ + tk’)
which is obtained by dividing each term in d1 by the
minimum exponent of L. Now d1’ satisfies the definition
of a divisor, and reasoning as above, there will be M
non-overlapping divisors representing d1’.

3.3 Iterative common subexpression elimination
algorithm
 Figure 7 shows our algorithm for three-term
extraction. In the first step, frequency statistics of all
distinct divisors is computed and stored. By frequency
statistics we mean the number of instances of each
distinct divisor. This is done by generating divisors
{Dnew} for each expression and looking for intersections
with the existing set {D}. For every intersection, the
frequency statistic of the matching divisor d1 in {D} is
updated and the matching divisor d2 in {Dnew} is added to
the list of intersecting instances of d1. The unmatched
divisors in {Dnew} are then added to {D} as distinct
divisors.

Figure 7. Algorithm for three-term extraction

 In the second step of the algorithm, the best three-
term divisor is selected and eliminated at each iteration.
The best divisor is the one that has the most number of

Divisors({Pi})
{
 {Pi} = Set of expressions in polynomial form;
 {D} = Set of divisors and co-divisors = {Φ};

 for (every expression Pi in {Pi})
 {
 for (every combination of 3 terms (ti, tj, tk,) in Pi)
 {
 MinL = Minimum exponent of L in(ti, tj, tk,); // co-
divisor
 ti1 = ti/MinL;
 tj

1 = tj/MinL;
 tk

1 = tk/MinL;
 d = (ti1 + tj

1 + tk
1); // divisor;

 {D} = {D} ∪ (d, MinL);
 }
 }
 return {D};
}

Optimize ({Pi})
{
 {Pi} = Set of expressions in polynomial form;
 {D} = Set of divisors = ϕ ;
 // Step 1. Creating divisors and their frequency statistics
 for each expression Pi in {Pi}
 {
 {Dnew} = Divisors(Pi);
 Update frequency statistics of divisors in {D};
 {D} = {D} ∪ { Dnew};
 }

 //Step 2. Iterative selection and elimination of best divisor
 while (1)
 {
 Find d = divisor in {D} with most number
 of non-overlapping intersections;
 if (d == NULL) break;
 Rewrite affected expressions in {Pi} using d;

 Remove divisors in {D} that have become invalid;

 Update frequency statistics of affected divisors;
 {Dnew} = Set of new divisors from new terms added
 by division;
 {D} = {D} ∪ {Dnew};

 }
}

non-overlapping divisor intersections. Those expressions
that contain this best divisor are then rewritten. Since
each CSA produces two outputs, a sum and a carry, each
divisor also produces two numbers representing the two
outputs. Figure 8 shows the rewriting of the expressions
after the selection of the subexpression D1 = X1 + X2 +
X2<<1, where D1 is the extracted divisor, and D1

S and
D1

C represent the sum and the carry outputs of D1,
respectively.
 After selecting the best divisor, those divisors that
overlap with it, no longer exist and have to be removed
from the dynamic list {D}. As a result the frequency
statistics of some divisors in {D} will be affected, and
the new statistics for these divisors is computed and
recorded. New divisors are generated for the new terms
formed during division of the expressions. The frequency
statistics of the new divisors are computed separately and
added to the dynamic set of divisors {D}.
 The algorithm terminates when there are no more
useful divisors. For our example expressions, after
rewriting the expressions as shown in Figure 8, the set of
dynamic divisors {D} is updated. No more useful
divisors are found after this, and the algorithm
terminates. The optimized circuit is shown in Figure 4.

Figure 8. Expression rewriting

Algorithm complexity and quality: The algorithm
spends most of its time in the first step where the
frequency statistics of all distinct divisors are computed
and stored. For an expression with N terms, the number
of 3-term divisors is Θ(N3). Therefore, the complexity of
the first step, for the case of M expressions is Θ(MN3). In
the second step of the algorithm, each time a divisor is
selected, the number of terms in the affected divisor is
reduced by one. In the worst case, all expressions are
reduced from N terms to two terms at the end of the
algorithm. The number of steps to reduce from N terms
to two terms is (N-2). Since there are M expressions, the
complexity of this step is Θ(MN). The algorithm that
we presented is a greedy heuristic. To the best of our
knowledge, there has not been any work on finding the
optimal solution to the common subexpression
elimination problem. An optimal solution can be
achieved by a brute force search of the entire space,
where all possible subexpressions in different selection
orderings are explored. Since this is impractical for even
moderately sized examples, we do not compare our
results with the optimal one.

4. Experimental Results

 The goal of our experiments was to observe the
impact of our optimizations on the total area and delay of
the synthesized examples. We considered six examples,
the H.264 Video transform [12], 8-point Discrete Cosine
Transform (DCT), 8-point Inverse Discrete Cosine
Transform (IDCT) and three Finite Impulse Response

(FIR) filters (6-tap, 20-tap and 41-tap) [13]. All these
examples consist of a number of multiplications with
constants, which we decompose into additions and shift
operations. We view these examples as a set of
arithmetic expressions of the form shown in Figure 5
after using the polynomial transformation. We then
optimize these expressions by doing three-term
extraction using the algorithms described in Section 3.
 Table 1 compares the number of CSAs for both the
unoptimized and optimized expressions, calculated at the
end of our algorithm. From these results it can be seen
that the number of CSAs reduces on an average by
38.4%. We built CSA trees for both the unoptimized and
optimized expressions and generated Verilog code for
them. We considered the implementation of these CSA
trees both as a Standard Cell based design as well as on
Field Programmable Gate Arrays (FPGAs). For the
standard cell designs, we used a 0.25 µm technology
library.

Table 1. Comparing number of CSAs

The area and delay estimates after synthesis is compared
in Table 2. Due to limitations of the tools available to
us, we could not get the numbers after placement and
routing. But from the post synthesis phase, we can
observe significant reductions in the total area (average
32.7%). The delay increases a little bit for all cases, but
it is only 3.7% on the average.

 Table 2. Area and delay for Standard cell designs

We also implemented these expressions using
FPGAs. In addition to synthesis, we also performed
place and route of the circuits. Table 3a shows the
reduction in the number of occupied slices and Look Up
Tables (LUTs), for the same set of six examples. The
results show an average reduction of 14.1% in the total
number of slices occupied, and about 12.9% reduction in
the total number of LUTs used after optimizing the
circuits with our extraction algorithm. In table 3b, we
compare the critical path of the unoptimized and
optimized designs.

D1 = X1 + X2 + X2<<1
Y1 = (D1

S + D1
C) + X1<<2 + X2<<2

Y2 = (D1
S + D1

C)<<2

Example Original
CSAs

Optimized
CSAs

Reduction
%

H.264 105 78 25.7
DCT8 266 222 16.5
IDCT8 88 34 16.7

6-tap FIR 22 11 50.0
20-tap FIR 88 34 61.4
41-tap FIR 198 79 60.1
Average 152.2 103.2 38.4

Area (units) Delay (ns) % Reduction Example Orig Opt Orig Opt Area Delay
H.264 627 497 9.9 10.5 20.7 -6.0
DCT8 1650 1345 11.6 12.2 18.5 -5.8
IDCT8 1417 113 11.6 12.1 16.5 -4.0

6 tap FIR 188 107 10.3 11.0 43.1 -6.4
20 tap FIR 719 364 12.1 11.4 49.4 +5.6
41 tap FIR 1558 812 11.2 11.8 47.9 -5.4
Average 1027 718 11.1 11.5 32.7 -3.7

Table 3a. Area comparison for FPGA

Table 3b. Latency comparison for FPGA

5. Delay Aware Extraction

 The three-term extraction algorithm presented in
Section 3 did not consider the impact of the
optimizations on the total delay of the CSA tree. But
performing extraction among the expressions can create
certain dependencies among the signals that can cause
the overall delay to increase. This delay can be reduced
by reversing some of the optimizations using algorithms
such as Tree Height Reduction (THR) [14], but these
algorithms involve extensive backtracking and hence are
very expensive. Instead, the delay can be controlled
during the extraction algorithm.

5.1 Delay model
 We use a simple delay model similar to the one used
in [6]. We use a unit delay for both the sum and the carry
outputs of a CSA, and use integer numbers for the arrival
times of the various signals in the circuits. This model
can be easily generalized to handle actual values for
arrival times and delays of the CSAs. The authors in [6]
present an optimal polynomial time algorithm for finding
the fastest CSA tree for every expression. This algorithm
is an iterative algorithm where in each step the terms of
the expression are sorted according to non-decreasing
availability times. The first three terms are then allotted
to a CSA. This continues till only two terms remain.
 We use this algorithm to find the minimum delay of
given expressions, using our delay model. We then
perform extraction, such that at each step, the delay of
the expressions does not exceed this minimum delay.

5.2 Example
 Consider the evaluation of the following arithmetic
expressions,

All signals are available at time t = 0, except for a, which
is available at time t = 2. Using the optimal CSA
allocation algorithm in [6], the minimum delay for both
F1 and F2 is calculated as 3 + D(Add), where D(Add) is
the delay of the final two input adder.
 Figure 9a shows the evaluation of the two
expressions after performing delay ignorant extraction.
The arrival times of signals are shown along the edges of
the circuit. In this example, the subexpression D1 = (a + b
+ c) is first extracted and then the subexpression D2 =
D1

S + D1
C + d is extracted. This leads to an

implementation with only four CSAs, but the delay of
the circuit is now 5 + D(Add), which is two units more
than the optimal delay.
 Figure 9b shows the result of delay aware extraction.
Here the subexpression (a + b + c) is not extracted
because by doing so the delay increases. The divisor D1
= (b+c+d) does not increase the delay so it is extracted.
After rewriting the expressions, the common
subexpression (D1

S + D1
C + a) is considered, but is not

selected because it increases the delay. The delay aware
extraction has one more CSA than the delay ignorant
one, but it has the minimum delay.

Figure 9a. Delay ignorant extraction

Figure 9b. Delay aware extraction

5.3 Algorithm
 The delay aware extraction algorithm is a
modification of the original algorithm that does not
consider delay. In the algorithm shown in Figure 6,

of Slices # of LUTs % Reduction Example
Orig Opt Orig Opt Slices LUTs

H.264 1186 1090 2146 2007 8.1 6.8
DCT8 3202 2917 5929 5429 8.9 8.4
IDCT8 2786 2597 5133 4814 6.8 6.2

6 tap FIR 184 163 338 303 11.4 10.4
20 tap FIR 1533 867 2522 1548 43.4 38.6
41 tap FIR 1528 1440 2560 2379 5.8 7.1
Average 1736 1512 3105 2747 14.1 12.9

Example Original
(ns)

Optimized
(ns) % Reduction

H.264 11.6 13.1 -12.5
DCT8 26.8 28.4 -5.8
IDCT8 24.2 26.9 -11.5

6 tap FIR 13.1 13.1 0.0
20 tap FIR 15.9 16.7 -5.1
41 tap FIR 15.3 15.2 0.6
Average 17.8 18.9 -5.7

F1 = a + b + c + d + e
F2 = a + b + c + d + f
Arrival times (a,b,c,d,e,f) = {2,0,0,0,0,0}

D1 = a + b + c
Delay(D1) = 3
F1 = D1

S + D1
C + d + e

F2 = D1
S + D1

C + d + f

Delay(F1,F2) = 5 + D(Add)

D2 = D1

S + D1
C + d

Delay(D2) = 4
F1 = D2

S + D2
C + e

F2 = D2
S + D2

C + f

Delay(F1,F2) = 5 + D(Add)

D1 = b + c + d
Delay(D1) = 1
F1 = D1

S + D1
C + e + a

F2 = = D1
S + D1

C + f + a

Delay(F1,F2) = 3 + D(Add)

instead of finding the divisor that has the most number of
non-overlapping instances, the divisor that has the most
number of non-overlapping instances that do not increase
the minimum delay is selected. This requires that the
delay be calculated for every candidate divisor. The
complexity of calculating the delay of an expression
using the algorithm in [6] is quadratic in the number of
terms in the expression.

5.4 Results
 We experimented with the same set of examples that
we presented in Section 4. Using the delay model
described in 5.2, we compared the delay and the number
of CSAs produced by the delay ignorant algorithm (I)
and the delay aware algorithm (II). The results are
presented in Table 4.
 From the results, one can see that the delay ignorant
algorithm produces the least number of CSAs, but the
delay is increased in all examples. The delay aware
algorithm produces the optimal delay according to our
delay model and [6], but due to the selective extraction
of common subexpressions, the number of CSAs is
increased by an average of 15.5% over the delay
ignorant algorithm. The delay aware algorithm still
reduces the number of CSAs by 31.1% over the original
unoptimized expressions, for the same delay. The
average CPU time for the delay aware algorithm is 11.4s,
compared to 2.05s for the original algorithm

Table 4. Comparing delay ignorant (I) and delay

aware (II) extraction

6. Conclusions

 We presented optimization techniques for high speed
arithmetic circuits aimed at reducing the total area. Our
optimization was achieved by extracting common three-
term subexpressions and thereby reducing the number of
Carry Save Adders. This is the only known method for
performing such an optimization. We observed
significant reductions in the total area after synthesizing
the benchmark examples. We also modified our main
algorithm to control the delay while performing the
three-term extraction.

Acknowledgement

We would like to thank Tom Sidle at Fujitsu
Laboratories of America for his assistance in performing
this research

References
[1] B. Parhami, Computer Arithmetic: Algorithms and

Hardware Designs: Oxford University Press, 2000.
[2] A. K. Verma and P. Ienne, "Improved use of the

carry-save representation for the synthesis of
complex arithmetic circuits," presented at
International Conference on Computer Aided Design
(ICCAD), 2004.

[3] T. Kim and J. Um, "A timing-driven synthesis of
arithmetic circuits using carry-save-adders,"
presented at Design Automation Conference, 2000.
Proceedings of the ASP-DAC 2000. Asia and South
Pacific, 2000.

[4] J. Um and T. Kim, "Layout-aware synthesis of
arithmetic circuits," presented at Design Automation
Conference (DAC) , 2002. Proceedings. 39th, 2002.

[5] T. Kim, W. Jao, and S. Tjiang, "Arithmetic
optimization using carry-save-adders," presented at
Design Automation Conference (DAC), 1998.
Proceedings, 1998.

[6] J. Um, T. Kim, and C. L. Liu, "Optimal allocation of
carry-save-adders in arithmetic optimization,"
presented at (ICCAD) Computer-Aided Design,
1999. Digest of Technical Papers. 1999 IEEE/ACM
International Conference on, 1999.

[7] J. Um, T. Kim, and C. L. Liu, "A fine-grained
arithmetic optimization technique for high-
performance low-power data path synthesis,"
presented at Design Automation Conference (DAC),
2000. Proceedings 2000. 37th, 2000.

[8] A.Hosangadi, F.Fallah, and R.Kastner, "Common
Subexpression Involving Multiple Variables for
Linear DSP Synthesis," presented at IEEE
International conference on Application Specific
Architectures and Processors (ASAP), Galveston,
TX, 2004.

[9] A.Hosangadi, F.Fallah, and R.Kastner, "Reducing
Hardware Complexity of Linear DSP Systems by
Iteratively Eliminating Two Term Common
Subexpressions," presented at IEEE/ACM Asia South
Pacific Design Automation Conference (ASP-DAC),
Shanghai, China, 2005.

[10] M.Potkonjak, M.B.Srivastava, and
A.P.Chandrakasan, "Multiple Constant
Multiplications: Efficient and Versatile Framework
and Algorithms for Exploring Common
Subexpression Elimination," IEEE Transactions on
Computer Aided Design of Integrated Circuits and
Systems, 1996.

[11] A.Hosangadi, F.Fallah, and R.Kastner, "Reducing
Hardware complexity by iteratively eliminating two
term common subexpressions," presented at Asia
South Pacific Design Automation Conference (ASP-
DAC), 2005.

[12] I. E. G. Richardson, H.264 and MPEG-4 Video
Compression: John Wiley and Sons, 2003.

[13] S.K.Mitra, Digital Signal Processing: A computer
based approach, second ed: McGraw-Hill, 2001.

[14] A. Nicolau and R. Potasman, "Incremental tree height
reduction for high level synthesis," presented at
Design Automation Conference, 1991. 28th
ACM/IEEE, 1991.

Example # CSAs Delay CPU time (s)
 (I) (II) (I) (II) (I) (II)

H.264 78 79 9 8 0.2 1.95
DCT8 222 232 14 13 8.5 44.9
IDCT8 34 201 14 13 3.3 20.9

6 tap FIR 11 15 5 4 0.01 0.03
20 tap FIR 34 45 6 5 0.04 0.16
41 tap FIR 79 91 6 5 0.26 0.7
Average 103.2 110.5 9 8 2.05 11.4

	Main
	DATE06
	Front Matter
	Table of Contents
	Author Index

	Designer's Forum 06

