
 

Abstract— Digital signal processing applications often require the 

computation of linear systems. These computations can be 

considerably expensive and require optimizations for lower 

power consumption, higher throughput, and faster response 

time. Unfortunately, system designers do not have the necessary 

tools to take advantage of the wide flexibility in ways to evaluate 

these expressions. Therefore, we address the problem of 

efficiently computing a set of linear systems through a tool, 

Xquasher, that is developed by us to enable elimination of large 

common subexpression from expressions with an arbitrary 

number of terms. Xquasher provides a methodology for efficient 

computation of both single and multiple linear expressions. We 

also introduce the concept of power set encoding which helps us 

to provide an effective optimization method and achieves 

significant improvement over previously published work. Our 

tool provides optimized designs with 15% less area with the cost 

of 3% increase in delay by reducing number of additions on 

average by 45%. 

I. INTRODUCTION 

Computation of multiple linear expressions (MLE) and its 

sub-computations: single constant multiplication (SCM), 

multiple constant multiplications (MCM) and linear 

expression (LE) are commonplace in linear systems. Many 

digital signal processing applications such as Finite Impulse 

Response Filters and Discrete Fourier Transform use linear 

systems which are expensive and therefore are the dominant 

factor in the overall performance. It is often advantageous to 

convert costly constant multiplications into a corresponding 

set of shifts and additions which can lead to lower power 

consumption, higher throughput, and faster response time. By 

careful common sub-expression elimination over these 

expressions, one can also reduce the total number of additions. 

However, current synthesis techniques perform limited 

transformations, and are unable to do an adequate optimization 

of these expressions. A major obstacle to the optimization of 

linear systems is that system designers do not have the 

necessary tools to take advantage of the wide flexibility in 

ways to evaluate these expressions. In most cases, designers 

rely on hand tuned library routines (for software) or 

Intellectual Property (IP) blocks (for hardware) to implement 

these computations. The drawback to using these approaches 

is that the given library routines and IP blocks may not be 

ideally suited for the platform with respect to the use and/or 

the constraints specified by the application. Designing a high 

level tool for the optimization of the linear system 

computation is crucial.   

Therefore, we developed a tool, Xquasher, which provides a 

general methodology for linear system optimization. Xquasher 

performs common subexpression elimination to minimize the 

area of the resulting hardware of the linear system. Our tool is 

also efficient for optimization of sub-MLE problems: SCM, 

MCM and LE. Xquasher utilizes a novel powerset encoding 

format to enable efficient extraction of large common 

subexpressions which makes it possible to achieve substantial 

area improvements over previously published works. 

In this paper we are mainly focused on reducing the area by 

reducing the total number of additions. The optimal solution 

with the minimum possible number of additions is a well 

known NP-complete problem. By careful analysis of effective 

factors in this problem and providing novel solutions for each 

of them, we generate a heuristic algorithm that efficiently 

reduces number of additions. Our results shows substantial 

improvement over existing methods [3][4][5][7]. 

The remainder of this work is organized as follows. The 

subsequent section formalizes the problem and its definitions. 

Section III describes our tool, its methodology which uses 

powerset encoding. Section IV provides experimental analysis 

of our results and comparisons with previously published 

works. We conclude in Section V. 

II. PROBLEM FORMULATION AND DEFINITIONS 

This section is devoted to introduction of multiple linear 

expression (MLE) and its sub-problems: single constant 

multiplication (SCM), multiple constant multiplication 

(MCM) and linear expression (LE) where we illustrate the cost 

of the computation with a three-dimensional space and define 

some basic terms: dot, line, page and space that are used in 

our methodology for ease of understanding.  

A. Definitions 

Canonical Signed digits (CSD) is radix-2 signed digit 

representation with digit set of   where there is no 

adjacent non-zero digit in the representation. Bit-Magnitude 

(BM) is an integer with the magnitude of   It can be 

described as a CSD number with exactly one non-zero digit. 

Dot is an appearance of an input variable in our expression 

with a relative magnitude of BM. In hardware, this 

corresponds to rewiring an input to specific point in the circuit 

with possible some shifts to the right. Line is summation of 

multiple copies of one variable multiplied by a vector of BMs.  

Therefore, computation of a line is Single Constant 

Multiplication (SCM). Page is formed by a summation of a set 

of lines. We present examples for page, lines, dots and BMs in 
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Figure 1. Space can be created by union of a set of pages. In 

our problem, a space is a collection of multiple pages. Cost of 

Computation (CoC) is defined as the number of additions 

that appears in our object. Example (Figure 1): 

. Object refers to a dot, a line, a page or a 

space. 

B. Problem mapping 

In this subsection, we formulize the optimization of a linear 

system. Our approach is to minimize the number of additions. 

We first show how to optimize small objects in our space and 

then apply and improve this methodology for larger objects.    

Dot optimization: A dot by itself does not have any cost by 

definition. They are simply rewiring of copies of input data. 

We do not perform any optimization over a dot by itself. 

Line optimization: Problem of line optimization is known as 

single constant multiplication (SCM). Modern tools generally 

use CSD encoding as a solution for this problem.  Using a 

CSD representation with minimum Hamming weight provides 

a good but not optimal solution in shift and add approach for 

constant by variable multiplication and therefore is used in our 

examples as well. Our experiments with Mentor Graphics and 

Synopsys tools indicate that the area of SCM mirrors the 

number of additions between non-zero digits in a CSD 

encoding. Although CSD can be considered as a good solution 

for optimization of lines, it does not guarantee an optimum 

solution since further optimization is possible to reduce 

number of additions inside a line. To see how this is possible, 

assume a line is given as  with CSD 

representation of  where a bar in top of a 

digit means that it is negative. After rewriting corresponding 

CSD bit values as integer, we have the following vector 

multiplication: 

     

  

This is the way that modern tools perform this multiplication, 

and CoC of this multiplication is 3 additions. However, it is 

possible to optimize this multiplication further by rewriting it: 

 

  

where CoC becomes 2 additions. Elimination of repeated dots 

by finding common sub-expressions (CS) and Common sub-

expression Elimination (CSE) are well known methods for 

CSM optimization [5][7]. 

Page optimization: Optimization of a page by applying CSE 

is similar to the optimization of a line. However searching 

relatively larger set of dots and applying CSE demand more 

complex and careful analysis. Therefore, we investigate these 

issues in more detail and provide a general solution for page 

optimization. We assume that all lines are encoded with CSD. 

Assume a page is given as: 

 
    

The un-optimized page results in 4+2+2+4+3 = 15 additions. 

We can further optimize this page by rewriting it as: 

 

  

where we can decrease the number of additions to 

2+2+4+2+1 = 11 by detecting and eliminating an obvious 

CS: . Further optimization is possible by 

rewriting each line with equivalent CSD encoded version 

where more CSs become observable: 

1024,0,-256,0,-64,0,16,0,0,-2,0 

 
      

     

   

 

 

If we optimize  by limiting CSs to have exactly two 

dots, one of the possible results is: 

 

 

   

where the CoC decreases from 15 to 10. Considering the 

previous example, one might suggest writing details of lines 

might lead to a better optimization; however it is more time 

consuming and hard to determine which CS is the best 

candidate to eliminate. For example, there are 120 

combinations of two dots that could be a CS just in the first 

step of CSE. In our last attempt over this example, in first and 

second CSE we ignore details in  and . 

 

 

In the third step we expand  to equivalent CSD 

encoded version.  is the result of CSE optimization after 

this step. 

 
,   

CoC of  is 9, and we have 40% reduction in CoC from 

’s. Considering that we just needed 3 CSE and much 

less complexity in the CSE process to gain the same result, it 

might be a better approach. Here we just have 28 possibilities 

for CSs with two terms. It seems that CSE process can get 

much simpler and faster if we can work with dot 

representation and constant multiplication form of the line.  

Space optimization: We design our tool, Xquasher, for space 

optimization by introducing two new concepts: 1) 

determination of the effective factors in optimization of the 

run-time and 2) common sub-expression fragmentation (CSF).  

1) Determination of the effective factors in optimization of the 

run-time:  Run-time is the main challenge in all CSE 

algorithms. Finding the optimum solution for an NP-complete 

problem requires an unacceptable run-time. Heuristic 

algorithms are well known to be useful in tackling NP-

complete problems [3][4][5]. Therefore, Xquasher uses a 

greedy heuristic algorithm where run-time of the algorithm 

depends on two factors: 1) Number of iterations and 2) Run-
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Fig. 1. An example of page and its lines, dots and BMs. Dots are shown with 

ellipses and in the first line, a circle inside each dot demonstrates the BM part. 



 

time of each iteration. The algorithm that is used in Xquasher 

can eliminate larger sets of CSs in a single CSE compared to 

the algorithms that are used in [4-5]. Our algorithm provides a 

solution with fewer iteration due to the optimization of larger 

sets of CSs where [4-5] requires multiple iterations for the 

same optimization. Xquasher is also capable of seeing both 

dots and sets of dots in a line as a part of CSs which increases 

the run-time of each iteration but still an effective factor in the 

first couple of iterations.  
Being able to detect and eliminate a CS which contains 

large sets of dots causes significantly fast reduction of number 

of dots in the target space. Therefore, the number of remaining 

dots will be lower for the next iteration.  However, finding 

proper CSs and CSE at run-time is highly dependent on the 

number of terms inside CSs. The format of CS in our tool is 

two sets of dots (two lines) instead of two or three dots. Being 

able to work with sets of dots, allow us to use a lower order 

algorithm compared to [4-5] and gain lower CoC. 

2) Common sub-expression fragmentation (CSF): Our 

optimization approach is to eliminate CSs with large set of 

dots. CSE of CS with few limited, two or three, dots can easily 

prevent elimination of larger CSs and result in series of 

separated dots such that no optimization over them would be 

possible. Figure 2 (a, b and c) shows examples of effective and 

ineffective ways of optimization. Given space consists of four 

pages (a) and CoC for this space is 16 before performing the 

optimization. 

In (b), we assume that all CSs must contain exactly three 

dots. We perform CSE for  

and  as the first and second steps 

respectively. CoC is reduced to 8 after these two 

optimizations. As mentioned before, elimination of large set of 

dots may result in better optimization. In (b), we assume that 

there is no limit for number of dots in a CS. Therefore, we 

perform CSE for   and 

 as the first and second steps 

respectively. As a result of the CSEs CoC’s is reduced to 5 

which is a lower cost compared to the first approach of 

optimization. The reason for this decrease in the cost is that 

although dot  appeared in all four initial pages (a), in 

two of these pages dots remain unengaged in all CSEs after 

the first optimization approach (b). The second approach 

prevents fragmentation on CSs by considering CSs with more 

dots. 

III. XQUASHER’S METHODOLOGY 

The best hand coded optimization for many common linear 

systems requires the elimination of CSs with large set of dots. 

Previous works are not able to handle such elimination due to 

the exponential increase in the cost of considering such CSs. 

Although our methodology is not able to eliminate all possible 

large CSs because of the increase in the cost, it is still capable 

of covering large CSs when CSs’ dots are focused inside one 

or two lines.  

A. Power Set Encoding 

To convert an integer to PSE, we follow this procedure:  

1- Encode an integer, , to a CSD minimum hamming weight 

format.  

2- Rewrite the CSD encoded number as a series of integer 

addition where each number has exactly one of the non-zero 

digits of the original number.  

3- Generate power set from step 2’s result set. 

4- Ignore the null set and generate a new set from the result of 

step 3 where each element is the sum of numbers inside the 

related set. 

5- Rewrite each number from the result of 4th step as , 

where p is an odd integer, and store these numbers in the 

following format: 

 
B. Xquasher Algorithm 

Here, we present the Xquasher algorithm and describe it 

below. After encoding all input constants to PSE (1), 

Xquasher searches for a CS that has the highest number of 

relevant dots in all appearance of that CS (3-8). Xquasher 

limits the CS to two PSDs (4-5) and performs CSE for the 

chosen CS (9), where it updates the related pages to the CS 

and appends a new page, representing the eliminated CS (10). 

These steps continue in a loop until there is no more CSE left 

to be eliminated (2). 
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IV. RESULTS 

Using the methodology described in Section III along with 

Synopsys Design Compiler Ultra and TSMC 90nm library, we 

synthesize several common linear system examples using 

several techniques. The linear systems that we use as 

examples are 8-point DCT, 8-point Inverse DCT (IDCT), 

Discrete Fourier Transform (DFT), Discrete Hartley 

Transform (DHT), and Discrete Sine Transform (DST) and 

also three FIR filters: EP24 (6-tap FIR), BT24 (20-tap 

FIR)and LS24 (41-tap FIR). Xquasher takes a matrix of 

coefficients as input and then uses our methodology to 

generate a new set of expressions. Xquasher also generates an 

HDL code based on these expressions. Therefore, we compare 

our results with the previously published work in terms of 

number of additions and synthesis results: area and delay. 

Table I presents a comparison between the previously 

published works [1][2][5] and Xquasher in terms of total 

number of additions and a comparison between [5] and 
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Fig. 2. (a) represents a space with four pages. We show different optimization 

approaches with (b) and (c). In (b), CS are limited to have exactly three dots. 

In (c), CSs can have arbitrary large number of dots.  



 

Xquasher in terms of synthesis results: area and delay. As can 

be seen from Table I, Xquasher provides significant reduction 

in the number of additions by a careful optimization compared 

to the previous works. Since the method in [5] is the closest to 

our results, we take the comparison to another level by 

presenting the synthesis results of both methods. It can be seen 

from Table I that Xquasher provides better results in area and 

as well as delay in our benchmarks.  

As can be seen from Table I, previously reported best 

results [5] are clearly inferior to those provided by Synopsys 

Compile Ultra since they are significantly worse in both area 

and delay. To the best of our knowledge and based on our 

tests, the quality of results for Synopsys’ Compile Ultra 

optimization [6] is the best available. Therefore we compare 

Xquasher with the results from Compile Ultra in terms of area 

and delay in Figure 3. Table II also shows this analysis in 

percentages in terms of area and delay. Xquasher's non-

registered results give a significant area reduction (22%) 

compared to Compile Ultra, though this comes at a price of 

significant increase in delay (40%).  

We also generate a synchronous (Registered) version of our 

code and compare registered versions of both optimization 

methods in column 3-4 of Table II. By using registers at the 

end of each adder tree to save the results by replacing all 

expressions with registers instead of wires, we compromised 

partial area saving to gain less delay. Therefore, Xquasher 

provides 14% decrease in area compared to registered non-

optimized version while the average delay penalty is 

decreased to 3%.  

V. CONCLUSION 

Linear systems are prevalent in digital signal processing. 

We developed a tool, Xquasher, that can effectively find and 

eliminate higher order common subexpression terms. Our tool 

provides enormous area reductions at the cost of increasing the 

critical path; 22% reduction in area with the cost of 40% 

increase in delay. However, we can easily add registers to our 

design, which yields 15% decrease in area and a minor 

increase in delay (3%) compared to registered version of the 

non-optimized design. 
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Fig. 3. Synthesis results for benchmarks. Reg Xquasher results 

shows 15% less area in average with small increase (~3%) in delay 

compared to the Compile Ultra results[6].  

TABLE II 

Summary of results of our tool, Xquasher, compared to Synopsys Compiler.  

 Xquasher vs. Ultra 
Xquasher vs. Ultra  

(Registered) 
 

 
Delay Area Delay Area 

dct8 -41.42% 19.00% -2.55% 15.23% 

dft8 -30.39% 23.49% -1.97% 12.28% 

dht8 -38.49% 23.99% -3.19% 15.70% 
dst8 -46.01% 19.93% -8.95% 15.76% 

idct8 -42.42% 25.21% -1.02% 13.59% 

Average -39.74% 22.32% -3.53% 14.51% 

 

TABLE I 

Comparison of previously published work and Xquasher in terms of total of additions. Also synthesis results for [5] and our tool. 

 Number of Additions Synthesis Results 

Example Original [1] [2] [5] XQUASHER 
[5] XQUASHER 

Delay Area Delay Area 

H.264 86 N/A N/A 63 53 4.34 25284.83 3.50 13216.59 

DCT8 274 227 202 188 161 5.76 100221.30 4.37 43275.86 

IDCT8 242 222 183 164 140 5.33 65135.55 4.23 36907.11 

EP24 26 N/A N/A 16 13 4.49 6394.87 2.76 2272.03 

DST 320 252 238 N/A 181 N/A N/A 4.57 49902.86 

DHT 248 211 209 N/A 161 N/A N/A 4.39 43454.38 

BT24 106 N/A N/A 48 48 6.04 26738.11 3.12 9456.45 

LS24 232 N/A N/A 112 99 5.77 37630.09 3.17 21368.39 

 


