

Abstract— Digital signal processing applications often require the

computation of linear systems. These computations can be

considerably expensive and require optimizations for lower

power consumption, higher throughput, and faster response

time. Unfortunately, system designers do not have the necessary

tools to take advantage of the wide flexibility in ways to evaluate

these expressions. Therefore, we address the problem of

efficiently computing a set of linear systems through a tool,

Xquasher, that is developed by us to enable elimination of large

common subexpression from expressions with an arbitrary

number of terms. Xquasher provides a methodology for efficient

computation of both single and multiple linear expressions. We

also introduce the concept of power set encoding which helps us

to provide an effective optimization method and achieves

significant improvement over previously published work. Our

tool provides optimized designs with 15% less area with the cost

of 3% increase in delay by reducing number of additions on

average by 45%.

I. INTRODUCTION

Computation of multiple linear expressions (MLE) and its

sub-computations: single constant multiplication (SCM),

multiple constant multiplications (MCM) and linear

expression (LE) are commonplace in linear systems. Many

digital signal processing applications such as Finite Impulse

Response Filters and Discrete Fourier Transform use linear

systems which are expensive and therefore are the dominant

factor in the overall performance. It is often advantageous to

convert costly constant multiplications into a corresponding

set of shifts and additions which can lead to lower power

consumption, higher throughput, and faster response time. By

careful common sub-expression elimination over these

expressions, one can also reduce the total number of additions.

However, current synthesis techniques perform limited

transformations, and are unable to do an adequate optimization

of these expressions. A major obstacle to the optimization of

linear systems is that system designers do not have the

necessary tools to take advantage of the wide flexibility in

ways to evaluate these expressions. In most cases, designers

rely on hand tuned library routines (for software) or

Intellectual Property (IP) blocks (for hardware) to implement

these computations. The drawback to using these approaches

is that the given library routines and IP blocks may not be

ideally suited for the platform with respect to the use and/or

the constraints specified by the application. Designing a high

level tool for the optimization of the linear system

computation is crucial.

Therefore, we developed a tool, Xquasher, which provides a

general methodology for linear system optimization. Xquasher

performs common subexpression elimination to minimize the

area of the resulting hardware of the linear system. Our tool is

also efficient for optimization of sub-MLE problems: SCM,

MCM and LE. Xquasher utilizes a novel powerset encoding

format to enable efficient extraction of large common

subexpressions which makes it possible to achieve substantial

area improvements over previously published works.

In this paper we are mainly focused on reducing the area by

reducing the total number of additions. The optimal solution

with the minimum possible number of additions is a well

known NP-complete problem. By careful analysis of effective

factors in this problem and providing novel solutions for each

of them, we generate a heuristic algorithm that efficiently

reduces number of additions. Our results shows substantial

improvement over existing methods [3][4][5][7].

The remainder of this work is organized as follows. The

subsequent section formalizes the problem and its definitions.

Section III describes our tool, its methodology which uses

powerset encoding. Section IV provides experimental analysis

of our results and comparisons with previously published

works. We conclude in Section V.

II. PROBLEM FORMULATION AND DEFINITIONS

This section is devoted to introduction of multiple linear

expression (MLE) and its sub-problems: single constant

multiplication (SCM), multiple constant multiplication

(MCM) and linear expression (LE) where we illustrate the cost

of the computation with a three-dimensional space and define

some basic terms: dot, line, page and space that are used in

our methodology for ease of understanding.

A. Definitions

Canonical Signed digits (CSD) is radix-2 signed digit

representation with digit set of where there is no

adjacent non-zero digit in the representation. Bit-Magnitude

(BM) is an integer with the magnitude of It can be

described as a CSD number with exactly one non-zero digit.

Dot is an appearance of an input variable in our expression

with a relative magnitude of BM. In hardware, this

corresponds to rewiring an input to specific point in the circuit

with possible some shifts to the right. Line is summation of

multiple copies of one variable multiplied by a vector of BMs.

Therefore, computation of a line is Single Constant

Multiplication (SCM). Page is formed by a summation of a set

of lines. We present examples for page, lines, dots and BMs in

Xquasher: A Tool for Efficient Computation of

Multiple Linear Expressions
Arash Arfaee

†
, Ali Irturk

†
, Nikolay Laptev

‡
, Farzan Fallah

††
, Ryan Kastner

†

†
 Department of Computer Science and

Engineering

University of California, San Diego

{aarfaee, airturk, kastner}@cs.ucsd.edu

‡
 Department of Computer Science

University California, Los Angeles

nlaptev@cs.ucla.edu

††
Engineering Department

Envis Corporation, CA, 95054

Farzan@envis.com

Figure 1. Space can be created by union of a set of pages. In

our problem, a space is a collection of multiple pages. Cost of

Computation (CoC) is defined as the number of additions

that appears in our object. Example (Figure 1):

. Object refers to a dot, a line, a page or a

space.

B. Problem mapping

In this subsection, we formulize the optimization of a linear

system. Our approach is to minimize the number of additions.

We first show how to optimize small objects in our space and

then apply and improve this methodology for larger objects.

Dot optimization: A dot by itself does not have any cost by

definition. They are simply rewiring of copies of input data.

We do not perform any optimization over a dot by itself.

Line optimization: Problem of line optimization is known as

single constant multiplication (SCM). Modern tools generally

use CSD encoding as a solution for this problem. Using a

CSD representation with minimum Hamming weight provides

a good but not optimal solution in shift and add approach for

constant by variable multiplication and therefore is used in our

examples as well. Our experiments with Mentor Graphics and

Synopsys tools indicate that the area of SCM mirrors the

number of additions between non-zero digits in a CSD

encoding. Although CSD can be considered as a good solution

for optimization of lines, it does not guarantee an optimum

solution since further optimization is possible to reduce

number of additions inside a line. To see how this is possible,

assume a line is given as with CSD

representation of where a bar in top of a

digit means that it is negative. After rewriting corresponding

CSD bit values as integer, we have the following vector

multiplication:

This is the way that modern tools perform this multiplication,

and CoC of this multiplication is 3 additions. However, it is

possible to optimize this multiplication further by rewriting it:

where CoC becomes 2 additions. Elimination of repeated dots

by finding common sub-expressions (CS) and Common sub-

expression Elimination (CSE) are well known methods for

CSM optimization [5][7].

Page optimization: Optimization of a page by applying CSE

is similar to the optimization of a line. However searching

relatively larger set of dots and applying CSE demand more

complex and careful analysis. Therefore, we investigate these

issues in more detail and provide a general solution for page

optimization. We assume that all lines are encoded with CSD.

Assume a page is given as:

The un-optimized page results in 4+2+2+4+3 = 15 additions.

We can further optimize this page by rewriting it as:

where we can decrease the number of additions to

2+2+4+2+1 = 11 by detecting and eliminating an obvious

CS: . Further optimization is possible by

rewriting each line with equivalent CSD encoded version

where more CSs become observable:

1024,0,-256,0,-64,0,16,0,0,-2,0

If we optimize by limiting CSs to have exactly two

dots, one of the possible results is:

where the CoC decreases from 15 to 10. Considering the

previous example, one might suggest writing details of lines

might lead to a better optimization; however it is more time

consuming and hard to determine which CS is the best

candidate to eliminate. For example, there are 120

combinations of two dots that could be a CS just in the first

step of CSE. In our last attempt over this example, in first and

second CSE we ignore details in and .

In the third step we expand to equivalent CSD

encoded version. is the result of CSE optimization after

this step.

,

CoC of is 9, and we have 40% reduction in CoC from

’s. Considering that we just needed 3 CSE and much

less complexity in the CSE process to gain the same result, it

might be a better approach. Here we just have 28 possibilities

for CSs with two terms. It seems that CSE process can get

much simpler and faster if we can work with dot

representation and constant multiplication form of the line.

Space optimization: We design our tool, Xquasher, for space

optimization by introducing two new concepts: 1)

determination of the effective factors in optimization of the

run-time and 2) common sub-expression fragmentation (CSF).

1) Determination of the effective factors in optimization of the

run-time: Run-time is the main challenge in all CSE

algorithms. Finding the optimum solution for an NP-complete

problem requires an unacceptable run-time. Heuristic

algorithms are well known to be useful in tackling NP-

complete problems [3][4][5]. Therefore, Xquasher uses a

greedy heuristic algorithm where run-time of the algorithm

depends on two factors: 1) Number of iterations and 2) Run-

+8×x1 +4×x1 -1×x1

+8×x2 +4×x2 -1×x2

+8×x3 +4×x3 -1×x3

Lines

Line x0

Line x1

+8×x0 +4×x0 -1×x0

Line x2

Line x3

Dots

Bit-Magnitudes

(BM)

Page0 = y0

Fig. 1. An example of page and its lines, dots and BMs. Dots are shown with

ellipses and in the first line, a circle inside each dot demonstrates the BM part.

time of each iteration. The algorithm that is used in Xquasher

can eliminate larger sets of CSs in a single CSE compared to

the algorithms that are used in [4-5]. Our algorithm provides a

solution with fewer iteration due to the optimization of larger

sets of CSs where [4-5] requires multiple iterations for the

same optimization. Xquasher is also capable of seeing both

dots and sets of dots in a line as a part of CSs which increases

the run-time of each iteration but still an effective factor in the

first couple of iterations.
Being able to detect and eliminate a CS which contains

large sets of dots causes significantly fast reduction of number

of dots in the target space. Therefore, the number of remaining

dots will be lower for the next iteration. However, finding

proper CSs and CSE at run-time is highly dependent on the

number of terms inside CSs. The format of CS in our tool is

two sets of dots (two lines) instead of two or three dots. Being

able to work with sets of dots, allow us to use a lower order

algorithm compared to [4-5] and gain lower CoC.

2) Common sub-expression fragmentation (CSF): Our

optimization approach is to eliminate CSs with large set of

dots. CSE of CS with few limited, two or three, dots can easily

prevent elimination of larger CSs and result in series of

separated dots such that no optimization over them would be

possible. Figure 2 (a, b and c) shows examples of effective and

ineffective ways of optimization. Given space consists of four

pages (a) and CoC for this space is 16 before performing the

optimization.

In (b), we assume that all CSs must contain exactly three

dots. We perform CSE for

and as the first and second steps

respectively. CoC is reduced to 8 after these two

optimizations. As mentioned before, elimination of large set of

dots may result in better optimization. In (b), we assume that

there is no limit for number of dots in a CS. Therefore, we

perform CSE for and

 as the first and second steps

respectively. As a result of the CSEs CoC’s is reduced to 5

which is a lower cost compared to the first approach of

optimization. The reason for this decrease in the cost is that

although dot appeared in all four initial pages (a), in

two of these pages dots remain unengaged in all CSEs after

the first optimization approach (b). The second approach

prevents fragmentation on CSs by considering CSs with more

dots.

III. XQUASHER’S METHODOLOGY

The best hand coded optimization for many common linear

systems requires the elimination of CSs with large set of dots.

Previous works are not able to handle such elimination due to

the exponential increase in the cost of considering such CSs.

Although our methodology is not able to eliminate all possible

large CSs because of the increase in the cost, it is still capable

of covering large CSs when CSs’ dots are focused inside one

or two lines.

A. Power Set Encoding

To convert an integer to PSE, we follow this procedure:

1- Encode an integer, , to a CSD minimum hamming weight

format.

2- Rewrite the CSD encoded number as a series of integer

addition where each number has exactly one of the non-zero

digits of the original number.

3- Generate power set from step 2’s result set.

4- Ignore the null set and generate a new set from the result of

step 3 where each element is the sum of numbers inside the

related set.

5- Rewrite each number from the result of 4th step as ,

where p is an odd integer, and store these numbers in the

following format:

B. Xquasher Algorithm

Here, we present the Xquasher algorithm and describe it

below. After encoding all input constants to PSE (1),

Xquasher searches for a CS that has the highest number of

relevant dots in all appearance of that CS (3-8). Xquasher

limits the CS to two PSDs (4-5) and performs CSE for the

chosen CS (9), where it updates the related pages to the CS

and appends a new page, representing the eliminated CS (10).

These steps continue in a loop until there is no more CSE left

to be eliminated (2).
 1
 2
 3
 4
 5

 6

 7

 8
 9
 10

IV. RESULTS

Using the methodology described in Section III along with

Synopsys Design Compiler Ultra and TSMC 90nm library, we

synthesize several common linear system examples using

several techniques. The linear systems that we use as

examples are 8-point DCT, 8-point Inverse DCT (IDCT),

Discrete Fourier Transform (DFT), Discrete Hartley

Transform (DHT), and Discrete Sine Transform (DST) and

also three FIR filters: EP24 (6-tap FIR), BT24 (20-tap

FIR)and LS24 (41-tap FIR). Xquasher takes a matrix of

coefficients as input and then uses our methodology to

generate a new set of expressions. Xquasher also generates an

HDL code based on these expressions. Therefore, we compare

our results with the previously published work in terms of

number of additions and synthesis results: area and delay.

Table I presents a comparison between the previously

published works [1][2][5] and Xquasher in terms of total

number of additions and a comparison between [5] and

𝑌0 = −2𝑥3 + 1𝐷00

𝑌1 = + −64𝑥1 + +4𝑥2 − 2𝑥3 + 1𝐷00

𝑌2 = + −64𝑥1 + +4𝑥2 − 2𝑥3 + 1𝐷00

𝑌3 = −2𝑥3 + 1𝐷00

𝐷00 = +256𝑥0 + 2𝑥0 + 32𝑥3

𝑌0 = −2𝑥3 + 1𝐷00

𝑌1 = +1𝐷00 + 1𝐷10

𝑌2 = +1𝐷00 + 1𝐷10

𝑌3 = −2𝑥3 + 1𝐷00

𝐷00 = +256𝑥0 + 2𝑥0 + 32𝑥3

𝐷10 = −46𝑥1 + 4𝑥2 − 2𝑥3

𝑌0 = +1𝐷01

𝑌1 = +1𝐷11

𝑌2 = +1𝐷11

𝑌3 = +1𝐷01

𝐷01 = +256𝑥0 + 2𝑥0 + 32𝑥3 − 2𝑥3

𝐷11 = −64𝑥1 + 4𝑥2 + 1𝐷01

𝑌0 = +1𝐷01

𝑌1 = + −64𝑥1 + +4𝑥2 + 1𝐷01

𝑌2 = + −64𝑥1 + +4𝑥2 + 1𝐷01

𝑌3 = +1𝐷01

𝐷01 = +256𝑥0 + 2𝑥0 + 32𝑥3 − 2𝑥3

D00 D01

D11D10

𝑌0 = + +256𝑥0 + 2𝑥0 + (+32𝑥3 − 2𝑥3)

𝑌1 = + +256𝑥0 + 2𝑥0 + −64𝑥1 + +4𝑥2 + (+32𝑥3 − 2𝑥3)

𝑌2 = + +256𝑥0 + 2𝑥0 + −64𝑥1 + +4𝑥2 + (+32𝑥3 − 2𝑥3)

𝑌3 = + +256𝑥0 + 2𝑥0 + (+32𝑥3 − 2𝑥3)

(a)

(b) (c)

Fig. 2. (a) represents a space with four pages. We show different optimization

approaches with (b) and (c). In (b), CS are limited to have exactly three dots.

In (c), CSs can have arbitrary large number of dots.

Xquasher in terms of synthesis results: area and delay. As can

be seen from Table I, Xquasher provides significant reduction

in the number of additions by a careful optimization compared

to the previous works. Since the method in [5] is the closest to

our results, we take the comparison to another level by

presenting the synthesis results of both methods. It can be seen

from Table I that Xquasher provides better results in area and

as well as delay in our benchmarks.

As can be seen from Table I, previously reported best

results [5] are clearly inferior to those provided by Synopsys

Compile Ultra since they are significantly worse in both area

and delay. To the best of our knowledge and based on our

tests, the quality of results for Synopsys’ Compile Ultra

optimization [6] is the best available. Therefore we compare

Xquasher with the results from Compile Ultra in terms of area

and delay in Figure 3. Table II also shows this analysis in

percentages in terms of area and delay. Xquasher's non-

registered results give a significant area reduction (22%)

compared to Compile Ultra, though this comes at a price of

significant increase in delay (40%).

We also generate a synchronous (Registered) version of our

code and compare registered versions of both optimization

methods in column 3-4 of Table II. By using registers at the

end of each adder tree to save the results by replacing all

expressions with registers instead of wires, we compromised

partial area saving to gain less delay. Therefore, Xquasher

provides 14% decrease in area compared to registered non-

optimized version while the average delay penalty is

decreased to 3%.

V. CONCLUSION

Linear systems are prevalent in digital signal processing.

We developed a tool, Xquasher, that can effectively find and

eliminate higher order common subexpression terms. Our tool

provides enormous area reductions at the cost of increasing the

critical path; 22% reduction in area with the cost of 40%

increase in delay. However, we can easily add registers to our

design, which yields 15% decrease in area and a minor

increase in delay (3%) compared to registered version of the

non-optimized design.

VI. REFERENCES

[1] M. Potkonjak, M.B. Srivastava, and A.P. Chandrakasan, "Multiple

Constant Multiplications: Efficient and Versatile Framework and

Algorithms for Exploring Common Subexpression Elimination," IEEE

Transactions on Computer Aided Design of Integrated Circuits and

Systems, 1996.

[2] H. T. Nguyen and A. Chattejee, "Number-splitting with shift-and-add

decomposition for power and hardware optimization in linear DSP

synthesis," IEEE Transactions on Very Large Scale Integration (Vlsi)

Systems, vol. 8, pp. 419-24, 2000.

[3] H. Safiri, M. Ahmadi, G.A. Jullien, and W.C. Miller, "A New Algorithm

for the Elimination of Common Subexpressions in Hardware

Implementation of Digital Filters by Using Genetic Programming,"

IEEE International Conference on Application-Specific Systems,

Architectures and Processors (ASAP), 2000.

[4] A. Hosangadi, F. Fallah, and R. Kastner, "Common subexpression

elimination involving multiple variables linear DSP synthesis," IEEE

International Conference on Application-Specific Systems, Architectures

and Processors, pp. 202-12, 2004.

[5] A. Hosangadi, F. Farzan, and R. Kastner, "Optimizing high speed

arithmetic circuits using three-term extraction," Design, Automation and

Test in Europe, pp. 6, 2006.

[6] R. Zimmermann, D. Q. Tran, “Optimized Synthesis of Sum-of-

Products,” Proceedings 37th Asilomar Conference on Signals, Systems,

and Computers, November 2003

[7] Peter Tummeltshammer, James C. Hoe and Markus Püschel, “Time-

Multiplexed Multiple Constant Multiplication”, IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, Vol. 26, No.

9, pp. 1551-1563, 2007.

2.8

3.6

4.4

36000 46000 56000 66000

Ultra

Xquasher

Reg Ultra

Reg Xquasher

Area

D
el

ay

Fig. 3. Synthesis results for benchmarks. Reg Xquasher results

shows 15% less area in average with small increase (~3%) in delay

compared to the Compile Ultra results[6].

TABLE II

Summary of results of our tool, Xquasher, compared to Synopsys Compiler.

 Xquasher vs. Ultra
Xquasher vs. Ultra

(Registered)

Delay Area Delay Area

dct8 -41.42% 19.00% -2.55% 15.23%

dft8 -30.39% 23.49% -1.97% 12.28%

dht8 -38.49% 23.99% -3.19% 15.70%
dst8 -46.01% 19.93% -8.95% 15.76%

idct8 -42.42% 25.21% -1.02% 13.59%

Average -39.74% 22.32% -3.53% 14.51%

TABLE I

Comparison of previously published work and Xquasher in terms of total of additions. Also synthesis results for [5] and our tool.

 Number of Additions Synthesis Results

Example Original [1] [2] [5] XQUASHER
[5] XQUASHER

Delay Area Delay Area

H.264 86 N/A N/A 63 53 4.34 25284.83 3.50 13216.59

DCT8 274 227 202 188 161 5.76 100221.30 4.37 43275.86

IDCT8 242 222 183 164 140 5.33 65135.55 4.23 36907.11

EP24 26 N/A N/A 16 13 4.49 6394.87 2.76 2272.03

DST 320 252 238 N/A 181 N/A N/A 4.57 49902.86

DHT 248 211 209 N/A 161 N/A N/A 4.39 43454.38

BT24 106 N/A N/A 48 48 6.04 26738.11 3.12 9456.45

LS24 232 N/A N/A 112 99 5.77 37630.09 3.17 21368.39

