
Data Communication Estimation and Reduction for 
Reconfigurable Systems 

Adam Kaplan        Philip Brisk 
Computer Science Department 

University of California, Los Angeles 

{kaplan,philip}@cs.ucla.edu 

Ryan Kastner 
Department of Electrical and Computer Engineering 

University of California, Santa Barbara 

kastner@ece.ucsb.edu 

ABSTRACT 
Widespread adoption of reconfigurable devices requires system level 
synthesis techniques to take an application written in a high level 
language and map it to the reconfigurable device. This paper describes 
methods for synthesizing the internal representation of a compiler into 
a hardware description language in order to program reconfigurable 
hardware devices. We demonstrate the usefulness of static single 
assignment (SSA) in reducing the amount of data communication in 
the hardware. However, the placement of Φ-nodes by current SSA 
algorithms is not optimal in terms of minimizing data communication. 
We propose a new algorithm which optimally places Φ-nodes, further 
decreasing area and communication latency. Our algorithm reduces the 
data communication (measured as total edge weight in a control data 
flow graph) by as much as 20% for some applications as compared to 
the best-known SSA algorithm – the pruned algorithm. We also 
describe future modifications to our model that should increase the 
effectiveness of our methods. 

1. Introduction 
The advent of reconfigurable devices has led to a revolution in the way 
designers conceptualize hardware systems, as the very logic that drives 
circuitry can be customized as often as needed. Reconfigurable 
hardware is usually realized via Field Programmable Gate Array 
(FPGA) technology. Increasingly, this hardware is being incorporated 
into computing systems, often coupled with one or more 
microprocessor or ASIC devices on the same chip. The reconfigurable 
components of the system provide fast, flexible logic at a very low 
cost. These components can be modified and re-implemented, much 
like software programs. Therefore, it has become attractive to design 
hardware algorithms in a high-level programming language, and 
compile this code into actual hardware logic (rather than software 
binary form). 
The compiler straddles the boundary between application and 
hardware, making it a natural area to perform reconfigurable system 
design exploration. The compiler can already map portions of the 
application to different processors by simply emitting code. In order to 
complete the system exploration space – including processors, ASIC 
and reconfigurable components, we need a path from the compiler to a 
hardware description language (HDL). This HDL can then be 
synthesized into reconfigurable circuitry.  

 
An area of extreme importance is the translation of the compiler’s 
intermediate representation (IR) to a form that is suitable for synthesis 
to hardware. During this translation, we should attempt to exploit the 
existing concurrency of the application and discover additional 
parallelism. Also, we should determine the types of hardware 
specialization that will increase the efficiency of the application. 
Finally, we must take into account the hardware properties of the 
circuit, such as power dissipation, critical path and interconnect area. 
Static single assignment (SSA) [1,2] transforms the IR such that each 
variable is defined exactly once. It is an ideal transformation for 
hardware because the side effects of the transformation, Φ-nodes, are 
easily implemented in hardware as multiplexers. Furthermore, SSA 
creates a one-to-one mapping between each variable and its 
corresponding value, which allows the compiler to identify each 
individual signal uniquely. In many ongoing projects, a compiler 
translates high-level algorithmic code to an HDL [3,4,5]. SSA could 
easily be incorporated into many of these projects as a compiler pass. 
Yet, SSA was originally developed to enable optimizations for 
microprocessor architectures; it was not originally meant for hardware 
synthesis. 
In this paper, we describe SSA and its effect on the optimization of 
hardware properties of a circuit. We show how SSA can be used to 
minimize data communication; this has a direct effect on the area, 
amount of interconnect and delay of the final circuit. Furthermore, we 
show that SSA in its original form is not optimal in terms of data 
communication and give an optimal algorithm for the placement of Φ-
nodes to minimize the amount of data communication. In the next 
section, we give background material related to our research. We show 
how SSA is useful to minimize interconnect in the hardware in Section 
3. Furthermore, we point out a fundamental shortcoming of traditional 
SSA and develop a new SSA algorithm to overcome this limitation. 
Section 4 presents experiments to illustrate the effect of these 
algorithms to minimize data communication. We discuss related work 
in Section 5 and provide concluding remarks in Section 6. 

2. Preliminaries 
We focus on the control data flow graph (CDFG) as a model of 
computation (MOC) for the internal representation (IR) of the 
compiler. The CDFG offers several advantages over other models of 
computation. Most compilers have an IR that can easily be 
transformed into a CDFG. Therefore, this allows us to use the back-
end of a compiler to generate code for a variety of processors. 
Furthermore, the techniques of data flow analysis (e.g. reaching 
definitions, live variables, constant propagation, etc.) can be applied 
directly to CDFGs. Finally, many high-level programming languages 
(Fortran, C/C++) can be compiled into CDFGs with slight 
modifications to pre-existing compilers; a pass converting a typical 
high-level IR into control flow graphs and subsequently CDFGs is 
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possible with minimal modification. Most importantly, we believe that 
the CDFG can be mapped to a variety of different microarchitectures. 
This justifies our selection of the CDFG as an MOC for investigating 
the performance of mapping different parts of the application across a 
wide variety of SOC components. 
A CDFG consists of a set of control nodes Ncfg and control edges Ecfg. 
The control nodes are a set of basic blocks. Each control node holds a 
number of instructions or computations that execute atomically. The 
control edges model the control flow relationships between the control 
nodes. The control nodes and control edges form a directed graph 
Gcfg(Ncfg, Ecfg). Each control node contains a set of operations. The data 
flow relationships between the operations in a particular control node 
can be viewed as a sequential list of instructions I or a data flow graph 
Gdfg(Vdfg,Edfg).  
In this work, we examine the problem of manipulating a CDFG such 
that the resulting hardware exhibits enhanced performance. We have 
built a system compiler to synthesize a CDFG into some hardware 
description language (HDL). (EDA tools – either academic or 
commercial – can perform optimization from that level on.)  We used 
our tool to obtain the results of this work. We refer the interested 
reader to [6] for more details of that framework. 

3. Minimizing Inter-Node Communication 
In order to determine the data exchange between nodes in a CDFG, we 
establish the relationship between the nodes in which data is generated 
and the nodes where data is used for calculation. The specific place 
where data is generated is called its definition point. A specific place 
where data is used in computation is called a use point. The data 
generated at a particular definition point may be used in multiple 
places. Likewise, a particular use point may correspond to a number of 
different definition points; the control flow dictates the actual 
definition point at any particular moment.  

If data generated in one control node is used in a computation in a 
second control node, these two control nodes must have a mechanism 
to transfer the data between them. A distributed data communication 
scheme has a direct connection between the two control nodes (i.e. one 
node controls the other’s execution through a signal). If a centralized 
data communication scheme were used, the first control node would 
transfer the data to memory and the second control node would access 
the memory for that data. Therefore, in a centralized scheme 
minimizing the inter-node communication would have a direct impact 
on the number of memory accesses, and in a distributed scheme the 
interconnect between the control nodes would be reduced. However, in 
both schemes real performance boosts can be realized through 
communication optimization. Thus, regardless of the scheme that we 
use, we should try to generically model and minimize inter-node 
communication. 

3.1 Static Single Assignment 
We can determine the relationship between the use and definition 
points through static single assignment [1,2]. Static Single Assignment 
(SSA) renames variables with multiple definitions into distinct 
variables – one for each definition point.  
We define a name to represent the contents of a storage location (e.g. 
register, memory). A name is unspecific to SSA. In non-SSA code, a 
name represents a storage location but we may not know the exact 
location; the precise location of the name depends on the control flow 
of the program. Therefore, we call a name in non-SSA code a location. 
SSA eliminates this confusion as each name represents a value that is 
generated at exactly one definition point. The SSA definition of a 
name is called a value.  

In order to maintain proper program functionality, we must add Φ-
nodes into the CDFG. Φ-nodes are needed when a particular use of a 
name is defined at multiple points. A Φ-node takes a set of possible 
names and outputs the correct one depending on the path of execution. 
Φ-nodes can be viewed as an operation of the control node. They can 
be implemented using a multiplexer. Figure 1 illustrates the conversion 
to SSA. 

x ← …

y ← x + x

x ← x + y

z ← x + y

x0 ← …

y0 ← x0 + x0

x1 ← x0 + y0

z0 ← x1 + y0

a)

b) x ← … x ← …

← x

x1 ← … x2 ← …

x3 ←Φ(x1,x2)
← x3

Before After

 

Figure 1: a) Conversion of Straight-line Code to SSA b) SSA 
Conversion with Control Flow 

SSA is accomplished in two steps, first we add Φ-nodes and then we 
rename the variables at their definition and use points. There are 
several methods for determining the location of the Φ-nodes. The 
naïve algorithm would insert a Φ-node at each merging point for each 
original name used in the CDFG. A more intelligent algorithm – called 
the minimal algorithm – inserts a Φ-node at the iterated dominance 
frontier (IDF) of each original name [1]. The IDF of a set of nodes is 
equivalent to the temporally nearest node at which their control paths 
rejoin. The semi-pruned algorithm builds smaller SSA form than the 
minimal algorithm. It determines if a variable is local to a basic block 
and only inserts Φ-nodes for non-local variables [2]. The pruned 
algorithm further reduces the number of Φ-nodes by only inserting Φ-
nodes at the IDF of variables that are live at that time [7]. After the 
position of the Φ-nodes is determined, there is a pass where the 
variables are renamed.  
The minimal method requires O(|Ecfg| + |Ncfg|2) time for the calculation 
of the iterated dominance frontier. The iterated dominance frontier and 
liveness analysis must be computed during the pruned algorithm. 
There are linear or near linear time liveness analysis algorithms [8]. 
Therefore, the pruned method has the same asymptotic runtime as the 
minimal method. 
We should suppress any unnecessary data communication between 
control nodes. Now we explain how to minimize the inter-node 
communication.  

3.2 Minimizing Data Communication with SSA 
SSA allows us to minimize the inter-node communication. The various 
algorithms used to create SSA all attempt to accurately model the 
actual need for data communication between the control nodes. For 
example, if we use the pruned algorithm for SSA, we eliminate false 
data communication by using liveness analysis, which eliminates 
passing data that will never be used again.  
SSA allows us to minimize the data communication, at the cost of 
introducing Φ-nodes to the graph. We must add a mechanism that 
implements the functionality of a Φ-node. A multiplexer provides the 
needed functionality. The input names are the inputs to the 
multiplexer. An additional control line must be added for each 
multiplexer to determine that the correct input name is selected. 
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A fundamental limitation of using SSA in a hardware compiler is the 
use of the IDF for determining the positioning of the Φ-nodes. 
Typically, compilers use SSA for its property of a single definition 
point. We are using it in another way – as a representation to minimize 
the data communication between hardware components (CFG nodes). 
In this case, the positioning of Φ-nodes at the iterated dominance 
frontier does not always optimize the data communication. We must 
consider spatial properties in addition to the temporal properties of the 
CDFG when determining the position of the Φ-nodes.  
We illustrate our point with a simple example. Figure 2a exhibits 
traditional SSA1 form as well as the corresponding 
floorplan,containing control nodes a through e. The Φ-node is placed 
in control node d. In the traditional SSA scheme, the data values x2, x3, 
and x4 (from nodes a, b, and c) are used in node d, but only in the Φ-
node. Then, the data x5 is used in node e. Therefore, there must be a 
communication connection from node a to node d, node b to node d 
and node c to node d, as well as a connection from node d to node e – 
a total of 4 communication links. In Figure 2b, the Φ-node is 
distributed to node e. Then, we only need a communication connection 
from nodes a,b, and c to node e, a total of 3 communication links. 
 

 

Figure 2a: SSA form and the corresponding floorplan (dotted 
edges represent data communication, and grey edges represent 
control). Data communication = 4 units. 

From this example, we can see that traditional Φ-node placement is 
not always optimal in terms of data communication. This arises 
because Φ-nodes are traditionally placed in a temporal manner. The 
IDF is the first place in the timeline of the program where the two (or 
more) locations of a variable merge. Clearly, however, this is not 
necessarily the only place where they can be placed. The IDF is an 
excellent location to place Φ-nodes if your goal is shortening the 
liveness range of a variable. When considering hardware compilation, 
we must think spatially as well as temporally. By moving the position 

                                                                 
1 We use the terms “traditional SSA” and “temporal SSA” 

interchangeably to mean the SSA introduced by Cytron et al. [1]. 

of the Φ-nodes, it is possible to achieve a better layout of our hardware 
design. In order to reduce the data communication, we must consider 
the number of uses of the value that a Φ-node defines, in addition to 
the number of values that the Φ-node takes as an input. 

3.3 An Algorithm for Distributing Φ-nodes 
The first step of spatially distributing Φ-nodes is determining which 
Φ-nodes should be moved. We assume that we are given the correct 
temporal positioning of the Φ-nodes according to some SSA algorithm 
(e.g. minimal, semi-pruned, pruned). The movement of a Φ-node 
depends on two factors. The first factor is the number of values that 
the Φ-node must choose between. We call this the number of Φ-node 
source values s. The second factor is the number of uses that the value 
of the Φ-node defines. We call this the Φ-node destination value d. 
Taking Figure 2a as an example, the Φ-node source values are x2, x3, 
and x4 whereas the Φ-node destination value is x5. Determining s is 
simple; we just need to count the number of source values in the Φ- 
node. Finding the number of uses of the destination value is more 
difficult. We can use def-use chains [9], which can be calculated 
during SSA. 
 

 
Figure 2b:  SSA form with the Φ-node spatially distributed, as well 
as the corresponding floorplan. Data communication = 3 units. 
 
The relationship between the number of communication links CT 
needed for a Φ-node in temporal SSA and the number of 
communication links CS in spatial SSA is: 

dsCT +=        dsCS ⋅=  

Using these relationships, we can easily determine if spatially moving 
a Φ-node will decrease the total amount of inter-node data 
communication. If CS is less than CT, then moving the Φ- node is 
beneficial. Otherwise, we should keep the Φ-node at the IDF. 

After we have identified a set of Φ-nodes to be moved, we must 
determine the control node(s) to which we should move each Φ- node. 
This step is rather easy, as we move the Φ-node from its original 
location to control nodes that have a use of the definition value of that 
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Φ-node. It is possible that by moving the Φ-node, we increase the total 
number of Φ-nodes in the design. However, we are decreasing the 
total amount of inter-node data communication. Therefore, the amount 
of data communication is not directly dependent on number of Φ-
nodes. 

It is possible that a use point of the definition value of Φ-node Φ1 is 
another Φ-node Φ2. If we wish to move Φ1, we add the source values 
of Φ1 into the source values of Φ2; obviously, this action changes the 
number of source values of Φ2. In order to account for such changes in 
source values, we must consider moving the Φ-nodes in a 
topologically sorted manner based on the CDFG control edges. Of 
course, any back control edges must be removed in order to have valid 
topological sorting. We can not move Φ-nodes across back edges as 
this can induce dependencies between the source value and the 
destination value of previous iterations i.e. we can get a situation 
where b1 ← Φ(b1, …). The source value b1 was produced in a previous 
iteration by that same Φ-node. The complete algorithm for spatially 
distributing Φ-node to minimize data communication is outlined in 
Figure 3. 

Theorem 3.1: Given an initially correct placement of a Φ-node, the 
functionality of the program remains valid after moving the Φ-node to 
the basic block(s) of all the use point(s) of the Φ-node’s destination 
value. 

Theorem 3.2: Given a correct initial placement of Φ-nodes, the spatial 
SSA algorithm maintains the correct functionality of the program. 
Theorem 3.3: Given a floorplan where all wire lengths are unit length, 
the Spatial SSA Algorithm provides minimal data communication. 
The proofs of the proceeding theorems are removed for brevity. Please 
see [6] for further details. 

1. Given a CDFG G(Ncfg, Ecfg) 
2. perform_SSA(G) 
3. calculate_def_use_chains(G) 
4. remove_back_edges(G) 
5. topological_sort(G) 
6. for each node n ∈ Ncfg 
7. for each Φ-node Φ ∈ n 
8. s ← |Φ.sources | 
9. d ← |def_use_chain(Φ.dest)| 
10. if  s ⋅ d < s + d 
11. move_to_spatial_locations(Φ) 
12. restore_back_edges(G) 
 

Figure 3: Spatial SSA Algorithm 

4. Experimental Results 
To measure the effectiveness of using SSA to minimize data 
communication between control nodes, we examined a set of DSP 
functions. DSP functions typically exhibit a large amount of 
parallelism making them ideal candidates for hardware compilation. 
The DSP functions were taken from the MediaBench test suite [10]. 
The files were compiled into CDFGs using the SUIF compiler 
infrastructure [11] and the Machine-SUIF [12] backend. Then, each of 
the benchmarks was given to our framework [6], which transforms the 
IR into synthesizable VHDL. The VHDL was then synthesized using 
the Synopsys Behavioral Compiler for architectural synthesis followed 
by the Synopsys Design Compiler for logic synthesis.  

We performed SSA analysis with the SSA library built into Machine-
SUIF. The library was initially developed at Rice [13] and recently 
integrated into the Machine-SUIF compiler. 
Our SSA algorithm is described as follows. First, we compare the 
amount of data flow between the control nodes using the different SSA 
algorithms. Given two control nodes i and j, the edge weight w(i,j) is 
the amount of data communicated (in bits) from control node i to 
control node j. The total edge weight (TEW) is: 

∑∑=
i j

jiwTEW ),(  

Figure 4 is a comparison of edge weights using three different 
algorithms for positioning the Φ-nodes. We compare the minimal, 
semi-pruned and pruned algorithms. Recall that the pruned algorithm 
is the best algorithm in terms of reducing the number of Φ-nodes, but 
worst in runtime. The minimal algorithm produces many Φ-nodes, but 
has small runtime. The semi-pruned algorithm provides a middle 
ground in terms of runtime and quality of result.  
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Figure 4: Comparison of total edge weight (TEW) between the 
minimal and semi-pruned TEW and the pruned TEW 

We divide the TEW of the minimal and semi-pruned algorithm 
(respectively) by the TEW of the pruned algorithm. We call this the 
TEW ratio. We use the pruned algorithm as a baseline because it 
consistently produces the smallest TEW. Referring to Figure 4, the 
TEW of the minimal algorithm is much worse than that of the pruned 
algorithm. For example, in the benchmark fft2, the TEW of the 
minimal algorithm is over 70 times that of the TEW of the pruned 
algorithm. The semi-pruned algorithm yields a TEW that is smaller 
than that of the minimal algorithm, but still slightly larger than the 
TEW of the pruned algorithm. All algorithms have the same 
asymptotic runtime and the actual runtimes for all the algorithms over 
all the benchmarks were very small (under 1 second). Therefore, we 
conclude that one should use the pruned algorithm as it minimizes data 
communication much better than the other two algorithms. 
Furthermore, the actual additional runtime needed to run the pruned 
algorithm is miniscule.  
Each of the three algorithms we compared attempt to minimize the 
number of Φ-nodes, and not the data communication. There is an 
obvious relationship between the number of Φ-nodes and the amount 
of data communication. Every Φ-node defines additional data 
communication, however there can be inter-node data transfer in the 
absence of Φ-nodes. Furthermore, as we pointed out in Section 3.2, 
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minimizing the number of Φ-nodes does not directly correspond to 
minimizing the data communication. 
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Figure 5: A comparison of total edge weight (TEW) and the 
number of Φ-nodes using the minimal and pruned algorithms. 
In Figure 5, we compare the ratio of Φ-nodes and the ratio of TEW 
using the minimal and pruned algorithms. As you can see, the number 
of Φ-nodes is highly related to the amount of data communication. As 
the Φ-node ratio increases, the TEW ratio increases. Correspondingly, 
a large Φ-node ratio corresponds to a large TEW ratio. This lends 
validation to using SSA algorithms to first minimize inter-node 
communication and then using the spatial Φ-node repositioning to 
further reduce the data communication. We conclude that minimizing 
the number of Φ-nodes is a good objective function to initially 
minimize data communication. 
Figure 6 charts the total area ratios of the benchmarks. The figure 
demonstrates that our assumptions about minimizing the TEW have a 
good correlation with minimizing the area of the circuit. Comparing 
Figure 4 with Figure 6, you can see that the amount of reduction in 
TEW correlates with the amount of reduction in total area. For 
example, the TEW for the benchmark fft2 using the semi-pruned 
algorithm is approximately 5 times that of the pruned algorithm. A 
similar result is seen in the total area ratio; the area of the semi-pruned 
algorithm is about 1.8 times that of the area of the pruned algorithm. 
Furthermore, the area of the pruned algorithm is almost always the 
best algorithm in terms of total area. Fft1 is the lone exception, most 
likely due to its small size and limited number of phi-nodes. Even with 
this lone outlier, the overall average area improvements are 14% and 
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Figure 6: A total area comparison of the benchmarks after logic 
synthesis. The ratio is the minimal (semipruned) total area divided 
by the pruned total area. (Omitted benchmarks too large to 
synthesize.) 
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Figure 7: The percentage change in total edge weight when we 
distribute the Φ-nodes using the three SSA algorithms. (Omitted 
benchmarks had 0% change.) 
87% better using the pruned algorithm over the semi-pruned and 
minimal algorithm. Thus, the type of SSA algorithm has a huge effect 
on the area of the circuit implementation. Furthermore, the results 
indicate that it is worth the small increase in runtime to use the pruned 
algorithm. 

Our next set of experiments focus on using spatial SSA Φ-node 
distribution to further minimize the amount of data communication. 
Figure 7 gives the percentage of TEW improvement we achieve by 
spatially distributing the nodes. By spatially distributing the Φ-nodes, 
we reduce the TEW by 1.80%, 4.77% and 8.16% in the pruned, semi-
pruned and minimal algorithms, respectively. We believe the small 
amount of improvement in TEW can be attributed to two things. First 
of all, the TEW contributed by the Φ-nodes is only a small portion of 
the total TEW. Also, when the number of Φ-nodes is small, the 
number of Φ-nodes to distribute is also small. This is apparent in the 
increasing trend seen by the pruned, semi-pruned and minimal 
algorithms. There are many Φ-nodes when we use the minimal 
algorithm and correspondingly, there TEW improvement of the 
minimal algorithm is the 8.16%. Conversely, the number of Φ-nodes 
in the pruned algorithm is small and the TEW improvement is also 
small. 
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Figure 8: Comparison of the total area of the temporal versus 
spatial phi node placement for the three SSA algorithms. (Omitted 
benchmarks too large to synthesize.) 
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We ran the spatial algorithm through our system framework to 
determine the actual area improvements achieved by performing the 
Spatial SSA Algorithm to distribute the phi-nodes. The results are 
shown in Figure 8. The results are mixed and mostly negative. The 
chart plots the total area of the temporal (original) phi node placement 
divided by the total area of our algorithm’s phi node placement. A 
result above 1 denotes that the temporal area is larger than the spatial 
area, meaning that our spatial phi node placement algorithm is 
beneficial. The benchmarks getblk1 and getblk2 benefit immensely 
from the spatial phi node placement. The other benchmarks either 
exhibit higher total area due to spatial placement or the total area is 
approximately the same (i.e. the total area ratio is approximately equal 
to 1). 
We believe that the results are somewhat negative for two reasons. 
First, as stated previously, the TEW reduction when using the spatial 
algorithm is not that large. The TEW reduction was 1.80%, 4.77% and 
8.16% using the pruned, semi-pruned and minimal algorithms. 
Second, and more importantly, we have assumed that all wires are of 
unit length, which is a naïve estimation of circuit characteristics. Thus, 
the TEW is a flawed model, as it does not take into account the actual 
cost of communication between control nodes. (In Section 6, we 
conclude with future work intended to enhance this model.) 

5. Related Work 
The past 15 years have brought about a number of platforms that take 
high-level code and generate a hardware configuration for that 
platform. We mention a few that are similar in spirit to our framework. 
The PRISM project [14] took functions implemented in a subset of C 
and compiled them to their FPGA-like architecture. The Garp compiler 
[4] automatically maps C code to their MIPS + FPGA architecture. 
The DeepC compiler [15] is the most similar to our framework, as it 
synthesizes Verilog from C or Fortran.  
Several recent reconfigurable system compilers (e.g. [16,17]) use the 
notion of SSA, though they do not provide any analysis of the effect of 
SSA on the final circuit. SA-C [18] proposes a single assignment 
language by definition. It may be possible to use our SSA techniques 
as a front end to this language. 

6. Conclusion 
In this paper, we examined the use of SSA within that framework to 
minimize the amount of data communication between control nodes.  
We demonstrated a shortcoming of existing SSA techniques when 
applied to minimizing data communication, as the temporal 
positioning of the Φ-node is not always optimal. We formulated an 
algorithm to spatially distribute the Φ-node to minimize the amount of 
data communication. We showed that this spatial distribution is 
capable of decreasing data communication (measured as TEW) by 
20% for some DSP functions.  
In practice, we found that our algorithm frequently increases total 
circuit area, which is a negative result. Currently we are working on a 
feedback mechanism from the hardware floorplanner to the compiler 
to incrementally derive more optimal results. This will enable us to 
annotate the CDFG with more accurate wire length estimates (obtained 
during placement. Frequently there is an intermediate range of possible 
Φ- node placements between the temporal and spatial placements. We 
intend to explore the possibilities for Φ- distribution across this range. 

Additionally, we plan to account for the size of duplicated 
multiplexers. Placement of Φ-nodes will become an algorithmically 
harder problem, but will yield higher performance through reduced 
amount of interconnect area. 
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