
Data Communication Estimation and Reduction for
Reconfigurable Systems

Adam Kaplan Philip Brisk
Computer Science Department

University of California, Los Angeles

{kaplan,philip}@cs.ucla.edu

Ryan Kastner
Department of Electrical and Computer Engineering

University of California, Santa Barbara

kastner@ece.ucsb.edu

ABSTRACT
Widespread adoption of reconfigurable devices requires system level
synthesis techniques to take an application written in a high level
language and map it to the reconfigurable device. This paper describes
methods for synthesizing the internal representation of a compiler into
a hardware description language in order to program reconfigurable
hardware devices. We demonstrate the usefulness of static single
assignment (SSA) in reducing the amount of data communication in
the hardware. However, the placement of Φ-nodes by current SSA
algorithms is not optimal in terms of minimizing data communication.
We propose a new algorithm which optimally places Φ-nodes, further
decreasing area and communication latency. Our algorithm reduces the
data communication (measured as total edge weight in a control data
flow graph) by as much as 20% for some applications as compared to
the best-known SSA algorithm – the pruned algorithm. We also
describe future modifications to our model that should increase the
effectiveness of our methods.

1. Introduction
The advent of reconfigurable devices has led to a revolution in the way
designers conceptualize hardware systems, as the very logic that drives
circuitry can be customized as often as needed. Reconfigurable
hardware is usually realized via Field Programmable Gate Array
(FPGA) technology. Increasingly, this hardware is being incorporated
into computing systems, often coupled with one or more
microprocessor or ASIC devices on the same chip. The reconfigurable
components of the system provide fast, flexible logic at a very low
cost. These components can be modified and re-implemented, much
like software programs. Therefore, it has become attractive to design
hardware algorithms in a high-level programming language, and
compile this code into actual hardware logic (rather than software
binary form).
The compiler straddles the boundary between application and
hardware, making it a natural area to perform reconfigurable system
design exploration. The compiler can already map portions of the
application to different processors by simply emitting code. In order to
complete the system exploration space – including processors, ASIC
and reconfigurable components, we need a path from the compiler to a
hardware description language (HDL). This HDL can then be
synthesized into reconfigurable circuitry.

An area of extreme importance is the translation of the compiler’s
intermediate representation (IR) to a form that is suitable for synthesis
to hardware. During this translation, we should attempt to exploit the
existing concurrency of the application and discover additional
parallelism. Also, we should determine the types of hardware
specialization that will increase the efficiency of the application.
Finally, we must take into account the hardware properties of the
circuit, such as power dissipation, critical path and interconnect area.
Static single assignment (SSA) [1,2] transforms the IR such that each
variable is defined exactly once. It is an ideal transformation for
hardware because the side effects of the transformation, Φ-nodes, are
easily implemented in hardware as multiplexers. Furthermore, SSA
creates a one-to-one mapping between each variable and its
corresponding value, which allows the compiler to identify each
individual signal uniquely. In many ongoing projects, a compiler
translates high-level algorithmic code to an HDL [3,4,5]. SSA could
easily be incorporated into many of these projects as a compiler pass.
Yet, SSA was originally developed to enable optimizations for
microprocessor architectures; it was not originally meant for hardware
synthesis.
In this paper, we describe SSA and its effect on the optimization of
hardware properties of a circuit. We show how SSA can be used to
minimize data communication; this has a direct effect on the area,
amount of interconnect and delay of the final circuit. Furthermore, we
show that SSA in its original form is not optimal in terms of data
communication and give an optimal algorithm for the placement of Φ-
nodes to minimize the amount of data communication. In the next
section, we give background material related to our research. We show
how SSA is useful to minimize interconnect in the hardware in Section
3. Furthermore, we point out a fundamental shortcoming of traditional
SSA and develop a new SSA algorithm to overcome this limitation.
Section 4 presents experiments to illustrate the effect of these
algorithms to minimize data communication. We discuss related work
in Section 5 and provide concluding remarks in Section 6.

2. Preliminaries
We focus on the control data flow graph (CDFG) as a model of
computation (MOC) for the internal representation (IR) of the
compiler. The CDFG offers several advantages over other models of
computation. Most compilers have an IR that can easily be
transformed into a CDFG. Therefore, this allows us to use the back-
end of a compiler to generate code for a variety of processors.
Furthermore, the techniques of data flow analysis (e.g. reaching
definitions, live variables, constant propagation, etc.) can be applied
directly to CDFGs. Finally, many high-level programming languages
(Fortran, C/C++) can be compiled into CDFGs with slight
modifications to pre-existing compilers; a pass converting a typical
high-level IR into control flow graphs and subsequently CDFGs is

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DAC 2003, June 2-6, 2003, Anaheim, California, USA.
Copyright 2003 ACM 1-58113-688-9/03/0006…$5.00.

35.4

616

possible with minimal modification. Most importantly, we believe that
the CDFG can be mapped to a variety of different microarchitectures.
This justifies our selection of the CDFG as an MOC for investigating
the performance of mapping different parts of the application across a
wide variety of SOC components.
A CDFG consists of a set of control nodes Ncfg and control edges Ecfg.
The control nodes are a set of basic blocks. Each control node holds a
number of instructions or computations that execute atomically. The
control edges model the control flow relationships between the control
nodes. The control nodes and control edges form a directed graph
Gcfg(Ncfg, Ecfg). Each control node contains a set of operations. The data
flow relationships between the operations in a particular control node
can be viewed as a sequential list of instructions I or a data flow graph
Gdfg(Vdfg,Edfg).
In this work, we examine the problem of manipulating a CDFG such
that the resulting hardware exhibits enhanced performance. We have
built a system compiler to synthesize a CDFG into some hardware
description language (HDL). (EDA tools – either academic or
commercial – can perform optimization from that level on.) We used
our tool to obtain the results of this work. We refer the interested
reader to [6] for more details of that framework.

3. Minimizing Inter-Node Communication
In order to determine the data exchange between nodes in a CDFG, we
establish the relationship between the nodes in which data is generated
and the nodes where data is used for calculation. The specific place
where data is generated is called its definition point. A specific place
where data is used in computation is called a use point. The data
generated at a particular definition point may be used in multiple
places. Likewise, a particular use point may correspond to a number of
different definition points; the control flow dictates the actual
definition point at any particular moment.

If data generated in one control node is used in a computation in a
second control node, these two control nodes must have a mechanism
to transfer the data between them. A distributed data communication
scheme has a direct connection between the two control nodes (i.e. one
node controls the other’s execution through a signal). If a centralized
data communication scheme were used, the first control node would
transfer the data to memory and the second control node would access
the memory for that data. Therefore, in a centralized scheme
minimizing the inter-node communication would have a direct impact
on the number of memory accesses, and in a distributed scheme the
interconnect between the control nodes would be reduced. However, in
both schemes real performance boosts can be realized through
communication optimization. Thus, regardless of the scheme that we
use, we should try to generically model and minimize inter-node
communication.

3.1 Static Single Assignment
We can determine the relationship between the use and definition
points through static single assignment [1,2]. Static Single Assignment
(SSA) renames variables with multiple definitions into distinct
variables – one for each definition point.
We define a name to represent the contents of a storage location (e.g.
register, memory). A name is unspecific to SSA. In non-SSA code, a
name represents a storage location but we may not know the exact
location; the precise location of the name depends on the control flow
of the program. Therefore, we call a name in non-SSA code a location.
SSA eliminates this confusion as each name represents a value that is
generated at exactly one definition point. The SSA definition of a
name is called a value.

In order to maintain proper program functionality, we must add Φ-
nodes into the CDFG. Φ-nodes are needed when a particular use of a
name is defined at multiple points. A Φ-node takes a set of possible
names and outputs the correct one depending on the path of execution.
Φ-nodes can be viewed as an operation of the control node. They can
be implemented using a multiplexer. Figure 1 illustrates the conversion
to SSA.

x ← …

y ← x + x

x ← x + y

z ← x + y

x0 ← …

y0 ← x0 + x0

x1 ← x0 + y0

z0 ← x1 + y0

a)

b) x ← … x ← …

← x

x1 ← … x2 ← …

x3 ←Φ(x1,x2)
← x3

Before After

Figure 1: a) Conversion of Straight-line Code to SSA b) SSA
Conversion with Control Flow

SSA is accomplished in two steps, first we add Φ-nodes and then we
rename the variables at their definition and use points. There are
several methods for determining the location of the Φ-nodes. The
naïve algorithm would insert a Φ-node at each merging point for each
original name used in the CDFG. A more intelligent algorithm – called
the minimal algorithm – inserts a Φ-node at the iterated dominance
frontier (IDF) of each original name [1]. The IDF of a set of nodes is
equivalent to the temporally nearest node at which their control paths
rejoin. The semi-pruned algorithm builds smaller SSA form than the
minimal algorithm. It determines if a variable is local to a basic block
and only inserts Φ-nodes for non-local variables [2]. The pruned
algorithm further reduces the number of Φ-nodes by only inserting Φ-
nodes at the IDF of variables that are live at that time [7]. After the
position of the Φ-nodes is determined, there is a pass where the
variables are renamed.
The minimal method requires O(|Ecfg| + |Ncfg|2) time for the calculation
of the iterated dominance frontier. The iterated dominance frontier and
liveness analysis must be computed during the pruned algorithm.
There are linear or near linear time liveness analysis algorithms [8].
Therefore, the pruned method has the same asymptotic runtime as the
minimal method.
We should suppress any unnecessary data communication between
control nodes. Now we explain how to minimize the inter-node
communication.

3.2 Minimizing Data Communication with SSA
SSA allows us to minimize the inter-node communication. The various
algorithms used to create SSA all attempt to accurately model the
actual need for data communication between the control nodes. For
example, if we use the pruned algorithm for SSA, we eliminate false
data communication by using liveness analysis, which eliminates
passing data that will never be used again.
SSA allows us to minimize the data communication, at the cost of
introducing Φ-nodes to the graph. We must add a mechanism that
implements the functionality of a Φ-node. A multiplexer provides the
needed functionality. The input names are the inputs to the
multiplexer. An additional control line must be added for each
multiplexer to determine that the correct input name is selected.

617

A fundamental limitation of using SSA in a hardware compiler is the
use of the IDF for determining the positioning of the Φ-nodes.
Typically, compilers use SSA for its property of a single definition
point. We are using it in another way – as a representation to minimize
the data communication between hardware components (CFG nodes).
In this case, the positioning of Φ-nodes at the iterated dominance
frontier does not always optimize the data communication. We must
consider spatial properties in addition to the temporal properties of the
CDFG when determining the position of the Φ-nodes.
We illustrate our point with a simple example. Figure 2a exhibits
traditional SSA1 form as well as the corresponding
floorplan,containing control nodes a through e. The Φ-node is placed
in control node d. In the traditional SSA scheme, the data values x2, x3,
and x4 (from nodes a, b, and c) are used in node d, but only in the Φ-
node. Then, the data x5 is used in node e. Therefore, there must be a
communication connection from node a to node d, node b to node d
and node c to node d, as well as a connection from node d to node e –
a total of 4 communication links. In Figure 2b, the Φ-node is
distributed to node e. Then, we only need a communication connection
from nodes a,b, and c to node e, a total of 3 communication links.

Figure 2a: SSA form and the corresponding floorplan (dotted
edges represent data communication, and grey edges represent
control). Data communication = 4 units.

From this example, we can see that traditional Φ-node placement is
not always optimal in terms of data communication. This arises
because Φ-nodes are traditionally placed in a temporal manner. The
IDF is the first place in the timeline of the program where the two (or
more) locations of a variable merge. Clearly, however, this is not
necessarily the only place where they can be placed. The IDF is an
excellent location to place Φ-nodes if your goal is shortening the
liveness range of a variable. When considering hardware compilation,
we must think spatially as well as temporally. By moving the position

1 We use the terms “traditional SSA” and “temporal SSA”

interchangeably to mean the SSA introduced by Cytron et al. [1].

of the Φ-nodes, it is possible to achieve a better layout of our hardware
design. In order to reduce the data communication, we must consider
the number of uses of the value that a Φ-node defines, in addition to
the number of values that the Φ-node takes as an input.

3.3 An Algorithm for Distributing Φ-nodes
The first step of spatially distributing Φ-nodes is determining which
Φ-nodes should be moved. We assume that we are given the correct
temporal positioning of the Φ-nodes according to some SSA algorithm
(e.g. minimal, semi-pruned, pruned). The movement of a Φ-node
depends on two factors. The first factor is the number of values that
the Φ-node must choose between. We call this the number of Φ-node
source values s. The second factor is the number of uses that the value
of the Φ-node defines. We call this the Φ-node destination value d.
Taking Figure 2a as an example, the Φ-node source values are x2, x3,
and x4 whereas the Φ-node destination value is x5. Determining s is
simple; we just need to count the number of source values in the Φ-
node. Finding the number of uses of the destination value is more
difficult. We can use def-use chains [9], which can be calculated
during SSA.

Figure 2b: SSA form with the Φ-node spatially distributed, as well
as the corresponding floorplan. Data communication = 3 units.

The relationship between the number of communication links CT
needed for a Φ-node in temporal SSA and the number of
communication links CS in spatial SSA is:

dsCT += dsCS ⋅=

Using these relationships, we can easily determine if spatially moving
a Φ-node will decrease the total amount of inter-node data
communication. If CS is less than CT, then moving the Φ- node is
beneficial. Otherwise, we should keep the Φ-node at the IDF.

After we have identified a set of Φ-nodes to be moved, we must
determine the control node(s) to which we should move each Φ- node.
This step is rather easy, as we move the Φ-node from its original
location to control nodes that have a use of the definition value of that

618

Φ-node. It is possible that by moving the Φ-node, we increase the total
number of Φ-nodes in the design. However, we are decreasing the
total amount of inter-node data communication. Therefore, the amount
of data communication is not directly dependent on number of Φ-
nodes.

It is possible that a use point of the definition value of Φ-node Φ1 is
another Φ-node Φ2. If we wish to move Φ1, we add the source values
of Φ1 into the source values of Φ2; obviously, this action changes the
number of source values of Φ2. In order to account for such changes in
source values, we must consider moving the Φ-nodes in a
topologically sorted manner based on the CDFG control edges. Of
course, any back control edges must be removed in order to have valid
topological sorting. We can not move Φ-nodes across back edges as
this can induce dependencies between the source value and the
destination value of previous iterations i.e. we can get a situation
where b1 ← Φ(b1, …). The source value b1 was produced in a previous
iteration by that same Φ-node. The complete algorithm for spatially
distributing Φ-node to minimize data communication is outlined in
Figure 3.

Theorem 3.1: Given an initially correct placement of a Φ-node, the
functionality of the program remains valid after moving the Φ-node to
the basic block(s) of all the use point(s) of the Φ-node’s destination
value.

Theorem 3.2: Given a correct initial placement of Φ-nodes, the spatial
SSA algorithm maintains the correct functionality of the program.
Theorem 3.3: Given a floorplan where all wire lengths are unit length,
the Spatial SSA Algorithm provides minimal data communication.
The proofs of the proceeding theorems are removed for brevity. Please
see [6] for further details.

1. Given a CDFG G(Ncfg, Ecfg)
2. perform_SSA(G)
3. calculate_def_use_chains(G)
4. remove_back_edges(G)
5. topological_sort(G)
6. for each node n ∈ Ncfg
7. for each Φ-node Φ ∈ n
8. s ← |Φ.sources |
9. d ← |def_use_chain(Φ.dest)|
10. if s ⋅ d < s + d
11. move_to_spatial_locations(Φ)
12. restore_back_edges(G)

Figure 3: Spatial SSA Algorithm

4. Experimental Results
To measure the effectiveness of using SSA to minimize data
communication between control nodes, we examined a set of DSP
functions. DSP functions typically exhibit a large amount of
parallelism making them ideal candidates for hardware compilation.
The DSP functions were taken from the MediaBench test suite [10].
The files were compiled into CDFGs using the SUIF compiler
infrastructure [11] and the Machine-SUIF [12] backend. Then, each of
the benchmarks was given to our framework [6], which transforms the
IR into synthesizable VHDL. The VHDL was then synthesized using
the Synopsys Behavioral Compiler for architectural synthesis followed
by the Synopsys Design Compiler for logic synthesis.

We performed SSA analysis with the SSA library built into Machine-
SUIF. The library was initially developed at Rice [13] and recently
integrated into the Machine-SUIF compiler.
Our SSA algorithm is described as follows. First, we compare the
amount of data flow between the control nodes using the different SSA
algorithms. Given two control nodes i and j, the edge weight w(i,j) is
the amount of data communicated (in bits) from control node i to
control node j. The total edge weight (TEW) is:

∑∑=
i j

jiwTEW),(

Figure 4 is a comparison of edge weights using three different
algorithms for positioning the Φ-nodes. We compare the minimal,
semi-pruned and pruned algorithms. Recall that the pruned algorithm
is the best algorithm in terms of reducing the number of Φ-nodes, but
worst in runtime. The minimal algorithm produces many Φ-nodes, but
has small runtime. The semi-pruned algorithm provides a middle
ground in terms of runtime and quality of result.

0.1

1

10

100

ad
pc

m1

ad
pc

m2

co
nv

olv
e1

co
nv

olv
e2
jct

ran
s

ge
tbl

k1

ge
tbl

k2
moti

on fft1 fft2

no
ise

_e
st1

no
ise

_e
st2

benchmark

TE
W

 ra
tio

 (v
s.

 p
ru

ne
d) Minimal

Semi-pruned

0.1

1

10

100

ad
pc

m1

ad
pc

m2

co
nv

olv
e1

co
nv

olv
e2
jct

ran
s

ge
tbl

k1

ge
tbl

k2
moti

on fft1 fft2

no
ise

_e
st1

no
ise

_e
st2

benchmark

TE
W

 ra
tio

 (v
s.

 p
ru

ne
d) Minimal

Semi-pruned

Figure 4: Comparison of total edge weight (TEW) between the
minimal and semi-pruned TEW and the pruned TEW

We divide the TEW of the minimal and semi-pruned algorithm
(respectively) by the TEW of the pruned algorithm. We call this the
TEW ratio. We use the pruned algorithm as a baseline because it
consistently produces the smallest TEW. Referring to Figure 4, the
TEW of the minimal algorithm is much worse than that of the pruned
algorithm. For example, in the benchmark fft2, the TEW of the
minimal algorithm is over 70 times that of the TEW of the pruned
algorithm. The semi-pruned algorithm yields a TEW that is smaller
than that of the minimal algorithm, but still slightly larger than the
TEW of the pruned algorithm. All algorithms have the same
asymptotic runtime and the actual runtimes for all the algorithms over
all the benchmarks were very small (under 1 second). Therefore, we
conclude that one should use the pruned algorithm as it minimizes data
communication much better than the other two algorithms.
Furthermore, the actual additional runtime needed to run the pruned
algorithm is miniscule.
Each of the three algorithms we compared attempt to minimize the
number of Φ-nodes, and not the data communication. There is an
obvious relationship between the number of Φ-nodes and the amount
of data communication. Every Φ-node defines additional data
communication, however there can be inter-node data transfer in the
absence of Φ-nodes. Furthermore, as we pointed out in Section 3.2,

619

minimizing the number of Φ-nodes does not directly correspond to
minimizing the data communication.

0

20

40

60

80

100

120

140

160

m
ot
io
n

no
is
e_
es
t2

ad
pc
m
2

ad
pc
m
1

ge
tb
lk
1

ge
tb
lk
2

co
nv
ol
ve
1

no
is
e_
es
t1

jc
tra
ns fft

2

benchm ark

ra
ti
o
 (
T
E
W
 o
r
#
 P
h
i
n
o
d
e
)

T E W ratio

P hi node ratio

0

20

40

60

80

100

120

140

160

m
ot
io
n

no
is
e_
es
t2

ad
pc
m
2

ad
pc
m
1

ge
tb
lk
1

ge
tb
lk
2

co
nv
ol
ve
1

no
is
e_
es
t1

jc
tra
ns fft

2

benchm ark

ra
ti
o
 (
T
E
W
 o
r
#
 P
h
i
n
o
d
e
)

T E W ratio

P hi node ratio

Figure 5: A comparison of total edge weight (TEW) and the
number of Φ-nodes using the minimal and pruned algorithms.
In Figure 5, we compare the ratio of Φ-nodes and the ratio of TEW
using the minimal and pruned algorithms. As you can see, the number
of Φ-nodes is highly related to the amount of data communication. As
the Φ-node ratio increases, the TEW ratio increases. Correspondingly,
a large Φ-node ratio corresponds to a large TEW ratio. This lends
validation to using SSA algorithms to first minimize inter-node
communication and then using the spatial Φ-node repositioning to
further reduce the data communication. We conclude that minimizing
the number of Φ-nodes is a good objective function to initially
minimize data communication.
Figure 6 charts the total area ratios of the benchmarks. The figure
demonstrates that our assumptions about minimizing the TEW have a
good correlation with minimizing the area of the circuit. Comparing
Figure 4 with Figure 6, you can see that the amount of reduction in
TEW correlates with the amount of reduction in total area. For
example, the TEW for the benchmark fft2 using the semi-pruned
algorithm is approximately 5 times that of the pruned algorithm. A
similar result is seen in the total area ratio; the area of the semi-pruned
algorithm is about 1.8 times that of the area of the pruned algorithm.
Furthermore, the area of the pruned algorithm is almost always the
best algorithm in terms of total area. Fft1 is the lone exception, most
likely due to its small size and limited number of phi-nodes. Even with
this lone outlier, the overall average area improvements are 14% and

Total area comparsion of SSA algorithms

0.5

1

1.5

2

2.5

3

3.5

ad
pc

m1

ad
pc

m2

co
nv

olv
e1

co
nv

olv
e2

jct
ran

s

ge
tbl

k1

ge
tbl

k2

moti
on fft1 fft2

no
ise

_e
st2

benchmarks

to
ta

l a
re

a
ra

tio

semipruned
vs. pruned

minimal vs.
pruned

Figure 6: A total area comparison of the benchmarks after logic
synthesis. The ratio is the minimal (semipruned) total area divided
by the pruned total area. (Omitted benchmarks too large to
synthesize.)

0%

5%

10%

15%

20%

25%

ad
pc

m1

co
nv

olv
e1

co
nv

olv
e2

jct
ran

s

ge
tbl

k1

ge
tbl

k2 fft1 fft2

no
ise

_e
st1

benchmarks

%
 c

ha
ng

e
in

 T
EW

 th
ro

ug
h

sp
at

ia
l p

hi
-n

od
e

di
st

rib
ut

io
n pruned

semi-pruned
minimal

Figure 7: The percentage change in total edge weight when we
distribute the Φ-nodes using the three SSA algorithms. (Omitted
benchmarks had 0% change.)
87% better using the pruned algorithm over the semi-pruned and
minimal algorithm. Thus, the type of SSA algorithm has a huge effect
on the area of the circuit implementation. Furthermore, the results
indicate that it is worth the small increase in runtime to use the pruned
algorithm.

Our next set of experiments focus on using spatial SSA Φ-node
distribution to further minimize the amount of data communication.
Figure 7 gives the percentage of TEW improvement we achieve by
spatially distributing the nodes. By spatially distributing the Φ-nodes,
we reduce the TEW by 1.80%, 4.77% and 8.16% in the pruned, semi-
pruned and minimal algorithms, respectively. We believe the small
amount of improvement in TEW can be attributed to two things. First
of all, the TEW contributed by the Φ-nodes is only a small portion of
the total TEW. Also, when the number of Φ-nodes is small, the
number of Φ-nodes to distribute is also small. This is apparent in the
increasing trend seen by the pruned, semi-pruned and minimal
algorithms. There are many Φ-nodes when we use the minimal
algorithm and correspondingly, there TEW improvement of the
minimal algorithm is the 8.16%. Conversely, the number of Φ-nodes
in the pruned algorithm is small and the TEW improvement is also
small.

0

0 .5

1

1 .5

2

2 .5

ad
pc
m 1

ad
pc
m 2

co
nv
olv
e1

co
nv
olv
e2

jct
ran

s

ge
tbl
k1

ge
tbl
k2

m o
tio
n fft1 fft2

no
ise

_e
st2

b en ch m ark

to
ta
l a

re
a
(te

m
po

ra
l/s

pa
tia

l)

p rune d

se m ip rune d

m inim al

Figure 8: Comparison of the total area of the temporal versus
spatial phi node placement for the three SSA algorithms. (Omitted
benchmarks too large to synthesize.)

620

We ran the spatial algorithm through our system framework to
determine the actual area improvements achieved by performing the
Spatial SSA Algorithm to distribute the phi-nodes. The results are
shown in Figure 8. The results are mixed and mostly negative. The
chart plots the total area of the temporal (original) phi node placement
divided by the total area of our algorithm’s phi node placement. A
result above 1 denotes that the temporal area is larger than the spatial
area, meaning that our spatial phi node placement algorithm is
beneficial. The benchmarks getblk1 and getblk2 benefit immensely
from the spatial phi node placement. The other benchmarks either
exhibit higher total area due to spatial placement or the total area is
approximately the same (i.e. the total area ratio is approximately equal
to 1).
We believe that the results are somewhat negative for two reasons.
First, as stated previously, the TEW reduction when using the spatial
algorithm is not that large. The TEW reduction was 1.80%, 4.77% and
8.16% using the pruned, semi-pruned and minimal algorithms.
Second, and more importantly, we have assumed that all wires are of
unit length, which is a naïve estimation of circuit characteristics. Thus,
the TEW is a flawed model, as it does not take into account the actual
cost of communication between control nodes. (In Section 6, we
conclude with future work intended to enhance this model.)

5. Related Work
The past 15 years have brought about a number of platforms that take
high-level code and generate a hardware configuration for that
platform. We mention a few that are similar in spirit to our framework.
The PRISM project [14] took functions implemented in a subset of C
and compiled them to their FPGA-like architecture. The Garp compiler
[4] automatically maps C code to their MIPS + FPGA architecture.
The DeepC compiler [15] is the most similar to our framework, as it
synthesizes Verilog from C or Fortran.
Several recent reconfigurable system compilers (e.g. [16,17]) use the
notion of SSA, though they do not provide any analysis of the effect of
SSA on the final circuit. SA-C [18] proposes a single assignment
language by definition. It may be possible to use our SSA techniques
as a front end to this language.

6. Conclusion
In this paper, we examined the use of SSA within that framework to
minimize the amount of data communication between control nodes.
We demonstrated a shortcoming of existing SSA techniques when
applied to minimizing data communication, as the temporal
positioning of the Φ-node is not always optimal. We formulated an
algorithm to spatially distribute the Φ-node to minimize the amount of
data communication. We showed that this spatial distribution is
capable of decreasing data communication (measured as TEW) by
20% for some DSP functions.
In practice, we found that our algorithm frequently increases total
circuit area, which is a negative result. Currently we are working on a
feedback mechanism from the hardware floorplanner to the compiler
to incrementally derive more optimal results. This will enable us to
annotate the CDFG with more accurate wire length estimates (obtained
during placement. Frequently there is an intermediate range of possible
Φ- node placements between the temporal and spatial placements. We
intend to explore the possibilities for Φ- distribution across this range.

Additionally, we plan to account for the size of duplicated
multiplexers. Placement of Φ-nodes will become an algorithmically
harder problem, but will yield higher performance through reduced
amount of interconnect area.

7. References
[1] R. Cytron et al., “An Efficient Method of Computing Static Single

Assignment”, Proceedings of Symposium on Principles of Programming
Languages, January 1989.

[2] P. Briggs et al., “Practical Improvements to the Construction and
Destruction of Static Single Assignment Form”, Software Practice and
Experience, July 1998.

[3] E. Waingold et al, “Baring it all to Software: The Raw Machine,” IEEE
Computer, Sep 1997.

[4] T. J. Callahan, J. R. Hauser and J. Wawrzynek, “The Garp Architecture
and C Compiler”, IEEE Computer, vol. 33, no. 4, April, 2000.

[5] M. Hall et al., "DEFACTO: A Design Environment for Adaptive
Computing Technology", Proceedings of the 6th Reconfigurable
Architectures Workshop, Springer-Verlag, 1999.

[6] R. Kastner, “Synthesis Techniques and Optimizations for Reconfigurable
Systems, PhD Thesis, Computer Science Department, UCLA, September
2002.

[7] R. Cytron et al., “Efficiently Computing Φ-nodes On-the-Fly”, ACM
Transactions on Programming Languages and Systems, October 1991.

[8] K. Kennedy. “A Survey of Data Flow Analysis Techniques”, Program
Flow Analysis: Theory and Applications, Prentice-Hall, 1981.

[9] S. S. Muchnick, Advanced Compiler Design and Implementation, Morgan
Kaufmann Publishers, San Francisco, 1997.

[10] C. Lee, M. Potkonjak and W. H. Maggione-Smith, “MediaBench: A Tool
for Evaluating and Synthesizing Multimedia and Communications
Systems”, Proceedings of International Symposium on
Microarchitecture, 1997.

[11] M. W. Hall et al., “Maximizing Multiprocessor Performance with the
SUIF Compiler”, IEEE Computer, December 1996.

[12] M. D. Smith and G. Holloway, An Introduction to Machine SUIF and its
Portable Libraries for Analysis and Optimization, Division of
Engineering and Applied Sciences, Harvard University,

[13] P. Briggs, T. Harvey and L. Simpson, Static Single Assignment
Construction, Implementation documentation, 1996.

[14] A. Smith et al., ”PRISM II Compiler and Architecture”, Proceedings of
IEEE Workshop on FPGA-based Custom Computing Machines, April,
1993.

[15] J. Babb et al., “Parallelizing Applications into Silicon”, Proceedings of
Field-Programmable Custom Computing Machines, 1999.

[16] J. L. Tripp, P. A. Jackson, and B. L. Hutchings, "Sea cucumber: a
synthesizing compiler for FPGAs," Proceedings of the International
Conference on Field-Programmable Logic and Applications, 2002

[17] M. Budiu and S. C. Goldstein, "Compiling application-specific
hardware," Proceedings of the International Conference on Field-
Programmable Logic and Applications, 2002

[18] R. Rinker et al., "An automated process for compiling dataflow graphs
into reconfigurable hardware," IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 9, pp. 130-9, February 2001.

621

