
A C to Hardware/Software Compiler
Kiarash Bazargan Ryan Kastner Seda Ogrenci Majid Sarrafzadeh

Department of Electrical and Computer Engineering
Northwestern University

2145 Sheridan Rd.
Evanston, IL 60208-3118

{kiarash,kastner,seda,majid}@ece.nwu.edu

ABSTRACT
Improvements in the FPGA technology have resulted in
introduction of reconfigurable computing machines, where the
hardware adapts itself to the running application to gain
speedup. This paper presents a top-down compilation method,
under development, for such systems. We compile a C program
into hierarchical VHDL source files, and annotate them with the
placement information of the hardware modules to be
configured on the FPGA. Static scheduling combined with a
fast, two-stage placement core reduces the compilation time of
large programs to minutes.

1. INTRODUCTION
Reconfigurable computing systems (RCS) are the next
promising alternatives to costly high-performance multi-
processors. A typical RCS is a host processor, coupled with a
reconfigurable “co-processor”. The co-processor, or as we call
it, reconfigurable functional unit (RFU), could be an FPGA, or
some reconfigurable fabric on the same die as the CPU.

One of the challenging problems in realizing a general-purpose
reconfigurable processor, is devising fast compilation/debugging
methods. Ideally, a programmer should be able to write his/her
code (e.g., DSP, encryption, compression, etc.) in a high-level
language and compile it as we compile C programs today. The
compilation/debug cycle should be short. Such a scenario does
not leave room for logic synthesis, placement and routing of the
circuit at the gate-level. Extensive use of versatile IP libraries, as
well as fast physical design methods seem to be a necessity.

Future reconfigurable computing systems (RCS) tend to
integrate the RFU and on-chip cache (possible even the CPU)
on the same chip to overcome latencies in CPU/RFU
communication. The data communication between CPU and
RFU would be through fast on-chip memory blocks (e.g.
Xilinx’s Virtex chip [7]), as well as general- and special-
purpose register files (Chimaera [4] and GARP [5]). Our
method handles both communication schemes.

2. PREVIOUS WORK
There has been some work in compilation of programs onto
reconfigurable computing systems in the last few years (e.g.,
Garp and [3]). Some of them target specific architectures, and
some need the user to identify which parts of the code should be
mapped to reconfigurable fabric (e.g., the PRISM compiler,
Garp compiler).

To this date, none of the compilation methods deal with
automatic placement or routing of the RFUOPs. We propose an
integrated approach for compilation and simultaneous
scheduling of the operations and placement of the hardware
modules.

3. THE COMPILATION PROCESS
Our model runtime system is a statically configured RFU,
(tightly) coupled with the CPU. The RFU works as a
coprocessor to the CPU. At any given time, either of the CPU or
RFU is executing parts of the program.

Selection of the RFUOPs to allocate from the IP library, as well
as their locations on the chip, is done at compile time. Once the
set of RFUOPs and their locations are decided, the configuration
bit-stream could be generated and stored as a “hardware code”.
When the program is loaded into memory, the configuration
should be streamed to RFU as well before the program starts
running. Figure 1 shows the compilation flow, from a C
program into an assembly and corresponding hardware code.

&�SURJUDP&�SURJUDP
&DQGLGDWHV�IRU�&DQGLGDWHV�IRU�

PDSSLQJ�RQWR�5)8PDSSLQJ�RQWR�5)8

/RRS�/RRS�')*V')*V

�6FKHGXOHU�

,3�OLEUDU\,3�OLEUDU\

��&RPSLOHU��

�6\QWKHVLV�WRROV�

�$UHD�'HOD\�

(VWLPDWLRQ�

2EM2EM��
FRGHFRGH

��3ODFHU��

&DQGLGDWH&DQGLGDWH
WDLORU�PDGHWDLORU�PDGH
5)823V5)823V

9+'/9+'/

Figure 1 Compilation flow

The compiler in Figure 1 is a modification of gcc under
development at Northwestern University [8]. Although it is
targeted for the Chimaera architecture [4], it can be used for any
reconfigurable architecture. In our current compilation to
hardware, we do not consider tailor-made RFUOPs (Figure 1).

Loop bodies in a C program are compiled to data flow graphs
(DFG). Loop unrolling is used to create more code parallelism.
The scheduler (see Figure 1) allocates resources from the IP
library for each of the loops and schedules each loop
independently. Meanwhile, the placer generates a local
placement for the RFUOPs implementing any given loop. We
refer to the set of RFUOPs implementing a loop as a loop block.

After local placements are generated for each of the loop blocks,
the scheduler decides on which one of the loops to actually map
onto RFU. At first, the loop block with highest speedup to area
ratio is chosen and globally placed on the RFU. Other loop
blocks are placed in the order of their speedup to area ratio until
there is not enough room on the RFU or all loop blocks with
latency gain have been placed on the RFU.

The VHDL codes corresponding to datapaths are generated, and
synthesized using the synthesis tools (Xilinx Foundation Series
[7]). If the synthesis tool fails to place and route the whole

design, the scheduler starts again, using less area for placing
hardware modules.

4. STATIC RCS SCHEDULING
Our scheduler (non-preemptive) has an internal loop in which
resource allocation and operation scheduling are done
repeatedly. Resources are added in the order of latency gain to
area ratio. After all resources for a loop have been added,
registers and multiplexers are added and a final local placement
is generated for the loop. We employ heuristics to minimize
congestion and high fanins, but for brevity, we will not discuss
them in this paper.

For the operation scheduling, we have modified the well-know
list-scheduling algorithm to account for different running times
of the operations on different resources (e.g., CPU vs. RFUOP).
Our scheduler also tries to minimize routing/congestion costs by
binding an operation and its successor to two resources which
already are connected due to other node/successor pairs.
Furthermore, to decide on the order of the operations to
schedule in the list-scheduling algorithm, we not only look at
how time-critical a node is, but we also consider how promising
it is in allowing its successor nodes to be scheduled earlier.

5. PLACEMENT OF RFUOPS
RFUOPs in the same data path are packed into larger blocks
which do not communicate with other blocks significantly,
hence no routing is needed between thesm. Therefore, the
placement problem at the level of hierarchical blocks can be
solved much faster than a flat model.

For the local placement, we employed the method suggested in
[2], which is a very fast linear placement algorithm for
datapaths. For the global placement, when the area of currently
selected modules is less than a fixed threshold (70% of the chip
area in our experiments), then we assume that the loop blocks
can be globally placed. Otherwise, the global placer sorts the
loop blocks on their area (decreasing), and applies the KAMER-
BF online placement method [1] to place the modules. If the
global placer fails to place all the loop blocks, the most recently
added loop block will be removed and the next candidate loop
for hardware implementation is considered. The advantage of
using KAMER-BF is that it is extremely fast and of reasonable
quality so it can be used in the inner loop of the scheduling.

6. EXPERIMENTAL RESULTS
Although our methods do not target any specific FPGA products
available in the market, we have chosen Xilinx’s Virtex family
[7] as the RFU, and Virtex IP-Cores [7] as the library. We
assumed that the configurable component runs at 150MHz
(Virtex’s grade 5-6 speed) while the CPU runs at 300MHz.
Since we target loops for optimization, we used the pipelined
version of the operations in the IP library.

Table 1 shows the test programs [6] we used for scheduling.
One loop from each program is shown in the table. In the first
two rows, mapping the loop bodies onto hardware results in
more number of CPU cycles than the software implementation
of the code, hence the scheduler chooses not to map the blocks
to hardware. In decompress_unroll2 and _unroll3, one and two
additional loop iterations of decompress have been unrolled. As
can be seen in the table, the scheduler has well utilized the
potential parallelism in the “image” code.

7. CONCLUSION AND FUTURE WORK
We proposed an integrated static scheduling and placement
method that can compile C programs to hardware/software in
minutes. The novelty of our method is in exploiting a two-phase
fast placement method as well as congestion-aware scheduling
heuristic.

We can improve our compiler in many directions. An example is
automatic memory placement (i.e., assigning program arrays to
on-chip memory blocks). The way memory accesses are
scheduled gravely affects the performance. It also puts
restrictions on the placement of the RFUOPs (a loop block
should be placed close to the memory blocks it accesses).

Orig. #
cycles

Sched.
cycles

RFUOPs used

diffeq 11 15 In software
decompress 17 20 In software
decompress
_unroll2

34 30 2 mult, 4 add, 1 and, 1 reg
1 cmp, 2 shft, 5 mux

decompress
_unroll3

51 32 4 mult, 5 add, 1 and, 4 shft,
3 cmp, 11 mux, 3 reg

image 24 10 4 add, 2 shft, 1 reg, 5 mux

Table 1 Original number of cycles and scheduled number of
cycles per unrolling of the loops

8. ACKNOWLEDGEMENTS
This work was funded by DARPA under contract number
DABT63-97-C-0035.

We would like to thank Alex Z. Ye and Candice McGrew for
their helps in providing us with the modified gcc compiler [8]
and the interface to our scheduler respectively.

9. REFERENCES
[1] Bazargan, K., and Sarrafzadeh, M., "Fast Online Placement

for Reconfigurable Computing Systems", In IEEE Symp.
Field Programmable Custom Computing Machines, pp.
300-302, 1999.

[2] Callahan, T. J., Chong, P., DeHon, A. and Wawrzynek, J.,
“Fast Module Mapping and Placement for datapaths in
FPGAs”, in ACM/SIGDA International Symposium on
Field Programmable Gate Arrays, 1998.

[3] Gokhale, M. and Schott, B., " Data-Parallel C on a
Reconfigurable Logic Array", The Journal of
Supercomputing, 9 (3), pp. 291-313, 1995.

[4] Hauck, S., Fry, T. W., Hosler, M. M., and Kao, J. P., " The
Chimaera Reconfigurable Functional Unit", In IEEE Symp.
Field Programmable Custom Computing Machines, pp.87-
96, 1997.

[5] Hauzer, J. R., and Wawrzynek, J., "GARP: A MIPS
Processor with a Reconfigurable Coprocessor", In IEEE
Symp. Field Programmable Custom Computing Machines,
pp. 12-21, 1997.

[6] Honeywell benchmarks
http://www.htc.honeywell.com/projects/acsbench/

[7] http://www.xilinx.com/
[8] Ye, A., Shenoy, N. and Banerjee, P., " A C Compiler for a

Processor with a Reconfigurable Functional Unit", to
appear in ACM International Symposium on Field-
Programmable Gate Arrays, 2000.

