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Abstract

We initiate the algorithmic study of a new model of genome

rearrangement, the tandem duplication-random loss model,

in which a genome evolves via successive rounds of tandem

duplication of a contiguous segment of genes, followed by the

loss of one copy of each of the duplicated genes. This model

is well-known in the evolutionary biology literature, where it

has been used to explain many of the known rearrangements

in vertebrate mitochondrial genomes. Based on the model,

we formalize a notion of distance between two genomes and

show how to compute it efficiently for two interesting regions

of the parameter space. We then consider median problems

(i.e. finding the point which minimizes the sum of distances

to a given set of points under some distance function) in the

context of maximum parsimony phylogenetic reconstruction

for these two special cases. Surprisingly, one of them

turns out to correspond to the well-known rank aggregation

problem, while the other corresponds to the biologically

interesting case of whole genome duplication and loss, and

we give an O(log log n) additive approximation algorithm for

the latter.

1 Introduction

The growing availability of complete genome sequences
has made it possible to study molecular evolution at
the level of large-scale genome rearrangements. There
is now a sizeable body of algorithmic work on comput-
ing distances between genomes under various models of
genome rearrangement including inversions, transloca-
tions and chromosome fusions/fissions, and using them
to reconstruct phylogenetic trees (see [1, 2] for excellent
introductions to the field of gene order phylogeny).

Several attempts have been made to incorporate
gene duplications and losses into these models [3, 4,
5, 6], but the resulting combinatorial problems have
typically been quite difficult. Our approach is to
isolate the duplication-loss problem by concentrating
on the combinatorial properties of a model involving
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Figure 1: Example of a genome rearrangement caused
by one round of tandem duplication and random loss.

only duplications and losses. In the tandem duplication-
random loss model, or simply the duplication-loss model,
a genome evolves via the tandem duplication of a
contiguous segment of genes (i.e. the duplicated copy is
inserted immediately after the original copy), followed
by the loss of one copy of each of the duplicated genes.
In most, though not all, cases, this process will result in
a genome rearrangement (Figure 1).

There are good theoretical and empirical reasons
to model the gene loss events following a tandem
duplication as occuring virtually instantaneously (at
least on an evolutionary time-scale), so we can think
of the duplication and gene losses together as a single
atomic event (readers interested in the biological basis
of the model are referred to [7, 8]). Although clearly an
approximation to reality, this model nonetheless gives us
a clean framework in which to study the combinatorics
of gene duplication and loss. In addition, the model has
been well-studied in the biology literature, where it has
been shown by Boore, Brown and others to be perhaps
the most important rearrangement process in the case
of animal mitochondrial genomes [7, 8, 9, 10, 11, 12],
and has also been discussed in the computer science
literature [13]. Furthermore, it is a rich model that



contains the special cases of whole-genome duplication
and loss, which is of special interest in the study of
genome evolution [14, 15, 16], small inversions and small
transpositions.

In our model, we adopt the usual convention of
defining a genome to be a (linear, unsigned) permuta-
tion of the integers 1 to n. Although it seems intuitively
clear that the cost of a duplication should be some non-
decreasing function of the length of the duplication, it is
not clear exactly what functional form this cost function
should take. In this paper, we propose a geometrically
increasing cost function as one possibility: the cost of a
duplication of a segment of k genes is αk for some con-
stant parameter α ≥ 1. The physical intuition for this
cost function is a model in which each gene following
the initiation of duplication is the termination point of
the duplication with uniform constant probability. Cer-
tainly other cost functions, such as an affine function,
can be considered, but we do not do so here.

The first problem we consider is that of computing
the edit distance: a minimum cost sequence of duplica-
tions and losses required to transform one permutation
into another.

Definition 1.1. Given a permutation π and a param-
eter α, find a minimum cost sequence of duplication-loss
steps required to transform the identity permutation, πI ,
into π. We denote this distance dα(πI , π) or more sim-
ply, dα(π).

Our first main result is a solution to this problem
for two interesting regions of the parameter space.

Theorem 1.1. Given a parameter α ≥ 1 and a permu-
tation π,

1. α = 1

Define ρ(π) to be the number of maximal increasing
substrings in π (e.g. ρ(142563) = 3). Then

dα(π) = dlog2 ρ(π)e

The distance can be trivially computed by inspection
in linear time, and it is easy to see that the case
α = 1 (i.e. all duplications equi-probable) reduces
to the whole-genome duplication case.

2. α ≥ 2

The Kendall-Tau distance (the bubblesort distance)
is defined as

dKT (π) = |(i, j) : i > j and π(i) < π(j)|

Then dα(π) is exactly the Kendall-Tau distance and
can be computed in O(n log n) time.

We prove this theorem in Section 2. In Section 3,
we extend our techniques to the problem of phylogenetic
tree reconstruction under our new distance measure.
For the case α ≥ 2, the Kendall-Tau distance is a metric,
so efficient distance-based methods, such as neighbor
joining (e.g. [17]), can be directly applied. However,
for the case α = 1, we show that the distance measure
is strongly asymmetric in a certain sense, making this
approach infeasible. Our distance measure is the only
asymmetric distance in the gene order literature to the
best of our knowledge.

Based on this negative result, in Section 4, we adopt
a maximum-parsimony framework instead and study
median problems for our two distance measures. In the
traditional undirected version of the median problem,
we are given k genomes and asked to find the genome
which minimizes the sum of the distances to the other k.
The median problem for the Kendall-Tau distance has
previously been studied in the context of social choice
theory and rank aggregation, where it is called the Ke-
meny optimal ranking problem, and shown to be NP-
hard for k ≥ 4 [18]. A recent paper gives a 1.57 ap-
proximation algorithm for the minimization version of
the problem [19] and a PTAS was previously known for
the maximization version [20]. For k = 3, the case of
most interest in the context of phylogeny, since it is
often used as a subroutine in phylogenetic reconstruc-
tion [1], NP-hardness has not been established, but a
trivial 4

3 approximation can be achieved by simply pick-
ing one of the three permutations as the median. We
also note that although we concentrate in this paper on
the case where all genomes have the same gene content,
it is also important to study the unequal gene content
case. Some of the results in the rank aggregation liter-
ature generalizing the Kendall-Tau distance to partial
lists may be applicable to our problem, and our work
also suggests further generalizations of of the rank ag-
gregation problem. For example, a gene duplication in
our scenario would correspond to an element with two
different ranks in the same list in the context of rank
aggregation.

For the case α = 1, since the distance measure is
asymmetric, we define a directed version of the median
problem in which we are given two child genomes and
asked to find the parent which minimizes the sum of the
distances to the two children.

Definition 1.2. Given two permutations π1 and π2,
find the permutation π̂ such that d1(π̂, π1)+ d1(π̂, π2) is
minimized.

Our second main result is an approximation algo-
rithm for this problem:

Theorem 1.2. There exists a polynomial-time approx-



imation algorithm for the directed median problem, un-
der the whole-genome duplication and random loss dis-
tance measure, with additive error O(log log n).

We conclude in Section 5 with some experiments on
real biological data.

2 Computing the Distance

In the rest of this paper, each round of tandem duplica-
tion and gene loss will be referred to as a duplication-loss
step or, when the context is clear, simply a step. When
we wish to specify the size of the duplication precisely,
we shall refer to it as a k-step, and we shall specify a
step by a k-bit vector in which the 1 bits correspond
to those genes which are lost in the second copy of the
genome and the 0 bits to those which are lost in the
first copy (alternatively, 1 bits are the genes “selected”
in the first copy and 0 bits are those “selected” in the
second copy).

2.1 α = 1. For the case α = 1, it is easy to
see that it is always optimal to duplicate the entire
genome in each round, so that it reduces to the whole-
genome duplication-random loss model. In this section,
we prove Theorem 1.1, which states that the distance
from the identity permutation to a given permutation,
π, is exactly dlog2 ρ(π)e, and give an algorithm that
reconstructs the duplication-loss steps on a particular
shortest path between the two permutations.

Our algorithm is based on the insight that a
duplication-loss step is equivalent to one step of the
classical radix sort algorithm. We initially label each
element of the ith maximal increasing substring in π
with the binary representation of i. We then define the
kth duplication-loss step to be the n-bit vector which
has 0 everywhere, except in those positions which have
labels containing a 0 in their kth least significant bit.
This series of steps is sufficient to transform the iden-
tity permutation into π. Figure 2.1 shows the steps in
an example execution of the algorithm.

We now prove Theorem 1.1.

Proof. We prove that d1(π) ≤ dlog2 ρ(π)e by induction
on the number of steps. We claim that after the first k
steps, the maximal increasing substrings are sorted with
respect to the k least significant bits of their labels. This
is obvious for the base case k = 1, and the inductive
step follows from the fact that sorting in step k does
not interfere with the sorted order produced by the
previous steps (i.e. radix sort is stable). The elements
within a particular maximal increasing substring were
in increasing order in the identity permutation to start,
and the sorting process does not change their order
at any point, again using the stability property. This
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Figure 2: Example of an execution of the radix sort
algorithm. A) We label each maximal increasing sub-
string with its index in binary. B) We transfer these
labels to the identity and use them to sort the identity
permuation into the target permutation. The first step
selects the elements whose least significant bit is 0, and
the second step selects the elements whose second least
significant bit is 0. The execution of the algorithm take
dlog2 3e = 2 steps.



shows that after dlog2 ρ(π)e steps, the elements are
sorted with respect to their entire labels.

To show that d1(π) ≥ dlog2 ρ(π)e, the main insight
is that a duplication-loss step can create at most two
maximal increasing substrings from each maximal in-
creasing substring of the previous permutation. Since
the identity permutation has one maximal increasing
substring and π has ρ(π) maximal increasing substrings,
the proof follows.

An immediate corollary of Theorem 1.1 is that
the diameter of the space of permutations is dlog2 ne
and the worst case is achieved for an inversion of
the entire genome. This proves mathematically what
was previously believed by the mitochondrial genome
community, namely that a pure duplication-loss model
cannot accomodate inversions in a natural way.

2.2 α ≥ 2. For the case α ≥ 2, we show that the
distance is exactly equal to the Kendall-Tau distance
and can thus be computed in O(n log n) time [18].

First observe that when we are restricted to 2-
steps (duplications of size 2), the problem is exactly
equivalent to bubble-sort, since the only operation
possible is to swap two adjacent elements.

To complete the proof, we need the following addi-
tional lemma:

Lemma 2.1. If α ≥ 2, given a sequence of steps of ar-
bitrary size, it is always possible to construct a sequence
using only 2-steps of cost no greater than the original
sequence.

Proof. It is possible to directly simulate a k-step with
two (k-1)-steps and thus to show the result by induction,
but we find it clearer to give an alternative proof
as follows. The idea is to simulate a k-step with
multiple 2-steps. Suppose we start with the identity
permutation and we perform a k-step on it, producing
the permutation π. We want to compute the maximum
possible Kendall-Tau distance between the identity and
π. Observe that π has exactly two maximal increasing
substrings. Let A be the set of elements in the first
and B the set of elements in the second respectively.
To compute the Kendall-Tau distance, we consider all
ordered pairs (i, j) where 1 < i < j < k.

No pair (i, j) where i ∈ A contributes to the
Kendall-Tau distance, since by definition, no element
larger than i is to the left of i. Now for each pair (i, j)
where i ∈ B, the only pairs that can contribute to the
Kendall-Tau distance are those where j ∈ A. Therefore
the Kendall-Tau distance is at most |A| · |B| and this
is maximized by taking |A| = |B| = k

2 if k is even

and |A| = k+1
2 , |B| = k−1

2 if k is odd. Therefore the

maximum Kendall-Tau distance is k2

4 if k is even and
(k+1)(k−1)

4 if k is odd.
Now, it is optimal to use only 2-steps if for even

k, αk ≥ k2

4 · α2 ⇒ α ≥ (k2

4 )
1

k−2 and for odd k,

αk ≥ (k+1)(k−1)
4 · α2 ⇒ α ≥ ( (k+1)(k−1)

4 )
1

k−2 .
Plotting these functions for k ≥ 2, we see that the

maximum value of the function attained is 2.

3 Distance-based Phylogenetic Reconstruction

Given our distance computation, the natural next step
is to extend the model to reconstruct phylogenies. For
the case α > 2, it is easy to see that the Kendall-Tau
distance is a metric (in particular, it is symmetric) and
so any distance-based phylogeny method (e.g. neighbor
joining) can be applied.

The case α = 1 is more complicated since the
distance measure is asymmetric: for example, we can
transform 1234 to 2413 in one step but not the reverse.
On the other hand, asymmetry in and of itself is not
necessarily an insurmountable problem, if it is the case
that the distance measure is only “weakly” asymmetric,
in the sense that asymmetric steps are rare events. In
this section, we give negative results showing that this
in fact, does not hold, and that our distance measure is
in some sense, “strongly asymmetric”.

3.1 Probability of an Asymmetric Step First, we
consider the possibility that asymmetric steps are rare
events. Recall that each whole-genome duplication-loss
step is specified by an n-bit vector, in which the 1 bits
correspond to genes in which the first copy is selected
and the 0 bits to those in which the second copy is
selected. How many of these 2n steps are asymmetric?
We give an exact combinatorial characterization of the
steps that are asymmetric, and show that the number
of such steps grows exponentially in the size of the
duplicated region (i.e. in n). To do this, we will in
fact prove a stronger lemma, which characterizes exactly
how asymmetric a step is, in terms of the structure of
the step:

Lemma 3.1. Let π2 be derived from π1 by one
duplication-loss step, s. Consider the longest subse-
quence of s of the form {01}∗. (Note that here we
consider subsequences, which are not necessarily con-
secutive positions in the string, while in Theorem 1.1
we consider substrings, which must be consecutive.)
Let r(s) be the number of repetitions of {01}. Then
d1(π2, π1) = dlog2[r(s) + 1]e.

Proof. If π2 is derived from π1 by step s, then the
number of maximal increasing substrings of π1 with
respect to π2 is precisely r(s) + 1. The lemma follows



by application of Theorem 1.1.

From this lemma, we see that a duplication-loss
step is asymmetric if and only if it contains a 0101-
subsequence. This result allows to compute the proba-
bility of a symmetric step:

Corollary 3.1. Let Σn be the sum of the first n nat-
ural numbers. The number of steps that are symmetric
is Σn + (Σn−3 + Σn−2 + . . . + Σ1).

Proof. Suppose a step does not contain a 0101-
subsequence. Call a maximal contiguous substring of 1’s
a block. Clearly the step cannot contain more than two
blocks, so there two cases to consider: either there is one
block, or there are two blocks but the first one starts at
the first position in the step. The number of steps with
one block is 1 + 2 + . . . + n = Σn. The number of sym-
metric steps with two blocks is Σn−3 +Σn−2 + . . .+Σ1.

This result shows that the number of symmetric
moves is only O(n3) out of a possible 2n moves, so
if in our evolutionary process the gene losses occur
uniformly at random, the process is asymmetric with
exponentially high probability.

4 Maximum Parsimony Phylogenetic

Reconstruction

Motivated by the negative results of the previous sec-
tion, we approach the problem of phylogenetic recon-
struction for the whole-genome duplication case within
a maximum parsimony framework. We start with the
simplest case of the maximum parsimony problem, the
directed median problem: given two genomes, find the
parent genome which minimizes the sum of the distances
to these two children. 1

Undirected medians are frequently used as a subrou-
tine in phylogenetic tree reconstruction (e.g. [5]). They
have been shown to be NP-hard for the breakpoint and
inversion distances [21, 22], and multiplicative constant
factor approximations are known for the breakpoint me-
dian problem [23]. 2 As noted in the introduction, the

1Note that we assume that gene loss events occur instanta-
neously with respect to speciation events, so duplicated genes can-
not be carried across speciation boundaries, and if both genomes
are duplicated, we charge 2 for this and not 1.

2The inversion distance is defined on signed permutations (e.g.
+1 − 2 + 4 − 3). An inversion takes a contiguous segment of the
genome and reverses both the elements and their signs (e.g. an
inversion of the last three elements produces +1 − 2 + 4 − 3 →

+1 + 3 − 4 + 2). The inversion distance between two signed
permutations is the minimum number of inversions needed to
convert one into the other. The breakpoint distance is defined on
unsigned permutations and is defined as the number of adjacencies
in one genome that are not present in the other.

median problem for three genomes under the Kendall-
Tau distance is not known to be NP-complete, and the
best known algorithm achieves an approximation factor
of 4

3 .
We first note that the trivial leaf lifting algorithm

which labels the parent node with one of the two chil-
dren achieves the worst possible approximation factor.
Consider the following example:

π1 = 1, 2, 3, . . . , n

π2 = 1,
n

2
+ 1, 3,

n

2
+ 3, . . . , 2,

n

2
+ 2, . . . ,

n

2
, n

Applying Theorem 1.1, we see that both children are at
distance log2 n − 1 from each other (note that π2 is its
own inverse). However, there exists a parent node

π̂ = 1,
n

2
+ 1, 2,

n

2
+ 2, . . . ,

n

2
, n

which is at distance 1 from each child. Since the
diameter of the space is log2 n, this is essentially the
worst possible distortion. This is in stark contrast to
the undirected case, where choosing one of the three
permutations as the median is a 4

3 -approximation for
any metric.

In this section, we give an O(n3 log n) time algo-
rithm which approximates the optimum up to an ad-
ditive error of O(log log n). The algorithm returns a
simple graph data structure which represents not just a
single optimal solution, but all optimal solutions.

4.1 A Graph-Theoretic Formulation The analy-
sis of the previous sections shows that for two permu-
tations π̂ and πi, d1(π̂, πi) = dlog ρπ̂(πi)e, where ρπ̂(πi)
is the number of maximal increasing subsequences of πi

with respect to π̂. Alternatively, we can rephrase this
in terms of the number of descents of πi with respect
to π̂ - this number is just ρπ̂(πi) − 1. Now consider
the directed graph Gπi

on the vertex set [n] and with
edges ei = (πi(i), πi(i + 1)) for i ∈ [n − 1]. This is
a chain with n − 1 edges. A descent in πi with re-
spect to π̂ corresponds to an edge e = (i, j) in Gπi

such that i occurs after j in π̂. We say that e violates
π̂. We conclude that given two permutations πi and π̂,
d1(π̂, πi) = dlog(k + 1)e where k is the number of edges
in Gπi

which violate π̂.
In the median problem, we are looking for the

permutation π̂ which minimizes the quantity dlog(k1 +
1)e + dlog(k2 + 1)e, where ki is the number of edges of
Gπi

which violate π̂. Now consider the graph Gπ1,π2
on

vertex set [n] and with edge set the union of the edge
sets of Gπ1

and Gπ2
. Color the edges of Gπ1,π2

that
come from Gπ1

blue and the edges that come from Gπ2

red. To solve the median problem, we need to find the



pair (b, r) which minimizes dlog(b + 1)e + dlog(r + 1)e,
such that it is possible to remove b blue edges and r
red edges from Gπ1,π2

such that the remaining graph
is a directed acyclic graph (DAG). We can then choose
π̂ to be any permutation that is consistent with the
remaining graph, in other words any linear ordering of
this remaining graph. This problem is a variation of the
Feedback Arc Set problem.

4.2 A Polynomial Time Approximation Algo-

rithm In this section, we give a reduction of the me-
dian problem to the Feedback Arc Set problem which
gives a O(n3 log n) time algorithm with a guarenteed
O(log log n) additive error.

We are trying to optimize the quantity dlog(b +
1)e+ dlog(r +1)e, which is within less than two units of
log(b+1)+ log(r +1). As previously stated, it is trivial
to decide what is the minimum number b of blue edges
which need to be removed if r = 0. So we may assume
that b ≥ 1 and similarly r ≥ 1. Therefore the quantity
(r + 1)(b + 1) < 4rb, and log r + log b + 4 > dlog(b +
1)e + dlog(r + 1)e. Thus, it suffices to approximate
log r + log b to within log log n+ log log log n+O(1) and
we can replace our objective function by log r +log b, or
equivalently rb.

Now let ropt and bopt give the minimum for this
new objective function. Suppose for now that we know
these quantities in advance. Let λ = blog(ropt/bopt)c
and Λ = 2λ. Then boptΛ < ropt ≤ 2boptΛ.

Now in the graph Gπ1,π2
assign weight Λ to the blue

edges and weight 1 to the red edges. By the algorithm
of Even et al. [24], we can compute an O(log n log log n)
approximation to a minimum feedback arc set in this
new graph in time O(n3). Suppose that the result of
our computation has r red edges and b blue edges. Then
r + bΛ < A(ropt + boptΛ), where A = O(log n log log n).
But boptΛ < ropt ≤ 2boptΛ, therefore

rbΛ <
(r + bΛ)2

4

<
A2(ropt + boptΛ)2

4

<
9

8
A2(roptboptΛ)

This implies

log(rb) < log(roptbopt) + log log n + log log log n + O(1).

However, we do not know the value of Λ. Notice that
−L ≤ Λ ≤ L, with L = dlog ne. We can therefore
iterate over all possible 2L values of Λ and simply pick
the best overall result. Since each iteration takes O(n3)
time, the total running time will be O(n3 log n).

5 Experiments

For our experiments, instead of our approximation al-
gorithm, we implemented a brute-force exact algorithm
that simply searches exhaustively over all solutions
(b, r). Although it requires time exponential in the total
distance, we have been able to run it at modest running
times since the distances are usually quite small in prac-
tical data sets.

For our experiments, we chose one small example
which illustrates that although our primary focus is
on the mathematical properties of our model, it is not
so abstracted so as to be devoid of biological insight.
The evolutionary history of the three sequenced Bra-
chiopod mitochondrial genomes is an extremely vexing
problem in which the genomes are so scrambled that
no reasonable evolutionary scenario is known [25]. We
have carefully selected this particular example because
it does not contain any gene inversions, which are not
currently accomodated by our model, because the topol-
ogy of the tree on the three species is known indepen-
dently (though not, of course, the ancestral genomes or
branch lengths), because the homology relationships be-
tween the genes are unambiguous and because the gene
contents are equal. Some authors have speculated that
multiple rounds of tandem duplication and loss might
be able to explain such scrambled gene orders. How-
ever, our experiments show that this is unlikely to be
true for the Brachiopods. This is possible because The-
orem 1.1 gives an exact condition for the number of
whole genome duplications needed and so in particular,
it provides a lower bound on the number of duplications
of any length required.

Using our implementation, we establish that the
most parsimonious evolutionary scenario for the Bra-
chiopod clade requires at least 8 duplications, which
is close to the diameter of the space since mitochon-
drial genomes have only 37 genes. The implication is
that other rearrangement processes, most likely trans-
positions, are required to explain the gene order of the
Brachiopod clade.
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