
TripLe: Revisiting Pretrained Model Reuse and Progressive Learning for
Efficient Vision Transformer Scaling and Searching

Cheng Fu†,‡, Hanxian Huang†, Zixuan Jiang‡, Yun Ni‡, Lifeng Nai‡, Gang Wu‡,
Liqun Cheng‡, Yanqi Zhou‡, Sheng Li‡, Andrew Li‡, Jishen Zhao‡

UC San Diego†, Google ‡

{cfu,hah008}@ucsd.edu,
{zixuan, yunn, lnai, wgang, liquncheng, yanqiz, lsheng, andrewyli, jishenzhao}@google.com

Abstract

One promising way to accelerate transformer training
is to reuse small pretrained models to initialize the trans-
former, as their existing representation power facilitates
faster model convergence. Previous works designed expan-
sion operators to scale up pretrained models to the target
model before training. Yet, model functionality is difficult
to preserve when scaling a transformer in all dimensions at
once. Moreover, maintaining the pretrained optimizer states
for weights is critical for model scaling, whereas the new
weights added during expansion lack these states in pre-
trained models. To address these issues, we propose TripLe,
which partially scales a model before training, while grow-
ing the rest of the new parameters during training by copy-
ing both the warmed-up weights with the optimizer states
from existing weights. As such, the new parameters intro-
duced during training will obtain their training states. Fur-
thermore, through serializing the model scaling, the func-
tionality of each expansion can be preserved. We eval-
uate TripLe in both single-trial model scaling and multi-
trial neural architecture search (NAS). Due to the fast train-
ing convergence of TripLe, the proxy accuracy from TripLe
better reveals the model quality compared to from-scratch
training in multi-trial NAS. Experiments show that TripLe
outperforms from-scratch training and knowledge distil-
lation (KD) in both training time and task performance.
TripLe can also be combined with KD to achieve an even
higher task accuracy. For NAS, the model obtained from
TripLe outperforms DeiT-B in task accuracy with 69% re-
duction in parameter size and FLOPs.

1. Introduction

Vision transformer (ViT) models are promising to
achieve the state-of-the-art performance on various com-
puter vision tasks [15, 19, 42, 43]. While the performance

frontier keeps pushing forward, the training costs also scale
with the growth of parameters. For example, Dehghani et
al. [12] scaled a ViT to 22 billion parameters. Furthermore,
recent research [31] shows that transformers require much
more training steps and larger datasets to better generalize
compared to convolutional neural networks (CNNs), impos-
ing even more scaling costs of ViTs.

Among various transformer training acceleration and
cost reduction techniques [23, 8, 49, 54, 39], one promis-
ing method is to reuse small pretrained models to initial-
ize a large model before training. By scaling a small pre-
trained model with various expansion operators and using
it to initialize the large model, the implicit knowledge fa-
cilitates faster model convergence. Previous studies such as
bert2BERT [5] focused on preserving the functionality of
the small pretrained transformer, when growing transformer
width (i.e., hidden dimensions). A recent work learn-to-
grow [47] learns linear mappings to scale the pretrained
model by minimizing the task loss during model expansion.

However, we identify a set of critical limitations in
the existing approaches through a comprehensive investi-
gation (Sec 2.3). (L1) Maintaining the functionality dur-
ing model scaling is not the only key factor to achieving a
high speedup and final task accuracy. We identify that the
other critical factor is retaining the optimizer states of the
weights, because that preserves the direction of model up-
dates when the functionality is preserved. Previous meth-
ods [47, 5] do not include these optimizer states during
model scaling. (L2) Training discrepancies exist between
the pretrained weights and the new weights because the new
weights introduced during scaling do not have optimizer
states built up before training. (L3) The functionality of a
pretrained model is hardly preserved by simply expanding
a small pretrained model in multiple dimensions all at once.

To address these limitations, we propose a new method,
TripLe1, which partially expands a pretrained model be-

1TripLe incorporates three principles: reusing pretrained models, pro-



fore training and grows the rest of the parameters during
training. TripLe conducts the expansion of model width
and depth in a serialized fashion. Tackling L1, we scale
the width of the pretrained transformer with their optimizer
states to initialize the scaled model and optimizer. So the
pretrained weights will maintain their update directions dur-
ing training. After a short warmup training phase, the new
weights will obtain their training states. To address L2, we
increase the depth of ViTs by copying the existing weights
parameters and their training states. As such, the optimizer
states obtained from the first stage can be leveraged by
the second expansion, mitigating the training mismatch be-
tween new and pretrained weights. For L3, when serializing
the width and depth expansion, each expansion stage will
mostly preserve the functionality of the small pretrained
model, enabling faster convergence of the training period.

TripLe offers the best of the two worlds – pretrained
model reuse and progressive learning. Our exploration
shows that they are two extreme cases for transformer scal-
ing: the pretrained model reuse technique will scale a small
pretrained model in multiple dimensions toward the tar-
get model before training, while progressive learning starts
from a randomly initialized model and grows parameters
during training until reaching the target large model. We
observe that these methods in fact benefit each other on
ViT training: reusing a pretrained ViT facilitates faster con-
vergence of progressive learning at each stage, while pro-
gressive learning constructs the training states that help the
ViT scaling. To further improve model quality, we aug-
ment TripLe with knowledge distillation (KD) [20]. Specif-
ically, TripLe applies the pretrained model to initialize a
large model and KD uses the pretrained model to provide
teaching signals during training.
Experiments and Results. We evaluate TripLe with both
single-trial model scaling and multi-trial neural architec-
ture search (NAS). With single-trial training, we scale var-
ious ViTs, and compare the training time and task accu-
racy against from-scratch training and a variety of baseline
model scaling methods. When scaling pretrained ViTs size
by 8×, TripLe saves the training time up to 71.0%∼80.9%
compared to from-scratch training. Other model scal-
ing methods hardly achieve performance neutrality against
from-scratch training on large ViT models. Moreover, with
the same training budget as from-scratch training, a 44MB
ViT (expanded from a 5MB ViT) outperforms both the of-
ficial 86MB DeiT-B (by 0.2%) and KD alone (by 1.0%) in
ImageNet-1k task accuracy. Combining TripLe with KD,
the 44MB model shows a 1.8% higher task accuracy com-
pared to using KD alone.

TripLe enhances NAS performance by finding a 27MB
model that outperforms the task accuracy of the 86MB
DeiT-B [42] and the model searched by traditional multi-

gressive learning, and knowledge distillation.

trial NAS. One of the significant downsides of multi-trial
search is a long searching time [57], as sampled models are
always trained from scratch. To reduce training time, prior
approaches typically use ∼10% of the final training time to
approximate model accuracy. Yet, this proxy accuracy is
too far from the final accuracy. Our method can be viewed
as a new form of ‘weight-sharing’ designated for multi-trial
NAS. TripLe allows each trial to start from a pretrained
model (Figure 2). The proxy accuracy obtained from TripLe
shows a higher correlation with the final task accuracy com-
pared to training from scratch. After the model is searched,
we further improve the model performance using TripLe
during model evaluation.

Table 1. ViT [42] for evaluating TripLe. New model variants
SL24/BL24 only change the #layers of DeiT-S/DeiT-B.

Model
(DeiT-)

hidden
dim #heads #layers #params

FLOPs
(billions)

Top-1†

Acc
Top-1‡

Acc
Ti 192 3 12 5M 2.16 72.0 72.1
S 384 6 12 22M 8.50 79.5 79.8
B 768 12 12 86M 33.72 81.0 81.8
L 1024 16 24 307M 119.36 82.1 82.2

SL24 384 6 24 44M 16.87 80.0 -
BL24 768 12 24 172M 67.21 81.4 -
† Top-1 Accuracy of our DeiT re-implementation with 300 epochs of training.
‡ Official Top-1 task accuracy under 300 epochs of training.

2. Scaling Vision Transformers
In this section, we introduce the Vision Transformers

(ViTs) studied in this paper. Furthermore, we perform a
comprehensive investigation on the performance of existing
scaling operators.

2.1. Vision Transformer

Transformer [14] was first employed in vision tasks by
Dosovitskiy et al. [15]. ViT first extracts features from raw
image patches using a CNN and feeds the extracted fea-
tures as the input to the transformer. DeiT [42] finds that
the model can achieve a high task accuracy on ImageNet-
1k [13] dataset when applying strong image augmentation
with knowledge distillation [1]. Many follow-up works pro-
pose ViT variants for better task accuracy [43, 19, 44, 56, 6].

This study focuses on scaling pretrained ViTs, and our
experiments reuse the DeiT architectures [42]. To study
scaling ViTs in both depth and width, we also introduce two
model variants namely DeiT-BL24 and DeiT-SL24 given in
Table 1.

2.2. Revisiting Operators Scaling

Recent studies [5, 47] reuse small pretrained transform-
ers to accelerate the large model training. These works in-
troduce different expansion operators for transformer depth
(i.e., number of layers) and width (i.e., hidden dimension).
They then employ the expanded pretrained model to ini-
tialize the target model. We denote the width/depth expan-
sion operator as γ/β. The large model Θ to be trained has



L transformer layers with hidden dimension D. The pre-
trained model θ has l layers with hidden dimension d.
Layer Stacking βstck and Interpolation βinpt. Layer
stacking [18] and interpolation [4] are two common ap-
proaches to increasing the transformer depth. Specifically,
the operation can be formulated as follows:

βstck :Wi = wi mod l, ∀i ∈ {1, ..., L} (1)
βinpt :Wi = w⌊i/k⌋, ∀i ∈ {1, ..., L}, k = ⌊L/l⌋ (2)

Here, Wi denotes the initial weight of the i-th trans-
former layer in model Θ. k is the expansion ratio of layers.
By duplicating the existing layers according to Eq.1-2, we
can scale the pretrained model in depth.
Adding Identity Layers βST . Shen et al.[38] propose
to add identity layers WI to maintain the functionality of
the pretrained model. We denote this layer as WI where
WI(x) = x. Specifically, each transformer layer can be
viewed as two sub-layers:

x′ = x+ Attention(LN(x))

y = x′ + FFN(LN(x′))
(3)

The ‘Attention’ denotes the multi-head attention layer.
‘FFN’ denotes the feed-forward layers following the at-
tention layer [45]. ‘LN’ denotes the layer normaliza-
tion. When initializing the scale and bias in ‘LN’, ‘Atten-
tion’, and ‘FFN’ to 0, the output of Attention(LN(x)) and
FFN(LN(x′)) will be 0 as well. In this way, the transformer
layer has y and x equal. βST can be combined with layer
βstck or βinpt, i.e., where to add these identity layers. They
are denoted as βSTstck and βSTinpt, respectively.
bert2BERT γb2B: Net2Net [7] increases the width of neu-
ral networks by duplicating neurons randomly and main-
taining their output values through normalization. For trans-
formers, it is first applied in bert2BERT [5] for pretrained
transformer scaling (Detailed in Appendix B.2).
Padding Zeros γpad0: A straightforward way to increase
the transformer width is to pad zeros to the existing weights.
The small pretrained weights are on the upper-left corner of
the large layer, the rest parameters are all zero-initialized.
Special padding zeros γST : Staged-training [38] proposes
a new width expansion method. When scaling a dense layer,
the width expansion can be written as:

γST (w) =

(
w z
z w

)
(4)

Here, z is a d × d zero matrix. The scaled matrix has
a size of D × D, where D = 2d. (Equations for other
parameters are detailed in Appendix B.2.)
Weight resizing γinpt: In this work, we propose a new
baseline operator interpolation γinpt that treats the weight
matrices as images and interpolates the matrices using im-
age resizing methods, such as bicubic / bilinear [11] and etc.
Empirically, we find bilinear outperforms other methods, so
we apply it in γinpt.

Table 2. Relationships between different methods and expansion
operators for different transformer scaling methods. Model Inter-
polation is a new baseline proposed in this paper.

Method Notation width depth
bert2BERT [5] b2B γb2B βstck

Staged-Training [38] ST γST βSTinpt

Model Interpolation Inpt γinpt βinpt
Learn-to-grow [47] LTG γltg βltg

Pad Zero Pad0 γpad0 βstck

Learn-to-grow γltg / βltg: Besides all the above meth-
ods, learn-to-grow [47] proposes to learn linear matrices
that map the pretrained weights into larger weight matrices
to preserve the functionality of the small pretrained model
(Equations in Appendix B.2.). We denote its width and
depth expansion operator as γltg and βltg, respectively.

The combination of these operators forms all the existing
methods for scaling pretrained transformers. The summary
is given in Table 2.

2.3. Investigating Expansion Operators

We motivate TripLe with a detailed investigation on per-
formance and inefficiencies of previous scaling operators.
Investigation 1: Which operators can preserve model
functionality? Many different expansion methods, such as
γb2B , γST and βST claim they are functionality preserving.
We rebuild these baselines and their initialized accuracy is
given in Table 3 (marked in blue).

1 bert2BERT (γb2B): We find γb2B can preserve trans-
former functionality under constraint. When applying γb2B
to scale a d×d dense layer into 2d×2d, the original output
vector o can become ō = { o

2 ,
o
2}. After another non-linear

function F , the output F (ō) can be recovered back to F (o)
through another linear function when F satisfies:

F (x) = F (x/n) · n, n ∈ R, x ∈ R (5)

As GeLU in ViT doesn’t satisfy Eq.5, the functionality
cannot be preserved. When switching GeLU to ReLU in
FFN, we find the ViT functionality can be fully maintained
using γb2B (Appendix B.2).

2 γST and βST : We find the operator γST /βST

can preserve the functionality of the ViT. βST is an iden-
tity layer and it is functionality preserving as discussed in
Sec 2.2. For γST , when expanding a d× d dense layer into
2d×2d, The new dense layer has output ō = {o, o} where o
is the original output with a size of d× 1 according to Eq.4.
Because γST does not scale o as γb2B , the output results
GeLU(ō) can be recovered back to GeLU(o) after another
linear mapping.

3 βstck and βinpt: Empirically, we also find βstck and
βinpt can preserve partial functionality. For example, when
expanding S−→SL24, the expanded model with βstck/βinpt
can achieve 65.56%/39.98% task accuracy, respectively.
This indicates the initial task loss is small after scaling the
pretrained model using βstck / βinpt.



Table 3. Performance comparison between different expansion op-
erators under 30/60 training epochs (ep30/ep60). ‘-m’ denotes ig-
noring the optimizer states. ‘+m’ means we scale the optimizer
states and use them to initialize the new optimizer.

models width γ depth β
Test accuracy

∆ep60init -m +m
ep30 ep60 ep30 ep60

Ti−→S γb2B - 0.00 72.90 76.53 72.76 76.64 +0.11
Ti−→S γST - 71.82 72.82 75.72 74.88 77.29 +1.57
Ti−→S γpad0 - 0.01 69.89 70.83 69.85 72.45 +1.63
Ti−→S γinpt - 0.00 73.04 76.50 73.25 76.11 -0.39

S−→SL24 - βstck 65.56 79.10 80.74 80.02 81.31 +0.57
S−→SL24 - βinpt 38.98 80.00 81.23 80.34 81.26 +0.03
S−→SL24 - βSTstck 79.49 78.46 79.47 78.67 79.52 +0.05
S−→SL24 - βSTinpt 79.49 78.61 79.23 78.41 79.26 +0.03
Ti−→SL24 γST βstck 0.01 75.73 78.21 76.23 78.62 +0.40
Ti−→SL24 TripLe 71.82 - - 76.52 79.23 -

4 Learn-to-grow γltg and βltg: Learn-to-grow focuses
on reducing the task loss L at the beginning of the train-
ing as given in Eq.6 through learning linear mappings (βltg,
γltg) from the small pretrained model to the large one.

argmin
βltgγltg

Ex∼DtL(x; Θ), s.t.Θ = βltg(γltg(θ)) (6)

Here,Dt represents the data distribution, and Θ is a large
model expanded from a small checkpoint θ. When expand-
ing S−→B, learn-to-grow can only achieve 72% initial task
accuracy [47] compared to 79.5% task accuracy of the small
pretrained model. As such, we conclude that γltg/βltg can
only preserve partial functionality.

Other scaling operators discussed in Sec. 2.2 are not
functionally preserving.
Investigation 2: Does the initial accuracy of the scaled
model matter to the final task performance?

We observe that the correlation between initial accuracy
of the scaled model and final accuracy is weak. Specifically,
we evaluate each width/depth operator using ImageNet-1k
dataset. (Hyperparameters in Appendix A). The results are
given in Table 3 (marked the columns in purple).

Among width expansion operators, γST achieves the
highest initial accuracy, however, it cannot achieve the best
final accuracy across the baselines. The initial accuracy ob-
tained using γST can be compromised within a few train-
ing iterations. Our new baseline γinpt (not functionality
preserving) achieves very similar final task accuracy com-
pared to other baselines. For depth expansion operator,
γSTstck/γSTinpt, can maintain model functionality. Yet, the
identity transformer layer (Eq.3) poses a considerable chal-
lenge for the model to be trained properly.
Investigation 3: Effect of optimizer states in scaling pre-
trained ViTs. ViTs are mostly trained using AdamW [32].
That means the optimizer states also exist in the pretrained
model. Specifically, during the model update, we have:

mt = β1mt−1 + (1− β1)gt (7)

vt = β2vt−1 + (1− β2)g
2
t (8)

θt+1 = θt −
λ(t)

√
vt + ϵ

·mt (9)

Here, gt is the first-order gradient of the weight param-
eter θ at time step t. λ(t) is the learning rate scheduler.
β1 and β2 are constant decay rates (0.9, 0.999). m and v
are AdamW states with the same dimensions as θ. Previ-
ous work, such as learn-to-grow or bert2BERT neglects this
momentum information.

To investigate whether m and v help reduce the training
time, we also apply the same width and depth operators γ/β
on m and v during model initialization. The performance
differences are listed in Table 3 (marked in red).

The results show that retaining optimizer states improve
the model quality in general, especially when functionality
of the pretrained model is preserved or at least partially pre-
served. With width expansion, the functionality preserving
γST with momentum information outperforms the second-
best baseline by 0.65%. With depth expansion, βstck shows
a 0.57% accuracy increase with momentum information.
This is because functionality preserving reduces the initial
task loss and maintains the gradient gt in Eq.7-8 for pre-
trained weights. Together with mt−1 and vt−1, the direc-
tion of pretrained weights update mt√

vt+ϵ is preserved. One
exception is βST , because gt in the growing layers changes
due to zero-initialized LN and bias (Eq.3).
Investigation 4: Can we perfectly scale Ti to SL24

by combining the best scaling operators among γ and
β? We expand the model from Ti−→SL24 using the best-
performed operator selected from the previous investiga-
tion, namely, γST and βstck (Table 3). Ti−→SL24 shows a
2.7% accuracy drop compared to S−→SL24. This is due to
the limitations of simply combining γST and βstck. (1) The
functionality-preserving feature of γST and βstck is com-
promised, when combining them together. This incurs the
advantage of applying optimizer states. (2) For Ti−→SL24,
the weights grow from 5MB to 44MB. Among them, 24MB
of the weights are zeros introduced during model expansion.
These zero values have no training states in the pretrained
model. In addition, zero values are under-trained. As such,
a training discrepancy exists between the zeros and the pre-
trained parameters. The issue exacerbates once weight de-
cay is applied, because the zero values will not be penalized
at the beginning of training.

3. Method
Overview. We propose a new method to mitigate the afore-
mentioned training mismatches by serializing the model ex-
pansion. As discussed above, simply combining the best-
performed scaling operators βstck and γST together is sub-
optimal. We propose TripLe that scales width before train-
ing and grows model depth during training (Figure 1(a)).
TripLe maintains the functionality preserving feature of
γST and βstck by serializing the scaling operations. Fur-
thermore, with a short warmup training after conducting
γST , zero weights will obtain their training states that ben-



efit the subsequent depth expansion. In what follows, we
discuss each step in detail.
Scaling Width Before Training. TripLe applies γST to
expand transformer width before the training. We extend
γST to the scenario where the expanded model width is not
divisible by the small model width (Eq.10). This method is
for more general model scaling (e.g., NAS).

γST (w) =
k




w ... z zs
...

. . .
...

...
z ... w zs
zTs ... zTs ws

 , k = ⌊D/d⌋ (10)

Here, w is the d× d pretrained dense layer. ws is down-
sampled from w with a size of ds × ds, ds = D mod d.
z and zs are zero matrices with different sizes. The scaled
layer γST (w) has a size of D × D. For parameters b with
a dimension of 1 × d in LN, weight bias, and classification
token, we can conduct a similar procedure using Eq.11.

γST (b) =
(

b ... b bs
)k︷ ︸︸ ︷
, k = ⌊D/d⌋ (11)

Here, ‘(·)’ is the concatenation operation, γST (b) has
a size of 1 × D. As m and v have the same dimension
as their weight parameters, we apply the same operators
(Eq.10-11) on m/v and use γST (m)/γST (v) to initialize the
AdamW optimizer. For the CNN in ViT with a dimension
of (d, channel, r, s), we flatten it along kernel dimension (d)
and apply Eq.11. The CNN after scaling will be reshaped
back to (D, channel, r, s).

Empirically, we find this method can maintain partial
functionality at the beginning of the training when D is not
divisible by d.
Growing Model Depth During Training. As shown in
Figure 1, before growing the depth of the model, we con-
duct warm-up training by keeping the pretrained model
depth (Stage I). After Stage I, we directly copy-paste the
weight parameters and optimizer states from the bottom
transformer layers to the top layers. The number of lay-
ers will grow from l to L = 2l. In this stage (Stage II), we
freeze the bottom l layers including the positional encoding
and convolution layer. Lastly (Stage III), we unfreeze the
bottom layer and train all the weights together.

The key difference between our approach and progres-
sive learning[49] is that: (1) besides the weight parameters,
we also copy the momentum information which is effective
in speedup the training (Sec 2.3) (2) Traditional progres-
sive learning requires a long training time for each stage to
converge. However, when reusing a pretrained model, each
stage can converge in a very short amount of time.
TripLe without Depth Expansion. When the depth
of the small pretrained model and the target model is the
same (l), we cannot copy-paste the warmed-up parameters
from the bottom layer i (i ∈ {1, .., l

2}) to the top layer j

Figure 1. Training stages in TripLe when the model depth (l) (a)
scales by 2× and (b) is not scaling. We simplify the transformer
layer into a single MLP. All the dense layers in the transformer
layer are operated in the same fashion.

(j ∈ { l
2 + 1, .., l}), as the top layers have already been ini-

tialized with pretrained weights. As discussed in Sec 2.3,
zero weights (z) are under-trained compared to pretrained
weight (w) after conducting γST (Eq.10). As such, we
warm up the bottom layers and the zeros at the top layers
in Stage I (Figure 1(b)). Next in Stage II, we train only the
matrices that are zero-initialized in the bottom layers (posi-
tion z/zs in Eq.10) and all the parameters in the top layers.
In this way, zero weights have more training steps compared
to the pretrained weights during warm-up stages, mitigating
the problem that zeros are under-trained (Sec 2.3). Also,
the training states for zero weights are established before
training all parameters together. Empirically, we find this
method improves the training speed and can achieve better
task performance when scaling width only.
Combining TripLe with Knowledge Distillation. We also
find reusing pretrained models methods can be combined
with Knowledge Distillation (KD) to further improve the
model performance. For KD, the pretrained models are em-
ployed to provide training signals; for methods in reusing
pretrained models, the pretrained weights are used to ini-
tialize the large model. Based on our knowledge, we are the
first work to combine them together.

We follow the KD method introduced in DeiT [42] and
use the ‘hard-label distillation’ loss during training. Since
our architectures are the same as DeiT, the integration is
straightforward (Detailed in Appendix C.2). To make a fair
comparison with the previous methods, we do not add KD
during training unless specified.

4. TripLe for Multi-trial NAS
As one of use cases of model scaling is to enhance

multi-trial NAS, we design a ViT search space and evaluate
TripLe against traditional approaches as shown in Figure 2.

Traditional multi-trial NAS adopts an agent to sample a
model and training hyperparameters from the search space.
A worker starts training the model from scratch based on
this selection. Different from traditional NAS, the worker



Figure 2. Leveraging TripLe in multi-trial NAS. The green blocks
and arrows are key differences compared to traditional multi-trial
NAS, while ‘ckpt’ denotes the small pretrained model.

Table 4. ViT search space for evaluating TripLe in NAS. ‘Global’
means all the layers are set to the same sampled parameter. ‘Local’
means the parameters are sampled for each layer.

Parameter name Selections Global/Local
hidden dimension (D) [192, 384, 576, 768] Global

Head factor (hf ) [32, 64] Local
FFN Expansion factor (ef ) [2, 3, 4] Local

Transformer layers (L) [12, 13,..., 24] Global
Learning rate (λ) [5e-4, 1e-3, 4e-3 ] Global

Weight decay [0.05, 0.02, 0] Global

in our approach will start training from a pretrained model
leveraging TripLe. This section describes our search space,
searching algorithm, and reward function.
Multi-trial Search Space. We build a neural architecture
search space based on ViT architecture (Table 4). We search
head factors hf of each layer, hidden dimensions D, num-
ber of layers, and FFN expansion ratio ef . The number of
heads of each layer is D/hf . The dimension of the FFN
layer is D × ef . D, hf and ef are sampled independently.
Furthermore, we search the learning rate and weight decay,
which cannot be explored using one-shot algorithms. The
cardinality of our search space is around 9.4e11.
Searching Algorithm and Reward function. We apply
a regularized evolution algorithm [36] as the controller al-
gorithm to optimize the search space of NAS. We do not
choose to employ PPO method [37, 40, 57, 41] which re-
quires a long training time for the agent to converge. We
adopt the TuNAS reward [2] and our reward is defined as

Reward(Θ) = Q(Θ) + ϵ|FLOPs(Θ)

FLOPs0
− 1| (12)

Here,Q(·) indicates the quality (accuracy) of a candidate
architecture Θ, FLOPs(Θ) is its FLOPs, FLOPs0 is a
problem-dependent FLOPs target, and hyperparameter ϵ <
0 is the cost exponent.

5. Evaluation
We evaluate the performance of TripLe in both single-

trial model scaling and multi-trial NAS.
Dataset and Hyperparameters. We evaluate TripLe using
ImageNet-1k [13] for training ViTs. The ViT architectures
are given in Table 1. We transfer the models trained us-
ing TripLe to various downstream tasks which include CI-
FAR10 [27], CIFAR100 [27], Flowers102 [33], Stanford-
Cars [26] (results of given in Appendix F). All the exper-

Table 5. Performance comparison between different model scaling
methods. ep30 denotes the total training time is set to 30 epochs.

Model Max ↓
Time Method Max ↓

FLOPs
Top-1 Test accuracy (%)

ep30 ep60 ep90 ep120 ep300

B 0% Scratch 0% - - - - 81.03
B 28.9% MLST 36.7% - - - - 81.27

S−→B 52.0% LTG 55.4% - - - - 81.57
S−→B 67.7% b2B 68.2% 78.11 80.39 81.45 81.82 81.81
S−→B 74.2% Inpt 74.8% 78.98 80.89 81.80 81.75 81.75
S−→B 78.6% ST 80.0% 79.33 81.29 81.99 82.10 81.92
S−→B 81.4% TripLe 82.1% 79.72 81.32 82.10 82.36 82.01

S 0% Scratch 0% - - - - 79.50
S × MLST × - - - - 75.97

Ti−→S 12.0% b2B 12.2% 72.76 76.64 78.01 79.01 80.33
Ti−→S 11.2% Inpt 11.5% 73.25 76.11 77.78 78.59 80.54
Ti−→S 12.0% ST 13.8% 74.88 77.29 78.46 79.25 80.67
Ti−→S 17.4% TripLe 18.4% 74.67 77.53 78.54 79.34 80.88

iments are done on dragonfish TPUs [24] with 8×8 topol-
ogy. The validation/test sets are evaluated every 400 sec-
onds on separate TPUs.

We set the batch size to 4096, so the learning rate would
be batchsize

512 ∗ 0.0005 = 0.004 according to the DeiT paper.
Other hyperparameters are the same as DeiT [42] (Detailed
in Appendix A.1). Our baseline methods are given in Ta-
ble 3. For ST and Inpt, we also initialize the scaled model
with optimizer states for a fair comparison. Specifically, we
conduct the width/depth expansion on m and v using the
same operators to expand the weights. MLST [49] is a pro-
gressive learning baseline for transformer training.

We set the training time t for each model scaling task
to 30/60/90/120/300 epochs (denoted as ept), respectively.
The final learning rates under different training times are
always 0. The warm-up epochs are set to 5. For TripLe,
the depth growth happens during the warm-up phase and
Stage1/Stage2 takes 2.5/2.5 epochs, respectively.

5.1. Evaluation of Single-trial Models Scaling

Metrics. For evaluating the model quality, we report the
Top-1 test accuracy on ImageNet-1k.

To measure the training cost for each method, we scan
the minimum time required to match the validation loss
of from-scratch training. And then, we use it to compute
the maximum wall-time reduction (Max ↓ Time) and max-
imum training FLOPs reduction (Max ↓ FLOPs) for each
method accordingly. When the method is unable to achieve
the validation loss of from-scratch training under any set-
tings, we report ’×’ in the corresponding table entry.
Evaluation on Expanding Width Only. We first perform
width scaling only to evaluate our method given in Fig-
ure 1(b). As is shown in Table 5, TripLe outperforms other
baselines in max training time reduction. For Ti−→S/S−→B,
TripLe can save the 17.4%/82.1% maximum training time
compared to 12.0%/78.6% of ST (the second-best baseline).

Besides, TripLe can achieve better task accuracy com-
pared to baselines generally. When using 300 epochs for
training, TripLe can outperform from-scratch training accu-
racy by 1.38%/0.98% for Ti−→S/S−→B. This indicates that



training more steps on the zero weights introduced by ST
can mitigate the training mismatch between zero weights
and pretrained weights. For learn-to-grow, the implementa-
tion is not open-source; so we report the max ↓ Time/FLOPs
using the number reported in the paper.
Expanding Width and Depth Together. When ex-
panding width and depth together, we apply our method
given in Figure 1(a) that serializes the expansion of
ViTs. The model will grow 8× in parameter size.
When choosing 40% (ep120) of the total training time
(300 epochs), the model obtained from TripLe outper-
forms ST by 0.88%/0.27%/0.69% and scratch training by
1.03%/0.99%/0.09% in task accuracy. This shows that seri-
alizing expansion operators can obtain better task accuracy
under the same training budget. Besides the saving training
cost, TripLe can also be employed to train ViT for better
task accuracy compared to training from scratch.

Also, using progressive learning alone (i.e., MLST) can-
not reach task performance of scratch training for BL24/L
under ep300. The existing weights cannot be fully trained
before expanding to a larger model, resulting in perfor-
mance degradation.
Comparison and Combination of TripLe with Knowl-
edge Distillation. As discussed in Sec 3, TripLe is orthog-
onal to KD which is another widely used technique to im-
prove the transformer quality. In this subsection, we com-
pare and combine TripLe with KD. For the teacher model in
KD, we use a ResNet-101 with 79.33% test accuracy. The
ResNet-101 must be trained using the same data augmenta-
tion techniques as DeiT.

The learning curves of TripLe and KD are given Fig-
ure 4. We observe that using TripLe can outperform the
model trained using KD. For Ti−→SL24, the model achieves
82.0% test accuracy compared to 81.0% obtained from KD.
When combining TripLe with KD, the model accuracy of
SL24 can reach 82.8% test accuracy. This combination re-
veals that not only can we use the pretrained model to pro-
vide teaching signals in KD, but we can also use the small
pretrained model to initialize the large model directly.
Sensitivity Analysis of TripLe. We gradually remove the
design components from TripLe to validate their effects.
The learning curves are given in Figure 3. When switch-
ing our depth expansion method to βstck and conducting
the expansion all at once before training (TripLe-copy), the
performance gets worse and the model is overfitting in long-
time training. This shows that conducting all the expansions
before training incurs performance degradation. We further
ignore the momentum information (TripLe-copy-m) during
the model scaling and the results become even worse com-
pared to the previous analysis. As such, maintaining the
train states is critical for scaling pretrained models.
Sensitivity to Training Times. In Table 6, we present
the task performance as a function of training time. Keep-

Table 6. Performance comparison between different model scaling
methods. ep30 denotes the total training time is set to 30 epochs.
Ti−→SL24 denotes scaling DeiT-Ti to DeiT-SL24. The pretrained
model accuracy is given in Table 1.

models Max ↓
Time Method Max ↓

FLOPs
Top-1 Test accuracy (%)

ep30 ep60 ep90 ep120 ep300

SL24 0% Scratch 0% - - - - 79.97
SL24 39.3% MLST 41.6% - - - - 80.42

Ti−→ SL24 58.9% b2B 60.1% 75.28 78.63 79.98 80.14 80.54
Ti−→ SL24 68.6% Inpt 70.1% 75.72 78.93 80.40 80.64 81.12
Ti−→ SL24 67.9% ST 70.0% 76.23 78.62 80.10 80.22 79.65
Ti−→ SL24 71.0% TripLe 72.1% 76.52 79.23 80.68 81.10 82.04

BL24 0% Scratch 0% - - - - 81.37
BL24 × MLST × - - - - 78.84

S−→ BL24 × b2B × 79.02 80.89 81.33 81.22 79.39
S−→ BL24 79.9% Inpt 80.4% 80.40 82.29 82.39 82.23 80.28
S−→ BL24 79.9% ST 80.4% 80.70 82.34 82.23 81.99 79.94
S−→ BL24 80.9% TripLe 81.7% 80.77 82.53 82.36 82.26 80.60

L 0% Scratch 0% - - - - 82.12
L × MLST × - - - - 49.63

B−→ L × b2B × 78.02 81.64 81.71 81.55 80.01
L × Inpt × 81.23 81.55 81.28 81.20 80.59

B−→ L × ST × 80.88 81.45 81.65 81.50 79.84
B−→ L 73.3% TripLe 74.7% 81.23 82.04 82.22 82.19 81.40

Table 7. Kendall-tau correlation between different methods across
15 trials.

Method Scratchep30 TripLeep120 Scratchep300
Scratchep300 0.221 0.318 -
TripLeep120 0.789 0.865 0.363

ing the original training budget with model scaling meth-
ods incurs performance degradation. That is because scal-
ing pretrained model achieves faster training convergence.
In this scenario, training the large model for too long will
result in model over-fitting. For training from scratch, the
overfitting doesn’t occur until the model is trained for 400
epochs [42]. As such, reducing the training time when scal-
ing a pretrained model is necessary.

5.2. Evaluation of TripLe on Multi-trial Search
We intend to answer two questions in this section: (1)

Does the proxy accuracy obtained from TripLe show a
higher correlation to the final task accuracy? (2) Can
TripLe find better models compared to multi-trial search?

The pretrained model we reuse for the sampled models
is DeiT-Ti. Our searching method is implemented inside the
symbolic programming library named PyGlove [34].
Ranking Score Comparison. We randomize 15 models
from our search space (Table 4) and evaluate the Kendall-
tau [25] correlation between the proxy accuracy and the task
accuracy. Specifically, the models are trained: (1) from
scratch for 30 epochs. (Scratchep30) (2) from the pre-trained
model for 30 epochs. (TripLeep30) (3) from scratch for 300
epochs (Scratchep300). (4) from pretrained model for 120
epochs (TripLeep120). The results are given in Table 7.

When using 10% of the total training time (i.e., 300
epochs) for each trial, traditional multi-trial search only
shows 0.221 Kendall-tau correlation. This indicates that
correlation between the proxy accuracy (scratch30) and the
final training accuracy (scratch300) is weak. On the other
hand, TripLe shows a higher correlation to the final model



Figure 3. Sensitivity analysis of TripLe for (a) Ti−→SL24 (b) S−→BL24 (c) B−→L under ep30/ep60/ep120/ep300. ‘-copy’ denotes scaling both
width and depth together before training. ‘-m’ denotes ignoring momentum information from the pretrained model.

Figure 4. Comparison of TripLe with knowledge distillation under
300 epochs of training for (a) Ti−→SL24 and (b) Ti−→S.

performance trained under TripLe120 and scratch300.
We also evaluate the correlation between scratch300 and

TripLe120, it shows a 0.363 Kendall-tau correction. This
can be interpreted as the model that is suitable for scratch
training may not fit for TripLe. Also, it can come from ran-
dom seed selection [51] in the scratch training. For TripLe,
the initialization weights are fixed.
Searched Model Comparison. We conduct 200 trials for
both multi-trial NAS and NAS with TripLe (Learning curve
in Appendix D). For each trial, we conduct 30 epochs
of training using TripLe (TripLeep30) and scratch train-
ing (Scratchep30). We set the FLOPs target (FLOPs0) to
10000M and other hyperparameters for the regularized evo-
lutionary and our reward function are given in Appendix
A.2. As shown in Table 8, the model (ViT-TripLe) searched
using NAS with TripLe can obtain 81.1% accuracy. ViT-
TripLe outperform our re-implement 86MB DeiT-B in task
accuracy with 69%/69% reduction in parameter size and in-
ference FLOPs. On the other hand, the model searched by
traditional NAS can achieve 80.8% task accuracy (Detailed
architectures in Appendix F).

6. Related Work
Reusing Pretrained Model and Progressive Learning.
Methods that reuse pretrained models assume the small pre-
trained model pre-exists before starting the training. The
smaller model will be scaled up to initialize the large

Table 8. Comparison results of using TripLe in multi-trial NAS
and traditional multi-trial NAS.

Search
method

Evaluation
method

Params
(MB)

FLOPs
(Million)

Test Acc
(%)

DeiT-S (ours) - Scratchep300 22 8495 79.5
DeiT-B (ours) - Scratchep300 86 33722 81.0
ViT-scratch Scratchep30 TripLeep120 30 11409 79.5
ViT-scratch Scratchep30 TripLeep300 30 11409 80.8
ViT-TripLe TripLeep30 TripLeep120 27 10416 79.7
ViT-TripLe TripLeep30 TripLeep300 27 10416 81.1

model [5, 47]. For progressive learning, these methods as-
sume the small pretrained model does not exist. The models
are initialized randomly and grow towards the target model
during training [18, 49, 38, 28, 16]. In this work, we assume
the pretrained model exists before training and also employ
progressive learning to grow the model during training. We
compare both lines of work in Sec 5.
Efficient Transformer Learning. Besides, existing meth-
ods for the efficient transformer training techniques, such as
pipeline parallelism [39, 23], large batch optimization [50],
and layer dropping [54] are orthogonal to TripLe and works
in reusing pretrained model. Some of the techniques are
designed for NLP tasks, such as Electra [9] or token drop-
ping [22], which cannot be directly applied in ViTs training.
Knowledge distillation can also improve the quality and re-
ducing training time [35, 42] . In this work, we compare
and combine our approach with KD.
Neural Architecture Search. Recent advances in one-shot
NAS leverage the idea of weight-sharing and train a super-
network that contains all the possible model selections [48,
10, 30, 46, 17, 2]. For multi-trial NAS [57, 40, 41, 29], a
controller samples candidate architectures and each one is
trained from scratch. One shot is way faster than multi-trial
method. However, one-shot cannot search training recipes
and activation functions [10]. Also, one-shot incurs regu-
larization conflict [17] that can hardly be resolved. In this
work, we leverage TripLe to improve the performance of
multi-trial NAS.

7. Conclusions
We propose TripLe, a method for scaling pretrained ViT

to reduce the training time and improve task performance.
Naı̈vely scaling the ViT once in multiple dimensions can



hardly preserve the functionality of the pretrained model.
Besides, the new parameters introduced during scaling are
under-trained and do not have their training states estab-
lished. As such, TripLe scales the width of the model and
optimizer states before training. During training, TripLe
grows the depth by copying the warmed-up weights and op-
timizer states from existing layers. In this way, each expan-
sion can mostly preserve functionality and the new weights
in depth expansion can also obtain their training states from
the previous expansion stage.

In single-trial model scaling, TripLe not only reduces the
training time of scaling ViTs but also achieves even better
task accuracy compared to the baseline methods. In multi-
trial NAS, the proxy accuracy obtained from TripLe shows
a higher correlation to their final performance. Besides,
the searched model with TripLe outperforms the counter-
part obtained using traditional NAS in task accuracy.

References
[1] Samira Abnar, Mostafa Dehghani, and Willem Zuidema.

Transferring inductive biases through knowledge distillation.
arXiv preprint arXiv:2006.00555, 2020. 2

[2] Gabriel Bender, Hanxiao Liu, Bo Chen, Grace Chu, Shuyang
Cheng, Pieter-Jan Kindermans, and Quoc V Le. Can weight
sharing outperform random architecture search? an investi-
gation with tunas. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
14323–14332, 2020. 6, 8

[3] Maxim Berman, Hervé Jégou, Andrea Vedaldi, Iasonas
Kokkinos, and Matthijs Douze. Multigrain: a unified im-
age embedding for classes and instances. arXiv preprint
arXiv:1902.05509, 2019. 12

[4] Bo Chang, Lili Meng, Eldad Haber, Frederick Tung, and
David Begert. Multi-level residual networks from dynami-
cal systems view. arXiv preprint arXiv:1710.10348, 2017.
3

[5] Cheng Chen, Yichun Yin, Lifeng Shang, Xin Jiang, Yujia
Qin, Fengyu Wang, Zhi Wang, Xiao Chen, Zhiyuan Liu, and
Qun Liu. bert2bert: Towards reusable pretrained language
models. arXiv preprint arXiv:2110.07143, 2021. 1, 2, 3, 8

[6] Chun-Fu Richard Chen, Quanfu Fan, and Rameswar Panda.
Crossvit: Cross-attention multi-scale vision transformer for
image classification. In Proceedings of the IEEE/CVF in-
ternational conference on computer vision, pages 357–366,
2021. 2

[7] Tianqi Chen, Ian Goodfellow, and Jonathon Shlens. Net2net:
Accelerating learning via knowledge transfer. arXiv preprint
arXiv:1511.05641, 2015. 3

[8] Wuyang Chen, Wei Huang, Xianzhi Du, Xiaodan Song,
Zhangyang Wang, and Denny Zhou. Auto-scaling vision
transformers without training. In International Conference
on Learning Representations, 2022. 1

[9] Kevin Clark, Minh-Thang Luong, Quoc V Le, and Christo-
pher D Manning. Electra: Pre-training text encoders
as discriminators rather than generators. arXiv preprint
arXiv:2003.10555, 2020. 8

[10] Xiaoliang Dai, Alvin Wan, Peizhao Zhang, Bichen Wu, Zi-
jian He, Zhen Wei, Kan Chen, Yuandong Tian, Matthew Yu,
Peter Vajda, et al. Fbnetv3: Joint architecture-recipe search
using predictor pretraining. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 16276–16285, 2021. 8

[11] Philip J Davis. Interpolation and approximation. Courier
Corporation, 1975. 3

[12] Mostafa Dehghani, Josip Djolonga, Basil Mustafa, Piotr
Padlewski, Jonathan Heek, Justin Gilmer, Andreas Steiner,
Mathilde Caron, Robert Geirhos, Ibrahim Alabdulmohsin,
et al. Scaling vision transformers to 22 billion parameters.
arXiv preprint arXiv:2302.05442, 2023. 1

[13] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248–255. Ieee, 2009. 2, 6

[14] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. BERT: Pre-training of deep bidirectional trans-
formers for language understanding. In Proceedings of the
2019 Conference of the North American Chapter of the As-
sociation for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota, June 2019. Associa-
tion for Computational Linguistics. 2, 12

[15] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020. 1, 2

[16] Utku Evci, Max Vladymyrov, Thomas Unterthiner, Bart van
Merriënboer, and Fabian Pedregosa. Gradmax: Growing
neural networks using gradient information. arXiv preprint
arXiv:2201.05125, 2022. 8

[17] Chengyue Gong, Dilin Wang, Meng Li, Xinlei Chen,
Zhicheng Yan, Yuandong Tian, Vikas Chandra, et al. Nasvit:
Neural architecture search for efficient vision transformers
with gradient conflict aware supernet training. In Interna-
tional Conference on Learning Representations, 2021. 8

[18] Linyuan Gong, Di He, Zhuohan Li, Tao Qin, Liwei Wang,
and Tieyan Liu. Efficient training of bert by progressively
stacking. In International conference on machine learning,
pages 2337–2346. PMLR, 2019. 3, 8

[19] Benjamin Graham, Alaaeldin El-Nouby, Hugo Touvron,
Pierre Stock, Armand Joulin, Hervé Jégou, and Matthijs
Douze. Levit: a vision transformer in convnet’s clothing for
faster inference. In Proceedings of the IEEE/CVF interna-
tional conference on computer vision, pages 12259–12269,
2021. 1, 2

[20] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distill-
ing the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015. 2

[21] Elad Hoffer, Tal Ben-Nun, Itay Hubara, Niv Giladi, Torsten
Hoefler, and Daniel Soudry. Augment your batch: Improving
generalization through instance repetition. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 8129–8138, 2020. 12



[22] Le Hou, Richard Yuanzhe Pang, Tianyi Zhou, Yuexin Wu,
Xinying Song, Xiaodan Song, and Denny Zhou. To-
ken dropping for efficient bert pretraining. arXiv preprint
arXiv:2203.13240, 2022. 8

[23] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat,
Dehao Chen, Mia Chen, HyoukJoong Lee, Jiquan Ngiam,
Quoc V Le, Yonghui Wu, et al. Gpipe: Efficient training of
giant neural networks using pipeline parallelism. Advances
in neural information processing systems, 32, 2019. 1, 8

[24] Norman P Jouppi, Cliff Young, Nishant Patil, David Patter-
son, Gaurav Agrawal, Raminder Bajwa, Sarah Bates, Suresh
Bhatia, Nan Boden, Al Borchers, et al. In-datacenter perfor-
mance analysis of a tensor processing unit. In Proceedings
of the 44th annual international symposium on computer ar-
chitecture, pages 1–12, 2017. 6

[25] Maurice G Kendall. A new measure of rank correlation.
Biometrika, 30(1/2):81–93, 1938. 7

[26] Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei.
3d object representations for fine-grained categorization. In
4th International IEEE Workshop on 3D Representation and
Recognition (3dRR-13), Sydney, Australia, 2013. 6

[27] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. 2009. 6

[28] Changlin Li, Bohan Zhuang, Guangrun Wang, Xiaodan
Liang, Xiaojun Chang, and Yi Yang. Automated progressive
learning for efficient training of vision transformers. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 12486–12496, 2022. 8

[29] Sheng Li, Mingxing Tan, Ruoming Pang, Andrew Li, Liqun
Cheng, Quoc V Le, and Norman P Jouppi. Searching for fast
model families on datacenter accelerators. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 8085–8095, 2021. 8

[30] Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS:
Differentiable architecture search. In International Confer-
ence on Learning Representations, 2019. 8

[31] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feicht-
enhofer, Trevor Darrell, and Saining Xie. A convnet for the
2020s. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 11976–11986,
2022. 1

[32] Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. arXiv preprint arXiv:1711.05101, 2017. 4

[33] Maria-Elena Nilsback and Andrew Zisserman. Automated
flower classification over a large number of classes. In 2008
Sixth Indian Conference on Computer Vision, Graphics &
Image Processing, pages 722–729. IEEE, 2008. 6

[34] Daiyi Peng, Xuanyi Dong, Esteban Real, Mingxing Tan,
Yifeng Lu, Gabriel Bender, Hanxiao Liu, Adam Kraft, Chen
Liang, and Quoc Le. Pyglove: Symbolic programming for
automated machine learning. In Advances in Neural Infor-
mation Processing Systems (NeurIPS), volume 33, pages 96–
108, 2020. 7

[35] Yujia Qin, Yankai Lin, Jing Yi, Jiajie Zhang, Xu Han,
Zhengyan Zhang, Yusheng Su, Zhiyuan Liu, Peng Li,
Maosong Sun, et al. Knowledge inheritance for pre-trained
language models. arXiv preprint arXiv:2105.13880, 2021. 8

[36] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V
Le. Regularized evolution for image classifier architecture
search. In Proceedings of the aaai conference on artificial
intelligence, volume 33, pages 4780–4789, 2019. 6, 12

[37] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Rad-
ford, and Oleg Klimov. Proximal policy optimization algo-
rithms. arXiv preprint arXiv:1707.06347, 2017. 6

[38] Sheng Shen, Pete Walsh, Kurt Keutzer, Jesse Dodge,
Matthew Peters, and Iz Beltagy. Staged training for trans-
former language models. In International Conference on
Machine Learning, pages 19893–19908. PMLR, 2022. 3,
8

[39] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick
LeGresley, Jared Casper, and Bryan Catanzaro. Megatron-
lm: Training multi-billion parameter language models using
model parallelism. arXiv preprint arXiv:1909.08053, 2019.
1, 8

[40] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan,
Mark Sandler, Andrew Howard, and Quoc V Le. Mnas-
net: Platform-aware neural architecture search for mobile.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 2820–2828, 2019. 6,
8

[41] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model
scaling for convolutional neural networks. In International
Conference on Machine Learning, pages 6105–6114. PMLR,
2019. 6, 8

[42] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco
Massa, Alexandre Sablayrolles, and Hervé Jégou. Training
data-efficient image transformers & distillation through at-
tention. In International conference on machine learning,
pages 10347–10357. PMLR, 2021. 1, 2, 5, 6, 7, 8

[43] Hugo Touvron, Matthieu Cord, and Hervé Jégou. Deit iii:
Revenge of the vit. In Computer Vision–ECCV 2022: 17th
European Conference, Tel Aviv, Israel, October 23–27, 2022,
Proceedings, Part XXIV, pages 516–533. Springer, 2022. 1,
2

[44] Hugo Touvron, Matthieu Cord, Alexandre Sablayrolles,
Gabriel Synnaeve, and Hervé Jégou. Going deeper with im-
age transformers. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pages 32–42, 2021.
2

[45] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. Advances in neural
information processing systems, 30, 2017. 3

[46] Alvin Wan, Xiaoliang Dai, Peizhao Zhang, Zijian He, Yuan-
dong Tian, Saining Xie, Bichen Wu, Matthew Yu, Tao Xu,
Kan Chen, Peter Vajda, and Joseph E. Gonzalez. Fb-
netv2: Differentiable neural architecture search for spatial
and channel dimensions. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), June 2020. 8

[47] Peihao Wang, Rameswar Panda, Lucas Torroba Henni-
gen, Philip Greengard, Leonid Karlinsky, Rogerio Feris,
David Daniel Cox, Zhangyang Wang, and Yoon Kim. Learn-
ing to grow pretrained models for efficient transformer train-



ing. In International Conference on Learning Representa-
tions, 2023. 1, 2, 3, 4, 8, 12

[48] Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang,
Fei Sun, Yiming Wu, Yuandong Tian, Peter Vajda, Yangqing
Jia, and Kurt Keutzer. Fbnet: Hardware-aware efficient con-
vnet design via differentiable neural architecture search. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 10734–10742, 2019. 8

[49] Cheng Yang, Shengnan Wang, Chao Yang, Yuechuan Li,
Ru He, and Jingqiao Zhang. Progressively stacking 2.0:
A multi-stage layerwise training method for bert training
speedup. arXiv preprint arXiv:2011.13635, 2020. 1, 5, 6,
8

[50] Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv
Kumar, Srinadh Bhojanapalli, Xiaodan Song, James Dem-
mel, Kurt Keutzer, and Cho-Jui Hsieh. Large batch optimiza-
tion for deep learning: Training bert in 76 minutes. arXiv
preprint arXiv:1904.00962, 2019. 8

[51] Kaicheng Yu, René Ranftl, and Mathieu Salzmann. An anal-
ysis of super-net heuristics in weight-sharing nas. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
44(11):8110–8124, 2021. 8

[52] Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk
Chun, Junsuk Choe, and Youngjoon Yoo. Cutmix: Regu-
larization strategy to train strong classifiers with localizable
features. In Proceedings of the IEEE/CVF international con-
ference on computer vision, pages 6023–6032, 2019. 13

[53] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and
David Lopez-Paz. mixup: Beyond empirical risk minimiza-
tion. arXiv preprint arXiv:1710.09412, 2017. 13

[54] Minjia Zhang and Yuxiong He. Accelerating training of
transformer-based language models with progressive layer
dropping. Advances in Neural Information Processing Sys-
tems, 33:14011–14023, 2020. 1, 8

[55] Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, and
Yi Yang. Random erasing data augmentation. In Proceedings
of the AAAI conference on artificial intelligence, volume 34,
pages 13001–13008, 2020. 12

[56] Daquan Zhou, Bingyi Kang, Xiaojie Jin, Linjie Yang, Xi-
aochen Lian, Zihang Jiang, Qibin Hou, and Jiashi Feng.
Deepvit: Towards deeper vision transformer. arXiv preprint
arXiv:2103.11886, 2021. 2

[57] Barret Zoph and Quoc V Le. Neural architecture search with
reinforcement learning. arXiv preprint arXiv:1611.01578,
2016. 2, 6, 8



A. Training Hyperparameters
A.1. Hyperparameters for Single-trial Model Scal-

ing.

Our training hyperparameters are the same as DeiT-
B [14] as given in Table 9. We find using repeat augmenta-
tion [3, 21] and erasing augmentation [55] doesn’t show any
performance improvement. As such, we do not use them in
the training phase.

A.2. Hyperparameters for NAS

The regularized evolution algorithm discussed in Sec 4
identical as AmoebaNet [36]. We set the population size
set to 50 and the tournament size set to 10. The mutation
probabilities are uniform and are identical to [36]. For the
reward function, exponent ϵ = −0.07, FLOPs target is set
to FLOPs0 = 10000M .

B. Details of Baseline Scaling Operators
B.1. Learning Curve of Scaling Operators

The learning curve for different expansion operators is
given in Figure 6. The γST with momentum information
outperforms other baselines.

B.2. Details Explanations for bert2BERT and
Learn-to-share

bert2BERT (γb2B): We use a simple example to illustrate
the key idea of bert2BERT here. Assuming we are expand-
ing the first layer w0 and the input feature vector is din, the
output of the matrix would be do = dTinw0. w0 has a di-
mension of 2 × 2 and din has a dimension of 2 × 1. After
layer scaling, w′′

0 has a size of 4× 4.

din =

[
a
b

]
, w0 =

[
o p
q r

]
, dTo = dTinw0 =

[
ao
bo

]
(13)

When expanding the weight matrix w0 given in Eq. 13
from a 2× 2 matrix into a 4× 4 matrix, we first expand the
input dimensions.

We randomly select two rows, e.g., the first row, and du-
plicate them. Then, we normalize these rows based on the
number of duplication. The corresponding input features
will be duplicated in the same fashion without normaliza-
tion. The result dense layers are given as follow:

d′in =


a
b
a
a

 , w′
0 =


o
3

p
3

q r
o
3

p
3

o
3

p
3

 (14)

As is shown above, the result d′in
Tw′

0 = dTinw0 does not
change during the expansion.

Next, we randomly select two columns, e.g., the second
column, and duplicate the it without normalization.

d′′in =


a
b
a
a

 , w′′
0 =


o
3

p
3

p
3

p
3

q r r r
o
3

p
3

p
3

p
3

o
3

p
3

p
3

p
3

 (15)

The final output (o′′ = d′′in
Tw′′

0 ) would be o′′ =
[ao, bo, bo, bo]. For the following layerw1, the input is deter-
mined and thus the policy of row duplication is determined
as well. For w1, we continue the same procedure for ex-
panding column (i.e., random select columns and duplicate
them). And so on, the model functionality can be preserved.

LayerNorm(o) =
(o′′ − µo)

σo
⊙WLN + bLN (16)

However, if the next layer is LayerNorm (Eq 16). The
mean (µo) and variance (σo) of the output o changes. ⊙
denotes the element-wise multiplication. During expan-
sion, we don’t know the relationship between ao and bo, so
bert2BERT cannot preserve functionality through changing
the LN scale and LN-bias, i.e. WLN and bLN .

On the other hand, γST will yield output o′′ =
[ao, bo, ao, bo]. The mean µo and the variance σo of the out-
put vector does not change.
Learn-to-grow. learn-to-grow [47] proposes to learn linear
matrices that map the pretrained weights into larger weight
matrices to preserve the functionality of the small pretrained
model. We denote its width and depth expansion operator
as γltg and βltg, respectively.

W ′
i = γltg(wi) = HiwiH

T
i , i ∈ {1, ..., l} (17)

Here, Hi (D × d) is a trainable linear layer that maps the
dense layer wi into W ′

i . wi has a dimension of d × d and
W ′

i has a size ofD×D. For layer normalization and weight
bias with a dimension of d × 1, the expansion is similar to
Eq 17 [47].

After width expansion, learn-to-share trains another set
of linear mappings for depth expansion that expandW ′ into
W :

Wi = βltg(wi) = Σl
j=1Pi,jW

′
j , i ∈ {1, ..., L} (18)

Here Pi is a 1 × l vector. l is the number layers in the
pretrained model; L is the number of layers in the scaled
model. This means the expanded layer Wi is the weighted
sum of W ′

j where j ∈ {1, ..., l},.
The linear mappings (H , P ) are introduced to scale ev-

ery dense layers in the scaled ViT. These mappings contain



Table 9. Hyperparameters for model scaling experiments. The hyperparameters are identical to DeiT-B. We find batch augmentation [?]
and Erasing are not useful to increase the final task accuracy.

Search
method

Search
method

Learning
rate decay

Warmup
epoch

Label
smoothing Dropout

Drop
path

Repeat
Aug

Gradient
clip RandAug [?] Mixup [53] Cutmix [52] Erasing [?]

4096 4e-3 cosine 5 0.1 0.0 0.1 × × ✓ ✓ ✓ ✓

a large number of parameters and requires a prohibitively
expensive hardware memory for training. Some techniques
are proposed in the paper to reduce the number of parame-
ters, such as Kronecker factorization.

In this paper, we find the objective of training these lin-
ear mappings is the same as the training the scaled model
(Eq 6). For S−→B, learn-to-grow can achieve 72% initial
accuracy. Specifically, learn-to-grow trains the linear map-
ping H , P for around 200 steps and scale the model ac-
cording to Eq 17-18. However, using γST alone to scale
S−→B can achieve the pretrained DeiT-S accuracy (79%) at
step 0. γPad0 can achieve 73% accuracy with 200 steps of
model training. This means training these linear mappings
for increasing the initial accuracy is redundant. Besides, as
discussed in Sec 2.3, we argue that the initial accuracy is
not the key for a successful model scaling.

C. Combine TripLe with KD
As we reuse the DeiT architectures, the output has two

parts: (1) the output logits of distillation head ot and (2) the
output logits of classification head os. Assuming the output
logits of teacher model is Zt, the corresponding teaching
label would be yt = argmaxc Zt(c). When KD is applied,
the hard loss is defined as Eq 19.

LhardDistill
global =

1

2
LCE(ψ(os), y)+

1

2
LCE(ψ(ot), yt) (19)

ψ is the softmax function. LCE is the cross-entropy
loss. During model evaluation under KD, the prediction
comes from the combination of both os and ot: ȳ =
argmaxc

os+ot
2 (c).

When we disable the knowledge distillation, we follow
the official DeiT implementation2 for training and the loss
is given as Eq 20.

Lglobal =
1

2
LCE(ψ(

os + ot
2

), y) (20)

D. Learning Curve of NAS
For each trial, both TripLe-NAS and multi-trial NAS

conduct 30 epochs of training. The leraning curve of the
agent during searching phase is given in Figure 5. Gener-
ally, both multi-trial and TripLe-NAS gradually increases
reward over time. The learning curve of TripLe is more sta-
ble compared to multi-trial.

2https://github.com/facebookresearch/deit

Figure 5. Learning Curve of the agents during NAS when each
sample is trained with (1) TripLeep30 (2) Scratchep30.

Table 10. Transfer learning results on various datasets.
Model Params FLOPs CF-10 CF-100 Cars Flowers

DeiT-B (official) 86M 33.7B 99.1 90.8 92.1 98.4
S−→B, LTG 86M 33.7B 99.1 90.7 92.1 97.8

S−→B, TripLeep300 86M 33.7B 99.1 90.8 92.2 98.4

E. Model Transfer Learning
Table E shows the transfer learning results of ViT-TripLe

and ViT-Scratch. For the downstream tasks, the inputs are
resized into 224×224.

F. Searched architectures.
Table F shows the models searched using NAS with

TripLe and traditional multi-trial NAS.



Figure 6. Training Ti−→S with 30 epochs using different width expansion methods, i.e., γb2B , γST , γpad0, γintp. ‘+m’ denotes we also
employ optimizer states in the pretrained model as discussed in Sec 2.3.

Table 11. Searched Architectures from (1) multi-trial NAS with TripLe and (2) traditional multi-trial NAS.
Model Params FLOPs hidden dim Layers hf ef wd lr

ViT-TripLe 27M 10416M 384 19
[32,32, 64,64,64,32,32,32,32,32,32,64]

[32, 64,32,32,64,32,32]
[2,4,2,2,2,4,4,2,2,4,2,2]

[4,4,2,2,2,4,2] 0.05 4e-3

ViT-Scratch 30M 11409M 384 19
[32,32,64,32,32,64,32,64,32,64,64,64]

[32,32,32,32,32,32,32]
[3,4,4,2,3,4,2,3,4,4,4,2]

[4,4,2,2,2,4,2] 0.05 4e-3

Figure 7. Task performance when trained with (1) TripLeep30(2)
TripLeep120 (3) Scratchep30 (4) Scratchep30.


