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Abstract— Learning-based approaches to autonomous vehicle
planners have the potential to scale to many complicated
real-world driving scenarios by leveraging huge amounts of
driver demonstrations. However, prior work only learns to
estimate a single planning trajectory, while there may be
multiple acceptable plans in real-world scenarios. To solve the
problem, we propose an interpretable neural planner to regress
a heatmap, which effectively represents multiple potential goals
in the bird’s-eye view for an autonomous vehicle. The planner
employs an adaptive Gaussian kernel and relaxed hourglass
loss to better capture the uncertainty of planning problems.
We also use a negative Gaussian kernel to add supervision to
the heatmap regression, enabling the model to learn collision
avoidance effectively. Our systematic evaluation on the Lyft
Open Dataset across a diverse range of real-world driving
scenarios shows that our model achieves a safer and more
flexible driving performance than prior works.

I. INTRODUCTION

The past decade has witnessed a continuous proliferation
of autonomous vehicle (AV) research and industry practice
[1], [23], [26]. Among all the AV subtasks including per-
ception and motion forecasting, the planning task is espe-
cially challenging due to the complicated real-world driving
scenarios and dynamic interaction with other traffic agents.
Traditional approaches typically formulate the planning task
as a cost optimization problem, in a predefined parameterized
trajectory space (e.g., cubic spirals [15]). However, such
approaches require tremendous efforts in fine-tuning the cost
functions and other hyperparameters, which is not scalable
and cost-effective [21]. The learning-based approaches lever-
age real-world expert demonstration to learn the ideal driving
behavior. Such data-driven approach can easily scale to a
diverse range of driving scenarios [1], [24], [26].

However, pure imitation approaches suffer from distribu-
tion shift, which leads to compounding errors due to the
sequential nature of driving decisions [1]. In particular, the
existing imitation learning approaches are mostly restricted
to regress an optimal trajectory based on the current driving
scenario [1], [26]. However, the optimal trajectory has some
inherent uncertainties: Figure 1a shows an AV (the grey
vehicle, whose routing information is to turn left at the next
intersection) that has two possible driving plans, driving into
the left turn lane (goal A) or passing the red vehicle and
trying to change lane (goal B). Yet we can only observe
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(a) The multilanes scenario.

(b) The nudging scenario.

Fig. 1: (a) A multilane scenario: the AV has multiple possible
trajectories, but the dataset may only include a single ground-
truth trajectory for each data sample. (b) A nudging scenario:
a blue vehicle is parked near the curb. AV needs to learn to
nudge a little bit and safely pass the blue vehicle.

one of them for each sample in the training dataset. Such
unimodal regression may learn to predict an average of two
modes [4], leading to risky plans (dotted line C may hit the
rear end of the red vehicle).

Moreover, even when the only acceptable action is switch-
ing to the left lane – there are still ambiguities in the labels.
As the groundtruth trajectory still can be affected by indi-
vidual driving styles. For example, a driver may drive faster
and keep a longer following distance than others. We depict
the variance as the blue dotted ellipse. Such uncertainty in
the ground-truth labels needs to be captured to improve the
learning performance. To make things worse, the variance
of different plans can also be different. Figure 1b shows a
nudging scenario with a badly parked blue vehicle, where an
AV needs to perform a flexible nudging maneuver, instead
of getting stuck. The variance of this maneuver is smaller
compared with Figure 1a, as the AV also cannot borrow
the other lanes too much, which may hamper the normal
traffic. To support such flexible maneuvers, the learning-
based planner needs to adaptively capture the variance of
different plans.

To address those limitations, we propose to learn a prob-
ability distribution of acceptable planned trajectory, rather
than focusing on the optimal trajectory. Inspired by works
in target-driven motion forecasting, we make the observation
that the value/cost/optimality of a trajectory can be mostly
captured by the goal it wants to reach. Specifically, we
regress an interpretable heatmap representation, indicating
which goals are preferable in the map. Our model takes the
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input of mid-level representation from perception and outputs
future waypoints of ego vehicles. In summary, we conclude
our major contributions in the following:

• Our model regresses an interpretable heatmap that
predicts the value of different goal positions on the
map. Our auxiliary task also helps the AV predict the
trajectories of other vehicles, which explicitly improves
the collision avoidance ability of AV planners

• We provide relaxed hourglass regression loss to force
the model to focus on the important region of the
heatmap. We also propose an adaptive Gaussian kernel
to capture the uncertainty of the planning problem and
the inherent labeling ambiguity.

• We demonstrate our model to achieve better safety and
flexibility compared with prior works, by evaluating
them with a diverse range of realworld driving scenarios
from the large-scale Lyft dataset.

II. BACKGROUND AND RELATED WORK

A. Imitation Learning

The imitation learning approach for learning driving poli-
cies using large amounts of driver demonstrations suffers
from the distribution shift problem [18], which can result in
dangerous driving behaviors over time. The ChauffeurNet [1]
augments the driving data by perturbing the position or
velocity, which makes the AV robust to the error induced by
distribution shift. It also demonstrates its capability to drive
in a closed-loop control environment. To mitigate the mode
averaging problem, InfoGAIL combines imitation learning
with the generative model to capture multi-modal behavior
of the expert demonstration [11].

Meanwhile, it is desirable for learning-based systems to
provide interpretable results that help us understand the deci-
sions they make. The neural motion planner [24] attempts to
do so by learning an interpretable cost volume supervised by
expert demonstrations and other constraints, such as collision
avoidance and traffic rules.

B. Reinforcement Learning (RL) and Inverse RL

Reinforcement learning (RL) specifies a performance met-
ric (reward), while the agent learns the optimal behavior
by interacting with the environment. However, designing
the reward function (reward shaping) is difficult for the
complicated real-world driving tasks [22]. To this end, in-
verse reinforcement learning (IRL) attempts to identify the
reward function from expert demonstrations [8]. However,
all those approaches suffer from the sim-to-real gaps that
may render the learned policy performing poorly in the real-
world settings. Besides, the learned representation is not
interpretable, making it hard to apply in safety-critical AV
applications.

C. Target-conditioned Prediction

Motion forecasting task predicts the plausible future trajec-
tory sets based on likelihood fitting or generative models [4],

[9]. Recent motion forecasting approaches adopt a target-
conditioned motion model to handle the intrinsic multi-
modality of motion forecasting [5]. Mixture Density Network
(MDN) is also used to model the multimodal distribution of
the motion forecasting tasks [4]. However, MDN training is
brittle and unstable as it heavily relies on good initialization.
It also easily suffers from mode collapse [14].

Fig. 2: The probability distribution of the target is often
multimodal: the distribution of this scenario has two modes
A and B, which corresponds to the plan A and B in Figure 1a.
Prior work such as ChauffeurNet learns a single optimal
trajectory, based on L1/L2 loss. The regressed trajectory
suffers from mode averaging, leading to suboptimal policy.

III. METHODS

The purpose of motion planning is to plan a future trajec-
tory for the ego vehicle (AV), for T timesteps (s=(xt,yt,θt)
for t in 1,..., T , x, y, θ indicates the 2D position and the
orientation of the AV). The model is given the observation
of the past N frames, the observation (x) includes the map
information, the dynamic traffic agents including vehicles
and pedestrians, and the history position of the ego vehicle.
Therefore, we want to capture the probability distribution
p(s|x), for the planning problem. Such a problem is similar
to the motion forecasting task. Previous work points out
that uncertainty can be decomposed into intent uncertainty
and control uncertainty [25]. As the driving intention is
determined by the AV itself, prior work assumes that the
probability distribution of optimal trajectory is unimodal.
For example, ChauffeurNet and its variation use L1 or L2
imitation loss, with the assumption of unimodal Laplacian
or Gaussian noises [1], [26].

In our work, we propose to learn the value of multiple
acceptable trajectories, instead of regressing a single trajec-
tory. Inspired by prior work, we work on the planning goals
of the AV, rather than regressing a single high-dimensional
trajectory. We assume that the value of a planning goal is
mostly captured by its goals. To formulate our framework,
the value of a goal g is learned by function Vτ=f(τ,x).
To reduce computation, we discretize the driving scenario
and compute all the τ = (i, j) out of the rasterization
image space. Then we select the optimal goal via τ =
argmax (Vij). With the optimal goal, we will regress a
trajectory T = ν(τ) for the AV to reach that goal.

Observation x is multi-channel rasterized bird’s-eye view
(BEV) images as input, which are rendered based on the
groundtruth data in this paper. As shown in Figure 4, the
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Fig. 3: Our planning model takes the input of multi-channel rasterization image from bird’s-eye view. The first stage network
is a UNet architecture that outputs a heatmap of the same size with the rasterization image, indicating the value of each
position. Given the heatmap, we use argmax operation to find the coordinate with the highest value in the heatmap. The
second stage network will take the goal and scenario embedding, and output the planning trajectory (waypoints).

rasterized image includes the last n history frames and
the current map information, including traffic lights, road
topology, and navigation direction. The BEV intermediate
representation precisely captures the environment informa-
tion including location and scale of objects and is widely
used in previous works [12], [19], [17], [10].

(a) Agent Boxes (b) Map Information (c) Navigation Mask

Fig. 4: The scenario rasterization in bird’s-eye view (BEV):
(a) the multi-channel bounding boxes of traffic agents, in-
cluding several history frames and current frame to describe
the ego vehicle (AV) and the past agents’ trajectory. We
visualize the history trajectory with sequences of fading
brightness. (b) the map information, typically including the
lanes, traffic lights and crosswalk. (c) the navigation mask
shows the ego’s routing information.

A. Model Architecture

Our planner firstly predicts a heatmap with the same size
of BEV images, each pixel’s value ranges from 0 to 1,
presenting the optimality of the position. During training, we
will compute the loss between the predicted heatmap and the
groundtruth heatmap, constructed with 2D Gaussian kernels.
During inference, the AV will pick the position with the
maximum heatmap value as the short-term goal. Conditioned
on that, the next stage network will predict a sequence of
future waypoint (x,y,yaw) and continuously control the AV.

Our first stage network adopts the ResNet18 and UNet
architecture, which is originally designed for semantic seg-
mentation tasks [20], [6]. We select the UNet architecture
due to its capability to capture spatial relationships, which
is important in the motion planning task. The second stage
is implemented by a two-layer MLP network, that takes the
environment embedding and the predicted goals and output
a trajectory to reach that goal.

B. Heatmap Regression

Compared with directly regressing the numerical coordi-
nates of the points of interest, the heatmap regression is
proved to have better spatial generalization [16]. Therefore,
heatmap regression is widely used to regress coordinates
for tasks such as keypoints detection and bounding box
detection [13], [3]. The groundtruth heatmaps are constructed
with 2D Gaussian kernels, centered on the labeled points.

G(x, y) =
1

2πσ2
e−

(x−x0)2+(y−y0)2

2πσ2

s.t.∥x− x0∥1 ≤ 3σ, ∥y − y0∥1 ≤ 3σ
(1)

The (x0, y0) is the groundtruth short-term goals. The
heatmap models the optimality of the goals instead of the
probability, therefore we remove the normalization coeffi-
cient 1

2πσ2 . σ indicates the uncertainty of the goal. The value
range of every pixel is 0-1.

The heatmap regression approach in previous work [13],
[3] has multiple Gaussian kernels as the groundtruth, which
handles the multimodal distribution naturally. However, as
we only observe a single trajectory in the dataset, the
groundtruth heatmap only has one mode. To encourage the
model to learn multiple acceptable goals, we introduce the
negative Gaussian kernel and relaxed hourglass loss.

a) Negative Gaussian Kernel: To keep safe, the goals
that may collide with other traffic agents should have a lower
value. Inspired by that, we initialize the groundtruth heatmap
to be 0.5 everywhere. Then we add the positive Gaussian
kernel centered on the goal and the negative Gaussian
kernel centered on the object position after the planning
horizon. Both kernels are normalized by 0.5, which makes
the groundtruth position on the heatmap the highest value 1,
and other pixels still have a value range 0-1. We also mask
the off-road region on the rasterized image as 0. We visualize
those negative Gaussian kernel and road mask in Figure 6b
and Figure 6c.

By adding the objects’ future position into the groundtruth
heatmap, our model is learning to predict their future posi-
tion. Due to the limitation of the receptive field, we cannot
correctly predict the object position that is not initially in
the receptive field. Therefore, we only calculate the loss for
the center patch of the heatmap, as shown in Figure 5c.
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This design also reduces the number of the pixel needed
to compute the loss, which may alleviate the imbalanced
distribution problem in heatmap regression [13].

In our experiment, we also observe that our AV sometimes
will change lanes to avoid high-speed following vehicles,
which is not desirable. Therefore, we filter the objects that
are driving behind the AV and also in the same lane when
we compute the object negative Gaussian kernel.

(a) σ = 5 (b) σ = 2 (c)

Fig. 5: (a), (b): groundtruth with different σ values; (c) The
groundtruth heatmap for the scenario in Fig. 6 constructed
by object mask, road mask and the groundtruth goal. We only
calculate the L2 loss for pixels inside the red line patch.

b) Adaptive Gaussian Kernel: In previous work, differ-
ent goals are set up with the same standard deviation [13].
Such assumption doesn’t hold true for the motion planning
domain. Figure 1a shows that the variance of different
goals in the driving scenarios exhibit different variance: the
variance of goal A is small compared with goal B, because
of the nearby red vehicle in the neighbor lane. Capturing
the variance is critical to the safety, as some scenarios (e.g.,
1b requires very small variance in the planning goals, which
means the maneuvers should be very accurate. Therefore, we
adaptively set the standard deviation of the Gaussian kernel
based on different scenarios. Specifially, we sample different
standard deviation σ from 1 to 5, and use the largest σ
that doesn’t incur collision. Figure 5a and Figure 5b shows
the process, which helps our model adaptively capture the
uncertainty in different scenarios.

(a) The bird’s-eye view
of original scenario

(b) The object mask (c) The road mask

Fig. 6: We add the road mask and object mask into the
groundtruth heatmap, to supervise the neural planners to
learn to drive on road and avoid collision.

c) Relaxed Hourglass Loss: The heatmap regression
task typically uses the Mean Squared Loss (MSE) [13].
However, with an increasing number of pixels, prior work

and our experiment show that the negative pixels can over-
whelm the entire loss function, hampering the neural network
from learning useful hints. As mentioned, our groundtruth
heatmap labels the drivable but suboptimal region with the
value 0.5. However, this is overly strict as the drivable region
is relatively large compared with the groundtruth kernel and
object kernels. Therefore, we downweight the loss for the
drivable region with following loss function:

Lregression = ∥W ∥ · ∥Ŷ − Y ∥22 (2)

Wij =

{
0.6 if ŷij = 0.5
1 otherwise

(3)

The Y and Ŷ refer to the predicted and groundtruth
heatmap value, respectively. ∥W ∥ stands for the down-
weighting matrix that adjusts the MSE Loss. ∥∥2 stands for
L2 norm. We name it hourglass loss as the loss function puts
more weight on the two ends (0 and 1) and downweights the
intermediate value. Another benefits of downweighting is to
alleviate the penalty for the multimodal distribution shown in
Figure 2, which can improve the performance of our learned
motion planners.

C. Implementatin Details

a) Dataset & Scene Renderers: We train our model
with a large-scale real-world driving dataset, Lyft dataset [7].
The dataset was collected over multiple cities, with a diverse
range of road conditions. It consists of around 170000
scenarios, each about 25 seconds long. We are using the
built-in rasterization module in Lyft dataset to render the
rasterized image of the scenarios. L5kit renders our AV
(i.e., the ego vehicle) at the (0.25, 0.5) of the image space,
and the initial orientation always aligns with x axis of the
image space. The input image is 128x128 and the rendering
resolution is 0.5 meter per pixel. Therefore, AV can sense the
spatial region spanning 48 meters in front and 16 meters in
back, 32 meters to the left and right. The planning frequency
is 10 frames per second, and the planner output a trajectory
with 2 seconds duration. Our models are trained using the
Adam optimizer with an initial learning rate of 0.0001.

b) Data Augmentation: We examine the goal distribu-
tion of Lyft dataset and find that Lyft driving dataset is highly
skewed with driving straight cases. Such unbalanced distribu-
tion may hamper the generalizability [2]. It can also lead AV
fail to change lanes when necessary, hurting the flexibility of
the neural planners. We divide the training dataset scenarios
into three parts, namely “going straight”, “turning left” and
“turning right”. For example, for the “turning left” scenario,
the maximum shift of vehicle orientation in the planning
horizon is over a threshold (we use 0.4 in radians) in the
left direction. Our result shows the ratio of three categories
is about 48:1:1. To balance their distribution, we adjust the
sampling frequency of the scene data, by downweighting
the frequency of “going straight” cases. Such reweighting
cases can balance the training distribution, forcing our model
to learn flexible behaviors such as lane changing. In addi-
tion, we add a small uniform-distributed noise (-π6 ,π6 ) to
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the rendering orientation, making the AV’s orientation not
necessarily points to the x-axis of the image coordinate.

c) Perturbation: Imitation learning in sequential deci-
sion problems usually suffers from error accumulation, as
it leads to the states that are very poorly distributed in the
training dataset. To cope with this, we adopt the same data
augmentation method as in ChauffeurNet, by mutating the
position and orientation of some frames in the trajectory.
Figure 7 lists an example that the orientation and initial
position of the vehicle is perturbed, then the rest of the
waypoints are interpolated based on the fixed end point.
Such synthesized cases can expose learned motion planner
to some states that don’t exist in the expert demonstration
(e.g., driving offroad and collision), which is proved to be
effective in addressing the error accumulation issues [1]. We
use the perturbation probability of 0.1.

(a) The original trajec-
tory

(b) The perturbed trajec-
tory

(c) The heatmap of the
out-of-distribution sce-
nario

Fig. 7: (a) shows the original scenario. (b) shows the scenario
after perturbation: the initial position and orientation is
perturbed a little, and the rest of the trajectory is interpolated.
Such perturbation can teach the planner to drive on lanes. (c)
the heatmap visualization shows that our model can learn to
get back on lanes even with large perturbation noise.

IV. RESULTS

A. Evaluation Methodology

a) Driving Scenarios: Motion planners need to be both
efficient and safe across a diverse range of real-world driving
scenarios. We first preprocess the data from Lyft testing
dataset [7] and select representative scenarios based on their
categories, which are:

• Lane Following: the ego vehicle (AV) is driving in
straight or curved roads without lane changing, the main
challenge is to keep a reasonable speed, and also not
be too closed to preceding vehicles

• Lane Changing: including merging lanes, lane chang-
ing behaviors. The ego vehicle needs to correctly over-
take or yield.

• Intersection: The ego vehicle will perform a right turn
or left turn to the correct lane, and also correctly behave
based on the traffic signal.

• Flexibility Testing: We also curated some scenarios
with badly parked vehicles (nudging scenario in Fig-
ure 1 (b)) or preceding vehicles with very slow speeds.
AV should learn to overtake those vehicles safely.

We collect 1000 testing scenarios, each with 15 seconds,
from the dataset. We also balance their frequency in the four
categories for testing diversity and coverage. We perform
closed-loop simulation with our AV planners by replaying the
dataset, including the recorded trajectory of non-AV vehicles
and actuate the waypoints generated by our model. We also
collect necessary metrics such as collision rates.

b) Evaluation Metrics: To evaluate our planner, we use
similar metrics in the previous work: (1) the collision rate:
we collect the number of collision cases in the simulation. (2)
the pass/fail rate. We also select 50 scenarios with specific
requirements, such as nudging, lane merging, and yielding.
We observe the behaviors of the AV and mark the scenario
as “Fail” if it fails to perform ideal behaviors, such as getting
stuck in the traffic or deviating from the predefined route.

c) Comparison And Ablation Analysis: We compare
our neural planners with two prior works, ChauffeurNet [1]
and NMP [24], in Table I. Note that the NMP planner takes
the input of raw sensor data, we retrain a NMP planner that
takes the input of rasterized images for a fair comparison. We
also perform an ablation study with different configurations
(M2a-d) to demonstrate the effectiveness of our design.

B. Safety Analysis

We test different model configuration in Table I. We can
conclude that our model can achieve better safety promises
than prior work, as it causes fewer collision rates (comparing
M2d with M1 and M0). We also find that the object mask
(comparing M2c with M2a) helps the AV learn to predict
the trajectory of other vehicles, which significantly reduce
the collision cases.

We also list the pass/fail cases in Table II in four categories
of our 50 scenario testing challenges. We can see that our
work is much better than NMP in all 4 categories. Compared
with ChauffeurNet, our model also achieves comparable
performance in the first three normal traffic scenarios (go
straight, lane changing, and intersection). Our model exhibits
much better performance in the flexibility testing category.
Our visualization in Figure 9b and Figure 9c shows different
variance in the goal heatmap, Figure 9b is smaller due to
the existence of other traffic agents. It shows that our model
can capture the variance of driving goals, which explains its
ability to perform flexible maneuvers.

As we are only replaying the log in our closed-loop
simulators, the simulated agent in the rear of ego vehicle
will not react to the slowdown behavior. We also list the
number of rear-end collision cases in the table, in which the
AV is not responsible for the collisions.

C. Generalization Evaluation

One major problem of the imitation learning approach is
the distribution shift. In this section, we evaluate the gener-
alization ability in two kinds of scenarios: (1) perturbing the
initial position and velocity of the ego vehicle with larger
offsets and variance compared with the data augmentation
mentioned in Section III-C. (2) perturbing the trajectory
of the other traffic agents. We also filter the unrealistic
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Description Loss function Interpretable
Representation

Collision Cases
/Rear end cases Total Fail Cases

M0 The ChauffeurNet
implementation from L5kit. L2 loss ✗ 11/9 13

M1 Neural motion planner max margin loss ✓ 27/18 21
M2a Vanilla heatmap regression L2 loss ✓ 59/22 32

M2b Heatmap regression with
adaptive Gaussian kernel L2 loss ✓ 52/23 29

M2c Heatmap regression with
road and object mask relaxed hourglass loss ✓ 18/12 24

M2d Heatmap regression with
all our contributions relaxed hourglass loss ✓ 8/5 4

TABLE I: Comparison of prior work and different model configuration.

Lane
Following
(8 cases
in total)

Lane
Changing
(13 cases
in total)

Intersection
(11 cases
in total)

Flexibility
Testing

(18 cases
in total)

ChauffeurNet 8 13 11 5
NMP 7 11 8 3

Our model 8 13 10 15

TABLE II: The pass cases in the 4 categories for different
models.

ChauffeurNet NMP Our work
Pass Rate 63% 48% 94%

TABLE III: The pass rates in out-of-distribution scenarios
for different models.

scenarios such as deliberate collision. Our requirements are
that the AV should avoid collisions and quickly recover to
the lanes. Table III shows the pass rates of our model and
prior works, which proves our work can better generalize to
out-of-distribution scenarios. We also visualize a perturbed
scenario in Figure 7c. Although such drastic deviations from
the lanes are not likely in the training dataset, our model still
learns to get back on lanes.

D. Visualization

The predicted heatmap of our model indicates the value
of different planning goals. We first visualize the heatmap
of the vanilla heatmap regression (M2a) in Figure 8. We
can see that the highlight region is reasonable and safe for a
planning goal. In comparison, Figure 9 shows the heatmap of
our model. We can see that the model can accurately capture
the drivable region and optimal goals (highlight region) in the
scenarios. The dark region also shows the motion forecasting
result of other vehicles. Figure 9 (a) even shows multiple
dark region for the prediction of the rightmost vehicle, which
can be explained by that the preceding vehicle may perform
a lane change. Another example is that Figure 9 (c) shows
that the heatmap value is very low in the intersection with red
light signal, which demonstrates the learned rules of stopping
at a red light signal.

E. Performance Analysis

We extensively evaluated the runtime performance of our
method on a machine with NVIDIA Tesla P100 GPU. The
model inference time is 11 ms, and the BEV rendering time

(a) The original sce-
nario

(b) The predicted
heatmap

Fig. 8: (a) one multi-lane driving scenario. (b) The predicted
heatmap of vanilla heatmap regression for (a), with a single
Gaussian kernel centered on the groundtruth position.

(a) (b) (c)

Fig. 9: We overlay the predicted heatmap on different test-
ing scenarios. The bright region indicates acceptable goals,
while the dark region indicates the region that may involve
collision.

is 23.94 ms. As a comparison, ChauffeurNet takes 160 ms
on the same GPU device [1].

V. CONCLUSION

This paper proposes a learning-based planner that takes
the input of bird’s-eye view (BEV) rasterized images, and
outputs an interpretable heatmap that indicates the value
of different goals on the map. Our framework explicitly
captures the uncertainty in the planning problem by adaptive
standard deviation of the 2D Gaussian kernel. We also use the
negative Gaussian kernel for traffic agents to build the ability
to avoid collisions. We propose the relaxed hourglass loss
to encourage capturing multiple modes of acceptable goals,
while still keeping the ability to select optimal planning
goals and keep safe. Our evaluation on a large-scale real-
world dataset shows our planner is safer and more flexible
compared with prior imitation learning planners.
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