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ABSTRACT
Developing accurate o�-policy estimators is crucial for both eval-
uating and optimizing for new policies. The main challenge in
o�-policy estimation is the distribution shift between the logging
policy that generates data and the target policy that we aim to
evaluate. Typically, techniques for correcting distribution shift in-
volve some form of importance sampling. This approach results
in unbiased value estimation but often comes with the trade-o�
of high variance. Furthermore, importance sampling relies on the
common support assumption, which becomes impractical when
the action space is large. To address these challenges, we introduce
the Policy Convolution (PC) family of estimators for the contex-
tual bandit setting. These methods leverage latent structure within
actions—made available through action embeddings—to strategi-
cally convolve the logging and target policies. This convolution
introduces a unique bias-variance trade-o�, that can be controlled
via the amount of convolution. Our experiments on synthetic and
benchmark datasets demonstrate remarkable mean squared error
(MSE) improvements when using PC, especially when either the
action space or policy mismatch becomes large, with gains of up to
5 � 6 orders of magnitude over existing estimators.
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1 INTRODUCTION
O�-policy estimation (OPE) is a fundamental problem in reinforce-
ment learning and decision making under uncertainty. It involves
estimating the expected value of a target policy, given access to
only an o�ine dataset logged by deploying a di�erent policy, often
referred as the logging policy (see [43] for a comprehensive survey).
This decoupling between data collection and policy evaluation is
crucial in many real-world applications, as it allows for the assess-
ment of new policies using historical data without having to deploy
them in the environment, which can be costly and/or risky. In this
paper, we focus on OPE for the one-step contextual bandit setting,
i.e., we perform decision making with only an observed context
that is assumed to be independently sampled (e.g., a user coming
to a website), and do not consider any recurrent dependencies in
the context transitions as is the case in the general formulation of
reinforcement learning.

OPE, in its most general setting, can be a very challenging prob-
lem due to its inherently counterfactual nature, as we observe the
reward for only those actions taken by the logging policy, while we
aim to evaluate any target policy. For example, consider a scenario
where the logging policy in a movie recommendation platform,
for a given segment of users, rarely recommends romantic movies.
This can often happen when we think a user will not like certain
type of movies. On the other hand, a target policy—whose value we
aim to estimate—due to numerous potential reasons, now chooses
to recommend romantic movies for the same user segment. This
distribution-shift can lead to irrecoverable bias in our estimates
[26], making it di�cult to accurately evaluate a target policy or
learn a better one, which typically involves optimizing over the
value estimates [12, 37].

Typical o�-policy estimators utilize Importance Sampling (IS)
to correct for the policy mismatch between the target and logging
policies [4, 10, 14, 21, 27, 30, 34, 36, 38, 42, 46], leading to unbiased
value estimation, at the cost of high variance. The variance prob-
lem caused by IS is exacerbated if the target and logging policies
exhibit signi�cant divergence, and even more so if the action space
is large. Notably, large action spaces frequently occur in practical
OPE scenarios, e.g., recommender systems which can have mil-
lions of items (actions) [25, 47], extreme classi�cation [19, 22, 31],
discretized continuous action-spaces [40], etc.

To address the aforementioned limitations of IS, we propose
the Policy Convolution (PC) family of estimators. PC strategically
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convolves the logging and target policies by exploiting the inher-
ent latent-structure amongst actions—available through action-
embeddings—to make importance sampling operate in a more fa-
vorable bias-variance trade-o� region. Such structure can occur
naturally in di�erent forms like action meta-data (text, images, etc.),
action hierarchies, categories, etc. Or they can be estimated using
domain-speci�c representation learning techniques [2]. Notably,
the utilization of additional action-structure has also been stud-
ied in the online multi-armed bandit literature (Lipschitz bandits)
[15, 32, 33], albeit in the context of regret minimization.

To be more speci�c, the PC framework for OPE consists of two
components: (1) conventional IS-based value estimation; and (2)
convolving both the target and logging policies using action-action
similarity. PC allows full freedom over the choice of the backbone
IS estimator, the convolution function, as well as the amount of con-
volution to conduct on the target and logging policies respectively.

To better understand the practical e�ectiveness of PC, we com-
pare its performance with various o�-policy estimators on syn-
thetic and real-world benchmark datasets, simulating a variety of
o�-policy scenarios. Our results demonstrate that PC can e�ectively
balance the bias-variance trade-o� posited by policy convolutions,
leading to up to 5 � 6 orders of magnitude better o�-policy evalua-
tion in terms of mean squared error (MSE), particularly when the
action space is large or the policy mismatch is high. To summarize,
in this paper, we make the following contributions:

• Introduce the Policy Convolution (PC) family of o�-policy esti-
mators that posit a novel bias-variance trade-o� controlled by
the amount of convolution on the logging and target policies.

• Propose four di�erent convolution functions for the PC frame-
work, where each convolution function is accompanied with
its unique set of inductive biases, thereby leading to distinct
performance comparisons.

• Conduct empirical analyses on synthetic and real-world bench-
mark datasets that demonstrate the superiority of PC over a
variety of o�-policy estimators, especially when the action
space or policy mismatch becomes large.

2 PRELIMINARIES
2.1 OPE in Contextual Bandits
We study OPE in the standard stochastic contextual bandits setting
with a context space X and a �nite action space A. In each round
8 , the agent observes a context G8 2 X, takes an action 08 2 A,
and observes a reward A8 2 [0, 1]. The context G8 is drawn from
some unknown distribution ? (G). The action 08 follows some policy
c (·|G8 ), and the reward A8 is draw from an unknown distribution
? (A |G8 ,08 ) with expected value X (0, G) , EA⇠? (A |0,G ) [A ]. The value
of a policy is its expected reward

+ (c) , E
G⇠? (G )


E

0⇠c ( · |G )
[X (0, G)]

�
.

In OPE, given a target policy c , we aim to estimate its value+ (c)
using some bandit feedback data D , {(G8 ,08 , A8 )}=8=1 collected by
deploying a di�erent policy `. We call ` the logging policy and
assume it is known.

2.2 Conventional OPE Estimators
We now brie�y discuss a few prominent OPE estimators, which
will also be used to instantiate our proposed Policy Convolution
(PC) estimator discussed in Section 3.

2.2.1 Direct Method (DM). Taking a model-based approach, DM
leverages a reward-model to estimate the value of the target policy.
Formally, given a suitable X̂ : A ⇥X 7! R, the estimator is de�ned
as follows:

+̂DM (c) , E
(G,·,· )⇠D

" ’
02A

c (0 |G) · X̂ (0, G)
#
,

where the outer expectation is over the �nite set of logged bandit
feedback data D. Notably, the variance of +̂DM (·) is often quite low,
since X̂ is typically bounded. However, it can su�er from a large
bias problem due to model misspeci�cation [5].

2.2.2 Inverse Propensity Scoring (IPS). IPS [10] estimator uses
Monte-Carlo approximation and importance sampling to account
for the policy-mismatch between c and ` as follows:

+̂IPS (c) , E
(G,0,A )⇠D


c (0 |G)
` (0 |G) · A

�
.

The IPS estimator is unbiased under the following two assumptions
which we assume throughout the paper unless otherwise speci�ed:

A��������� 2.1. (Unconfoundedness) The action selection pro-
cedure is independent of all potential outcomes given the context, i.e.,
8G 2 X, c 2 ⇧,0 ⇠ c (·|G) : {X (00, G)}00 2A ?? 0 | G .

A��������� 2.2. (Common Support) The target policy c shares
common support with the logging policy `, 8G 2 X, 0 2 A: c (0 |G) >
0 =) ` (0 |G) > 0.

However, IPS estimator can su�er from a large variance problem,
since the importance weights c (0 |G)/` (0 |G) can be unbounded and
huge. Several estimators are proposed to reduce the variance of the
IPS estimator.

2.2.3 Self-normalized Inverse Propensity Scoring (SNIPS). Built on
the observation that the expected propensity weight in IPS equals
1 , SNIPS [38] uses the empirical average of the propensity weights
as a control variate for IPS as follows:

+̂SNIPS (c) , E
(G,0,A )⇠D


c (0 |G)

d · ` (0 |G) · A
�
s.t. d , E

(G,0,· )⇠D


c (0 |G)
` (0 |G)

�
.

SNIPS typically enjoys smaller variance at the cost of a slight added
bias in comparison to IPS, especially when the variance of the
propensity weight is large[8]. Further, +̂SNIPS (c) is a strongly con-
sistent estimator of + (c) by the law of large numbers.

2.2.4 Doubly Robust (DR). DR combines the bene�ts of unbiased
estimation in IPS and the low-variance, model-based estimation in
DM:

+̂DR (c) , E
(G,0,A )⇠D


c (0 |G)
` (0 |G) · (A � X̂ (0, G)) + �(c, G)

�

s.t. �(c, G) ,
’
00 2A

c (00 |G) · X̂ (00, G),

where X̂ is the same reward-model as used in DM (Section 2.2.1).
Intuitively, DR uses the reward-model as a baseline, and performs
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Figure 1: Intuition for the PC framework demonstrated using a hierarchical action tree, where similar actions (movies in this
example) are recursively agglomerated together. The last level (leaf nodes) represents the complete action space, and the higher
levels consist of “meta-actions” that represent a group of individual actions. As we go higher, PC de�nes the convolved policy
for a given action, as the mean probability of all actions inside its correspondingmeta-action. Hence, we obtain the uniform
policy at the topmost-level, and recover the original policy at the last-level.

importance sampling only on the error of the given reward-model.
DR is unbiased and can be of smaller variance than IPS when the
reward-model X̂ is close to the true reward X [4].

2.2.5 Self-normalized Doubly Robust (SNDR). Similar to the idea be-
hind SNIPS (Section 2.2.3); SNDR [24, 42] performs the same control
variate technique on the DR estimator (Section 2.2.4) as follows:

+̂SNDR (c) , E
(G,0,A )⇠D


c (0 |G)

d · ` (0 |G) · (A � X̂ (0, G)) + �(c, G)
�

s.t. d , E
(G,0,· )⇠D


c (0 |G)
` (0 |G)

�
; �(c, G) ,

’
02A

c (0 |G) · X̂ (0, G).

Hence, SNDR encapsulates the ideas behind all the aforementioned
estimators to conduct strongly consistent, low-variance policy value
estimation that might perform well (in terms of MSE) in practice.

While e�ective to some extent, the importance sampling based
estimators mentioned above can still su�er from large variance
due to large importance sampling weights, especially when the
action space is large. In particular, the variance of these impor-
tance sampling based estimators grows roughly linearly w.r.t. the
maximum propensity weight in D. And the maximum propensity
weight can grow linearly w.r.t. the size of action space ⌦( |A|) [39],
making these estimators undesirable for OPE for large action-space
problems. Further, when Assumption 2.2 is violated, the variance of
such importance sampling based estimators becomes unbounded, in
addition to incurring a bias of EG

⇥Õ
02U(G ) c (0 |G)X (0 |G)

⇤
, where

U(G) is the set of actions where ` (·|G) doesn’t put any probability
mass on (blind spots) [26].

To address the aforementioned problems of importance sampling
based estimators, we introduce policy convolution that makes use
of the latent structure within actions in the next section.

3 OPE VIA POLICY CONVOLUTION
In addition to the o�ine dataset D, we further posit access to some
embeddings E : A 7! R3 of the actions, which maps an action 0
to a 3-dimensional embedding space E(0) 2 R3 . Let EA ⇢ R3 be
the subspace spanned by E. Ideally, the embedding should capture
action-similarity information, i.e., smaller distance in the embed-
ding space should imply smaller di�erence in terms of expected
reward for each context G 2 X. Notably, such action-embeddings
are typically readily available in many industrial recommender
systems, e.g., via matrix factorization [16].

We are now ready to de�ne our Policy Convolution framework
for OPE. Taking IPS (Section 2.2.2) as a representative “backbone”
estimator for PC, we de�ne PC-IPS as follows:

+̂PC�IPS (c) , E
(G,0,A )⇠D

 (c (·|G) ⇤ 5g1 ) (0)
(` (·|G) ⇤ 5g2 ) (0)

· A
�

= E
(G,0,A )⇠D

Õ
00 c (00 |G) · 5g1 (E(0), E(00))Õ
00 ` (00 |G) · 5g2 (E(0), E(00))

· A
�
,

where ‘⇤’ represents the convolution operator speci�ed in the
action-embedding domain, and 5g : R3⇥R3 7! R is an action-action
similarity (or convolution) function which has a parameter ‘g ’ to
control the amount of convolution. Notably, PC is not limited to the
IPS backbone estimator discussed hitherto, and we analogously de-
�ne PC for other backbone estimators, namely, Self-Normalized IPS
(SNIPS), Doubly Robust (DR), Self-Normalized DR (SNDR) discussed
in Sections 2.2.3 to 2.2.5, and call such estimators PC-SNIPS, PC-DR,
and PC-SNDR for convenience. We provide their exact speci�cations
in Appendix A.
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01 02 03 04 + ⇤ (·) IPS with |D| = 10

MSE Bias2 Var

X (·, G1) 5 10 15 20 � � � �

g = 1 c (·|G1) 0.0 0.2 0.2 0.6 17 48.0 ⇡ 0 48.0
` (·|G1) 0.2 0.2 0.4 0.2 13

g = 2 (c ⇤ 5g ) (·|G1) 0.1 0.1 0.4 0.4 15.5 13.4 4.6 8.8(` ⇤ 5g ) (·|G1) 0.2 0.2 0.3 0.3 13.5

g = 3 (c ⇤ 5g ) (·|G1) 0.25 0.25 0.25 0.25 12.5 18.6 16 2.6(` ⇤ 5g ) (·|G1) 0.25 0.25 0.25 0.25 12.5

Table 1: A toy example to intuit PC using the Tree similarity function, and constrained to have g1 = g2. Similar to Figure 1, in
this toy example, the action tree is a 3-level complete binary tree, where the action partitioning is de�ned as {(01,02,03,04)} !
{(01,02), (03,04)} ! {(01), (02), (03), (04)} from top to bottom.

We also illustrate the intuition behind policy convolutions in
Figure 1, where PC strategically biases the logging and target poli-
cies toward the uniform policy, by leveraging the underlying action
structure, in this case, speci�ed via a hierarchical grouping of ac-
tions. As we will observe in Section 4.2, such convolutions in-turn
lead to a new bias-variance trade-o�, controlled by the amount
of convolution (g). We propose four suitable instantiations of the
action-action convolution (or pooling) function, 5g (·, ·) for PC:
• Kernel Smoothing. Perhaps the most intuitive, we use the idea
of multi-variate kernel smoothing [44] in the action-embedding
space to derive our similarity function as:

5g
�
E(0), E(00)

�
, K

�
E(0), E(00)

�

=
1
g3

3÷
8=1

K
✓E(0)8 , E(00)8

g

◆
,

where, K is a suitable kernel function (e.g., Gaussian), and g 2 R
now corresponds to the bandwidth. It is worth noting that such a
formulation can also be derived by viewing actions as continuous
treatments, as de�ned by their embeddings [9, 14]. However, since
an inverse mapping from R3 7! A does not exist in our discrete
action problem, having treatments outside EA is meaningless.

• Tree Smoothing. In this setting, we use E to recursively par-
tition the action-space (see Figure 1 for a depiction) into a tree-
like structure of depth ⇡ , where each depth can be speci�ed
by T3 , {a3,1, a3,2, . . . , a3,: }, where a3,8 is a meta-action (set)
comprising of singular actions, such that A ⌘ –:

8=1 a3,8 , and
a3,8 \ a3, 9 = � for all 8 < 9 pairs. Notably, T⇡ (root node) consists
of a single meta-action with all actions, and T1 ⌘ A (last level)
consists of each singular action. The similarity function is then
de�ned as:

5g
�
E(0), E(00)

�
,
I(00 2 ag (0))

|ag (0) |
,

where, I(·) represents the indicator function, g signi�es the depth
of the action-tree to use, and ag (0) represents the meta-action at
depth g corresponding to the action 0.

• Ball Smoothing. In this setting, we de�ne a binary similarity
function based on a �xed-radius ball around the given action, as

de�ned by E as follows:

5g
�
E(0), E(00)

�
,

I
�
kE(0) � E(00)k22 < g

�
��� kE(0) � E(000)k22 < g | 8000 2 A

 �� ,
where, g signi�es the radius of the ball around E(0).

• kNN Smoothing. In this setting, we de�ne a binary similarity
function as the k-nearest neighbors decision function:

5g
�
E(0), E(00)

�
,
I (00 2 kNN(0, g))

g
,

where, g signi�es the number of nearest neighbors to use, and
kNN(0, g) represents the set of g nearest neighbors of E(0) in
EA .
We note that our general Policy Convolution framework en-

compasses the existing OPE estimators designed for large action
spaces [23, 28]. As we will later show in Section 4.2, using the
convolution functions proposed in Section 3, PC is able to achieve
signi�cantly better performance than existing estimators. More
speci�cally, groupIPS [23] can be generalized as PC-IPS and of-
fCEM [28] as PC-DR, both using a two-depth tree (i.e., �at clustering)
in the tree convolution function, with an additional constraint of
g1 = g2 = 1 (see Appendix B for a formal generalization). As we will
further note in our experiments (Section 4.2): (1) using the kernel
and kNN convolution functions tend to perform better than others;
and (2) convolving the logging and target policies di�erently (i.e.,
g1 < g2) adds a lot of �exibility to PC, leading to much better estima-
tion than either convolving the two policies equally, or convolving
only one out of the two policies.

Motivating example. To gain a better intuition of PC, we refer
to Figure 1 and construct a four-action, single-context toy example
described in Table 1. We conduct OPE using the IPS estimator at
various levels of the action-tree, with a sample size of |D| = 10 and
repeat the experiment 50k times. The results demonstrate that as
we progress to higher levels of the tree (increased pooling), variance
decreases, but bias increases. At the leaf level, IPS is unbiased but
exhibits high variance. At the top-most level, while variance is the
lowest, bias is signi�cantly increased. When g = 2, we observe the
best bias-variance trade-o�, leading to the lowest MSE.
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Figure 2: Change in MSE while estimating + (cgood) with varying number of actions (log-log scale) for the synthetic dataset,
using data logged by (top) `uniform, or (bottom) `good. Results for + (cbad) can be found in supplementary material, Figures 7
and 8.

4 EXPERIMENTS
4.1 Setup
We measure PC’s empirical e�ectiveness on two datasets. Firstly,
we simulate a synthetic contextual bandit setup, beginning by sam-
pling contexts G ⇠ N(0, � ). Subsequently, to realize our assumption
that there indeed exists a latent structure amongst individual ac-
tions, we randomly assign each action to one of 32 latent topics,
denoted by 0̃. We also assign each latent topic a corresponding
mean {`8 ⇠ N(0, � )}328=1 and covariance {f8 ⇠ N(0, � )}328=1. To re-
alize the assigned structure in the action-space, we sample each
action’s embedding from its correspondingly assigned topic, i.e.,
E(0) ⇠ N(`0̃,f0̃). We then model the reward function X (0, G) as
a noisy and non-linear function of the underlying context- and
action-embedding: X (0, G) , �(G kE(0)kn), where “k” represents
concatenation, n ⇠ N(0, � ) is white-noise, and � is a randomly
initialized, two-layer neural network. Such a formulation realizes
two crucial assumptions: (a) semantically closer actions are nearby
according to E, and (b) E shares a causal connection with the down-
stream reward function. Finally, we de�ne the logging policy ` (·|G)
as a temperature-activated softmax distribution on the ground-truth
reward distribution X (·, G), and the target policy as the n�greedy
policy:

` (0 |G) , exp(V · X (0, G))Õ
00 exp(V · X (00, G))

c (0 |G) , (1 � n) · I
✓
X (0, G) = sup

00 2A
{X (00, G)}

◆
+ n

|A|

(1)

Furthermore, to test the practicality of PC on a real-world, large-
scale data, we also synthesize a bandit-variation of the Movielens-
100k dataset [7] which consists of numerous (user,item,rating)

tuples. See Appendix C.1 for a detailed description of the experi-
mental setup for the Movielens dataset.

Due to space constraints, we present further details about the
evaluation setup (MSE as the metric, con�dence interval compu-
tation, etc.) as well as experimental design choices about PC-based
estimators in Appendix C.2.

Most notably, as per our setup, + ⇤ (`) / V and + ⇤ (c) / n�1

for both synthetic and Movielens datasets. For clarity, we de�ne
`uniform when V = 0, and `good when V = 3. Similarly, we de�ne cbad
when n = 0.8, andcgood when n = 0.05. Unless speci�callymentioned,
we use the default values of the remaining hyper-parameters in the
bandit data generation procedure, as listed in Appendix D.

4.2 Results
(Figure 2) How does PC perform with a varying number of
actions? Observing the e�ect of increasing the number of actions
(|A|) on di�erent estimators’ performance while keeping the size
of the available bandit feedback (|D|) constant, we �nd that the
MSE of all IS-based estimators deteriorates, in accordance with
the ⌦( |A|) growth of their variance. We further note that utilizing
`good rather than `uniform as the logging policy, results in an almost
2-orders of magnitude reduction of MSE across all estimators due
to the increased overlap between `good and cgood. Finally, a general
trend that holds across various convolution strategies is that the
improvement in MSE achieved by PC w.r.t. its respective backbone,
signi�cantly increases with increasing |A|. Notably, in the extreme
scenario of 10k actions, PC-DR outperforms DR by up to 5-orders of
magnitude in terms of MSE. While we note that no single backbone
estimator or pooling strategy is optimal in every scenario for PC,
PC-SNDR and kernel or kNN convolution strategies generally exhibit
better performance than others.

https://www.noveens.com/data/www_24_supplementary.pdf


WWW ’24, May 13–17, 2024, Singapore, Singapore Noveen Sachdeva, Lequn Wang, Dawen Liang, Nathan Kallus, and Julian McAuley

Figure 3: Change in MSE while estimating + (cgood) with varying policy-mismatch (log scale) for (top) synthetic, and (bottom)
movielens dataset. The policy-mismatch is higher when V is lower. Results for estimating+ (cbad), and the observed bias-variance
trade-o� can be found in supplementary material, Figures 9 to 12.

(a) PC-IPS (b) PC-SNIPS

Figure 4: Change in MSE while estimating + (cgood) with varying amounts of bandit feedback (log-log scale) for the movielens
dataset. Results for PC-DR, PC-SNDR, estimating + (cbad), and the synthetic dataset can be found in supplementary material,
Figures 17 to 20.

(Figure 3) How does PC perform with varying amount of
policy-mismatch? We analyze the impact of increasing the policy
mismatch between the target and logging policies on o�-policy
estimation performance, speci�cally by tuning the V parameter in
Equation (1) that controls the quality of the logging policy, keeping
the target policy �xed. We observe that OPE becomes hardest on
both ends of the spectrum, i.e., when the logging and target policies
have large divergence. The di�culties of OPE in such low-overlap
scenarios have been well documented in the literature [1, 13, 26],
andwe observe that PC—through the use of latent structure amongst
actions—is particularly helpful in such conditions. An analysis of the
exact bias-variance trade-o� provided in supplementary material,

Figure 10 reveals that PC is able to e�ectively (1) reduce the variance
when policy-mismatch is low, i.e., |V | ⇡ 0, and (2) counteract the
bias introduced by IS when Assumption 2.2 is violated, i.e., |V | is
large. Both of these improvements result in signi�cantly better MSE
for PC across the entire policy-mismatch spectrum, as depicted in
Figure 3.

(Figure 4) How does PC perform with a varying amount of
bandit feedback? Keeping all other factors �xed, we investigate
the impact of increasing the size of the logged bandit feedback (|D|)
on the MSE of various o�-policy estimators. Like other baseline es-
timators, we observe that PC exhibits consistency and is e�ectively
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Figure 5: Change in MSE, Squared Bias, and Variance for PC-IPS and other baseline estimators while estimating + (cgood) with
varying support (log-log scale) for the synthetic dataset (with 2000 actions), using data logged by `uniform. Results for other
backbones in PC, and estimating + (cbad) can be found in supplementary material, Figures 21 and 22.

Figure 6: Visualizing the bias-variance trade-o� for PC-SNIPS (Tree pooling) with varying amount of pooling, while estimating
+ (cgood) and using `good for logging on the synthetic dataset (with 2000 actions). When g1 < g2, we plot results for g1 on the plot.
The naïve SNIPS estimator is the left-most point, i.e., when there’s no pooling. Results for other backbones, pooling methods,
and the movielens dataset can be found in supplementary material, Figures 27 and 28.

able to balance the bias-variance trade-o�. Speci�cally, PC is most
advantageous in the low-data regime, due to its variance reduction
properties. However, as |D| continues to increase, PC converges
to its respective backbone estimator, i.e., when g1 = g2 = 0 rep-
resents the optimal bias-variance trade-o� point. This pattern of
a decreasing amount of optimal pooling (g1, g2) with increasing
|D| is anticipated, as the variance of IS-based estimators naturally
decreases with growing |D|, and any reduction in variance at the
cost of increased bias negatively impacts the overall MSE. We take
further note of this observation for even more kinds of logging poli-
cies and backbone estimators in supplementary material, Figures 29
to 31.

(Figure 5) How does PC perform with a varying amount of
de�cient support? To understand the e�ect of varying amount of
support (or overlap) between the logging and target policies on vari-
ous estimators, we simulate such a scenario by explicitly forcing the
logging policy to only have support (i.e., non-zero probability) over
a smaller, random set of actions, and have zero probability for all
other actions. Varying this de�cient action ratio, we �rstly observe

an expected increase in the MSE and squared bias of baseline esti-
mators like IPS, SNIPS, DR, etc. due to the violation of Assumption
2.2, which has been shown to to add irrecoverable bias in impor-
tance sampling based estimators [26]. On the other hand, even with
an increasing number of de�cient actions, the MSE for PC tends
to stay relatively constant, with kernel-based convolutions being
the best approach. This goes to show that PC is able to accurately
leverage action-embeddings as a guide for appropriately �lling-in
the blind spots while performing OPE.

(Figure 6)Howdoes the amount of convolution a�ect the bias-
variance trade-o�? We examine the in�uence that the amount
of convolution in PC has on the bias-variance trade-o� for three
variations of PC with the tree pooling function: (1) only the target
policy is convolved, i.e., g2 = 1 which is equivalent to the similarity
estimator [6]; (2) both the logging and target policies are convolved
equally, i.e., g1 = g2 which is equivalent to the o�CEM [28] and
groupIPS [23] estimators; and (3) both the logging and target poli-
cies are convolved and g1, g2 can be di�erent. From Figure 6, we
observe that the amount of convolution results in a bias-variance
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trade-o�, where larger pooling leads to decreased variance, but
increased bias. It is worth mentioning that the initial decrease in
bias with convolution is due to the use of `good for logging, which
partially violates Assumption 2.2. This results in a biased SNIPS
estimate, which the PC family of estimators are able to e�ectively
recover. Further, we note that solely convolving the target policy
(i.e., the similarity estimator) does not necessarily result in a suitable
bias-variance trade-o�, with the other two convolution strategies
being signi�cantly better, and having g1 < g2 consistently being
the best approach.

5 RELATEDWORK
O�-policy evaluation. A wide body of literature in operations
research, causal inference, and reinforcement learning studies the
problem of o�-policy evaluation. Prominent o�-policy estimators
can be grouped into the following three categories: (1) Model-
based: dubbed as the direct method (DM), whose key idea is to use a
parametric reward model to extrapolate the reward for unobserved
(context, action) pairs [4]. DM typically has a low variance, at the cost
of uncontrollable bias due to model misspeci�cation. (2) Inverse
propensity scoring (IPS): IPS uses the propensity ratio between
the target and logging policies to account for the distribution mis-
match [10]. Though unbiased under mild assumptions, IPS su�ers
from large variance. Typical remedies for the large variance are
propensity clipping [11, 36] or self-normalization [38], which might
introduce bias. (3) Hybrid: some estimators (e.g, the doubly robust
estimator [4]) combine DM and IPS together to leverage the bene�ts
of both worlds [3–5, 24, 34, 42]. However, these estimators still
su�er from the large variance problem due to the large propensities
especially when the action space is large.

O�-policy evaluation for large action spaces. Two kinds of
major problems occur when attempting to perform OPE in large
action spaces. Firstly, the variance of any importance sampling
method grows linearly w.r.t. the size of the action-space [39], and
the common support assumption tends to become impractical [26]
leading to irrecoverable bias in estimation. Recent work [6, 23, 27,
28] attempts to use some notion of latent structure in the action-
space to address both of the aforementioned limitations. The MIPS
estimator [27] builds on the randomness in the available action
embeddings to improve OPE. However, in a setting where only a
bijective mapping between actions and embeddings is available (as
in this paper and many real-world scenarios where embedding is
in a continuous space), MIPS reduces to vanilla IPS. Further, as
we discussed in Section 3, o�CEM [28], similarity estimator [6],
and groupIPS [23] are all speci�c instantiations of our PC family of
estimators. A concurrent work [41] proposes to use the estimated
marginal density ratio over the reward as the importance weight
in the estimators.

O�-policy evaluation for continuous action spaces. Another
line of work builds o�-policy estimators when the action-space
is continuous, e.g., the dosage of a treatment. If we discretize the
action-space into a �xed number of bins as per some resolution, the
action-space becomes too large for typical o�-policy estimators to
work well [40]. Naive use of importance sampling based estimators
would be vacuous in this setting, since the probability of selecting

any action can be zero for a policy that samples actions according to
some probability density function. To this end, typical approaches
extend the discrete rejection sampling idea into a smooth rejection
operation using standard kernel functions [14, 17, 45], with the
implicit assumption that similar actions (in terms of distance in
the continues action space) should lead to similar reward. Our
proposed PC also leverages the similarity information between
actions through action embeddings, but for problem with discrete
and large action spaces.

6 CONCLUSION & FUTUREWORK
In this paper, we proposed the Policy Convolution (PC) family of es-
timators which leverage latent action structure speci�ed via action
embeddings to perform o�-policy evaluation in large action spaces.
More speci�cally, PC convolves both the target and logging policies
according to an action-action convolution function, which posits
a new kind of bias-variance tradeo� controlled by the amount of
convolution.

Conducting empirical evaluation over a diverse set of o�-policy
estimation scenarios, we observe that the estimators from the PC
framework enjoy up to 5 orders of magnitude improvement over
existing baseline estimators in terms of MSE, especially when (1)
the action-space is large, (2) the policy mismatch between logging
and target policies is high, or (3) the common support assumption
for importance sampling is violated. We believe that our �ndings
can expand the potential use of o�-policy estimators into new and
practical scenarios, and also encourage further exploration into the
use of additional structure for e�cient OPE.

We also discuss limitations and unexplored directions in this
paper that we believe are promising for future work. Firstly, having
a deeper formal understanding about the statistical properties of
PC might help in designing more robust o�-policy estimators. Next,
even thoughwe propose four di�erent action convolution functions,
having a better understanding of the inductive biases that various
convolution functions posit might guide us in designing even better
and more principled OPE approaches. Finally, understanding and
developing principled techniques for automatically selecting the
level of convolution to conduct on the target and logging policies
is an interesting research direction [18, 35].
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A APPENDIX: FURTHER PC INSTANTIATIONS
For the sake of clarity, we provide a formal de�nition of PC with
using Self-Normalized IPS (SNIPS, Section 2.2.3), Doubly Robust (DR,
Section 2.2.4), Self-Normalized DR (SNDR, Section 2.2.5) as backbone
estimators:
• PC-SNIPS. De�ned as follows:

+̂PC�SNIPS (c) , E
(G,0,A )⇠D

 (c (·|G) ⇤ 5g1 ) (0)
d · (` (·|G) ⇤ 5g2 ) (0)

· A
�

s.t. d , E
(G,0,· )⇠D

 (c (·|G) ⇤ 5g1 ) (0)
(` (·|G) ⇤ 5g2 ) (0)

�
.

• PC-DR. De�ned as follows:

+̂PC�DR (c) , E
(G,0,A )⇠D

 (c (·|G) ⇤ 5g1 ) (0)
(` (·|G) ⇤ 5g2 ) (0)

· (A � X̂ (0, G)) + �(c, G)
�

s.t. �(c, G) ,
’
00 2A

c (00 |G) · X̂ (00, G) .

• PC-SNDR. De�ned as follows:

+̂PC�SNDR (c) , E
(G,0,A )⇠D

 (c (·|G) ⇤ 5g1 ) (0)
d · (` (·|G) ⇤ 5g2 ) (0)

· (A � X̂ (0, G)) + �(c, G)
�

s.t. d , E
(G,0,· )⇠D

 (c (·|G) ⇤ 5g1 ) (0)
(` (·|G) ⇤ 5g2 ) (0)

�

s.t. �(c, G) ,
’
02A

c (0 |G) · X̂ (0, G) .

B APPENDIX: EXISTING OPE ESTIMATORS
We formally show the generalization of existing o�-policy estimator,
groupIPS [23], which is also designed for large action-spaces to
be a speci�c instantiation of the Policy Convolution framework.
Starting with the de�nition of PC-IPS:

+̂PC�IPS (c) = E
(G,0,A )⇠D

Õ
00 c (00 |G) · 5g1 (E(0), E(00))Õ
00 ` (00 |G) · 5g2 (E(0), E(00))

· A
�
,

* g1 = g2 in groupIPS:

+̂groupIPS (c) = E
(G,0,A )⇠D

Õ
00 c (00 |G) · 5g (E(0), E(00))Õ
00 ` (00 |G) · 5g (E(0), E(00))

· A
�
,

Further, * 5 (·, ·) is a single-depth tree pooling function (equivalent
to one-level of clustering) in groupIPS:

+̂groupIPS (c) = E
(G,0,A )⇠D

Õ
00 c (00 |G) · I(00 2 a(0))Õ
00 ` (00 |G) · I(00 2 a(0)) · A

�
,

which arrives us to the proposed groupIPS estimator [23], where
a(0) represents the cluster of the action 0.

Note that o�CEM [28] can be generalized in the exact same way
as above, but starting with PC-DR instead of PC-IPS.

C APPENDIX: EXPERIMENTAL SETUP
C.1 Movielens
Taking inspiration from previous recommender system! bandit
feedback conversion setups [29], we de�ne a positive reward if
the provided rating � 4, or else zero. We then de�ne contexts
and action-embeddings as the user- and item-factors attained by
performing SVD on the binary user-item rating matrix, respectively.
Furthermore, to simulate continuous instead of binary reward, for
missing entries, we de�ne the reward as the dot product of the
corresponding user- and item-factors, estimated using SVD before.
We de�ne the target policy similarly as in Equation (1), and aiming
to follow a realistic two-stage recommender system setup [20],
we de�ne the logging policy ` (·|G) as follows: (1) shortlist a set
of 100 best actions de�ned by X (·, G), and 400 actions at random;
(2) sample a logit from * (0, 1) for each positive action, and from
* (0, 0.8) for the random actions; (3) take a temperature softmax as
in Equation (1) only on the sampled logits; and (4) perform n�greedy
on the obtained action probabilities to satisfy Assumption 2.2.

C.2 Further Details
For evaluating the performance of various estimators, we compute
theMean Squared Error (MSE) between the true and predicted value
of the target policy. We reserve a large test-set just to compute the
true value of the target policy.We also estimate the squared bias and
variance of our predicted estimates by repeating each experiment
for 50 random seeds, and also compute the 95% con�dence interval
for visualization purposes. Note that the bias, variance, and MSE of
any estimator are naturally linked to each other by the following
decomposition: MSE(·) = Bias(·)2 + Var(·).

For estimators in the PC framework, we chose the optimal convo-
lution values (i.e., g1 and g2) using the MSE obtained on a validation
set. Notably, while PC for any given backbone estimator strictly
contains the naïve backbone (i.e., when g1 = g2 = 0); to de-confound
the e�ect of policy convolution and the backbone estimator, we
only report results for PC with a non-zero amount of pooling.

D APPENDIX: DEFAULT HYPERPARAMETERS

Hyper-parameter Default Value

|A| 2,000
|D| 10,000
| Test data | 100,000
V 0.0
n 0.05
# Seeds 50
dim(context) 32
dim(action-embed) 16
dim(noise) 8
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