Assignment 1

• Open-ended
• Due **Feb 23** (four weeks from today)
• Submissions should be made electronically to Dongcai (doshen@cs.ucsd.edu)
Assignment 1

Basic tasks:

1. Identify a dataset to study
2. Identify a predictive task on this dataset
3. Describe literature relevant to the task
4. Identify features that will be relevant to the prediction task at hand
5. Develop a model for the task and run experiments
6. Describe results and conclusions
Assignment 1

1. Identify a dataset to study
 - Amazon data
 (http://snap.stanford.edu/data/web-Amazon-links.html)
 - Beer data
 (http://snap.stanford.edu/data/Ratebeer.txt.gz
 http://snap.stanford.edu/data/Beeradvocate.txt.gz)
 - Wine data
 (http://snap.stanford.edu/data/cellartracker.txt.gz)
 - Google Local (Maps & Restaurants)
 (http://jmcauley.ucsd.edu/data/googlelocal.tar.gz - warning: kind of huge)
 - Reddit submissions
 (http://snap.stanford.edu/data/web-Reddit.html)
1. **Identify a dataset to study**
 - Reddit submissions
 (http://snap.stanford.edu/data/web-Reddit.html)
 - Facebook/twitter/Google+ communities
 (http://snap.stanford.edu/data/egonets-Facebook.html
 http://snap.stanford.edu/data/egonets-Gplus.html
 http://snap.stanford.edu/data/egonets-Twitter.html)
 - Many many more from other sources, e.g.
 http://snap.stanford.edu/data/

Use whatever you like, as long as it’s **big**
(e.g. 50,000 datapoints minimum)
1b: Perform an **exploratory analysis** of this dataset to identify interesting phenomena
2. Identify a **predictive task** on this dataset
 • How will you evaluate the model?
 • What are the relevant baselines that can be compared?
 • How will you assess the validity of your predictions and confirm that they are significant?
3. Describe related literature

• If you used an existing dataset, where did it come from and how was it used there?
• What other similar datasets have been used in the past and how?
• What are the state-of-the-art methods for the prediction task you are considering? Are any of them suitable to implement for comparison?
4. Identify features that will be relevant to the task at hand

• Why do you expect the chosen features to be useful for prediction?
• Your exploratory analysis of the data should justify the features you have selected
• What pre-processing of the data was necessary to select or manipulate the features?
5. Describe your model

- How will you optimize it?
 - What issues did you face scaling it up to the required size?
 - Any issues overfitting?
- What other models did you consider besides the one you proposed (and what were your unsuccessful attempts before arriving at the right model)?
- What are the strengths and weaknesses of the different models being compared?
6. Describe results and conclusions

- How well did your model perform compared to alternatives?
- What is the significance of the results?
- Are they robust to noise in the data, mislabeled examples etc.?
- What is the interpretation of the parameters in your model? Which features ended up being predictive?
- Why did the proposed model succeed while others failed?
Example

Maybe I want to use restaurant data to build a model of people’s tastes in different locations

(http://jmcauley.ucsd.edu/data/googlelocal.tar.gz)
1. Perform an **exploratory analysis** of this dataset to identify interesting phenomena

- How many users/items/ratings are there? Which are the most/least popular items and categories?
- What is the geographical spread of users, items, and ratings?
- Do people give higher/lower ratings to more expensive items, or items in certain countries/locations?
2. Identify a **predictive task** on this dataset

- Predict what rating a person will give to a business based on the time of year, the past ratings of the user, and the geographical coordinates of the business
- Predict which businesses will succeed or fail based on its geographical location, or based on its early reviews
3. Describe related literature

• Relevant literature or predicting ratings

• Literature on using geographical features for various predictive tasks

• Literature on predicting long-term outcomes from time series data

• Literature on predicting future ratings from early reviews, herding etc.
4. Identify features that will be relevant to the task at hand

- Ratings, users, geolocations, time
- Ratings as a function of price
- Ratings as a function of location
 - How to represent location in a model? Just using a linear predictor of latitude/longitude isn’t going to work...
5. Describe your model

• E.g. Adapt collaborative filtering techniques to include a geographic regularizer
• Adapt long-term forecasting techniques to make use of user and rating information
• Analyze the text of people’s reviews to predict linguistic signals of popular and successful businesses
Assignment 1

6. Describe results and conclusions

- Did geographical information help? If not why not?
- Which locations are the most price sensitive?
- Do people prefer restaurants that are unlike anything in their area, or restaurants which are exactly the same as others in their area?
More examples

A similar type of project from Stanford’s “Social and Information Network Analysis” course:

http://snap.stanford.edu/class/cs224w-2013/projects.html
Evaluation

• These 6 sections will be worth (roughly) 5 out of 30 percent each
• Not all sections will be relevant for all assignments so there is some flexibility, but be reasonable
• Assignments can be done individually or in pairs, though if done in pairs the expected contribution should be larger

• Length is not strict, but I’d expect a report of about 6-10 pages (more like 6 for individuals, more like 10 for pairs)
• This probably adds up to 3-5k words (plus figures tables, equations etc.)