HIGH THROUGHPUT CHANNEL TRACKING FOR JTRS WIRELESS CHANNEL EMULATOR

Dajung Lee, Janarbek Matai, Brad Weals, Ryan Kastner

The Department of Electronic and Computer Engineering, The Department of Computer Science and Engineering

UCSD Jacobs School of Engineering

MOTIVATION - CHANNEL EMULATOR
- A virtual platform to simulate radio environment to test and verify wireless system in laboratory

PROBLEMS
- Performance & Scalability
- Unknown frequency hopping techniques over a range of 250 MHz bandwidth

SYSTEM OVERVIEW
- Highly scalable JTRS channel emulator network (up to 1000)
- Real-time channel tracker spanning frequency hopping
- HLS optimization methodologies

SYSTEM SPECIFICATION
- Pentek Cobalt board
 - Xilinx Vertex 6 series FPGA (XC6VSX315TFF1156-2)
 - 500 MHz ADCs & DDCs
 - 800 MHz DACs & DUCs
 - PCI Express Interface to communicate to a host PC
- Xilinx Vivado HLS 2012.3
- Xilinx ISE 12.4

HLS OPTIMIZATION STRATEGY
- Single threaded implementation
- If conditions and parameters nested
- Strong data dependency

CONTRIBUTIONS
- Tracking intermediate frequency signals in 250 MHz
- Detecting the carrier signal of 51 frequency slots
- Analyzing signal spectrum based on linear prediction
- Generating a programmable DDC module control signal

LATENCY VS THROUGHPUT
- Concurrent functional modules
- Minimum functional dependency

LATENCY VS THROUGHPUT

RESULTS

Performance in different designs

The size of input samples

Pattern of throughput

Resource usage

Module throughputs

Module a

Module b

Module c

Input buffering

Output buffering

Throughput Optimization

Latency (cycles)

Area usage (%)

SLICE 940 (2%)

LUTs 2104 (1%)

FFs 2338 (0.5%)

DSPs 112 (0.3%)

BRAMs 3 (0.2%)

Total latency 71

Modular architecture

Highly scalable JTRS channel emulator network for JTRS wireless channel emulator