Universal Portfolios
with and without transaction costs [BK97]

Jia Mao

February 13, 2006
Outline

1. Constant Rebalanced Portfolios

2. Universal Algorithm
 - Universal guarantees
 - Simple algorithm Split
 - Universal algorithm

3. Simple Analysis

4. Transaction Costs

5. Predicting From Expert Advice

6. Implementation
Constant Rebalanced Portfolios (CRPs)

Definition

Portfolio with same distribution of wealth each day, e.g.

Day	Stock #1	Stock #2	Holdings of CRP(1/2, 1/2)	=	New Holdings
0 | $1.00 | $1.00 | $1.00 | = | $0.50 + $0.50
1 | $1.00 | $2.00 | $1.50 | = | $0.50 + $1.00
2 | $1.00 | $1.00 | $1.12 | = | $0.75 + $0.37
3 | $1.00 | $2.00 | $1.68 | = | $0.56 + $1.12
4 | $1.00 | $1.00 | $1.26 | = | $0.84 + $0.42

...

2n | $1.00 | $1.00 | $1 | = | $0.63 + $0.63

Remark

In hindsight, we see that a \((1/2, 1/2)\)-CRP is optimal among all CRPs.
Constant Rebalanced Portfolios (CRPs)

Definition

Portfolio with same distribution of wealth each day, e.g.

<table>
<thead>
<tr>
<th>Day</th>
<th>Stock #1</th>
<th>Stock #2</th>
<th>Holdings of CRP(1/2, 1/2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$1.00</td>
<td>$1.00</td>
<td>$1.00 = $0.50 + $0.50</td>
</tr>
<tr>
<td>1</td>
<td>$1.00</td>
<td>$2.00</td>
<td>$1.50 = $0.50 + $1.00 → $0.75 + $0.75</td>
</tr>
<tr>
<td>2</td>
<td>$1.00</td>
<td>$1.00</td>
<td>$1.12 = $0.75 + $0.37 → $0.56 + $0.56</td>
</tr>
<tr>
<td>3</td>
<td>$1.00</td>
<td>$2.00</td>
<td>$1.68 = $0.56 + $1.12 → $0.84 + $0.84</td>
</tr>
<tr>
<td>4</td>
<td>$1.00</td>
<td>$1.00</td>
<td>$1.26 = $0.84 + $0.42 → $0.63 + $0.63</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>2n</td>
<td>$1.00</td>
<td>$1.00</td>
<td>$1.12^n</td>
</tr>
</tbody>
</table>

Remark: In hindsight, we see that a \((1/2, 1/2)\)-CRP is optimal among all CRPs.
Constant Rebalanced Portfolios (CRPs)

Definition

Portfolio with same distribution of wealth each day, e.g.

<table>
<thead>
<tr>
<th>Day</th>
<th>Stock #1</th>
<th>Stock #2</th>
<th>Holdings of CRP(1/2, 1/2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$1.00</td>
<td>$1.00</td>
<td>$1.00 = $0.50 + $0.50</td>
</tr>
<tr>
<td>1</td>
<td>$1.00</td>
<td>$2.00</td>
<td>$1.50 = $0.50 + $1.00 → $0.75 + $0.75</td>
</tr>
<tr>
<td>2</td>
<td>$1.00</td>
<td>$1.00</td>
<td>$1.12 = $0.75 + $0.37 → $0.56 + $0.56</td>
</tr>
<tr>
<td>3</td>
<td>$1.00</td>
<td>$2.00</td>
<td>$1.68 = $0.56 + $1.12 → $0.84 + $0.84</td>
</tr>
<tr>
<td>4</td>
<td>$1.00</td>
<td>$1.00</td>
<td>$1.26 = $0.84 + $0.42 → $0.63 + $0.63</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$2n$</td>
<td>1.00</td>
<td>1.00</td>
<td>1.12^n</td>
</tr>
</tbody>
</table>

Remark

In hindsight, we see that a $(\frac{1}{2}, \frac{1}{2})$-CRP is optimal among all CRPs.
Outline

1. Constant Rebalanced Portfolios

2. *Universal* Algorithm
 - *Universal* guarantees
 - Simple algorithm Split
 - *Universal* algorithm

3. Simple Analysis

4. Transaction Costs

5. Predicting From Expert Advice

6. Implementation
Universal guarantees

- Let n be the number of days, m be the number of stocks
Universal guarantees

Let n be the number of days, m be the number of stocks

$$\frac{\text{wealth of Universal}}{\text{wealth of best CRP}} \geq \frac{1}{(n + 1)^{m-1}}$$
Universal guarantees

- Let n be the number of days, m be the number of stocks

\[
\frac{\text{wealth of Universal}}{\text{wealth of best CRP}} \geq \frac{1}{(n + 1)^{m-1}}
\]

- avg. per-day ratio $\geq \left[\frac{1}{(n+1)^{m-1}}\right]^{1/n} \to 1$
Universal guarantees

- Let n be the number of days, m be the number of stocks

\[
\frac{\text{wealth of Universal}}{\text{wealth of best CRP}} \geq \frac{1}{(n+1)^{m-1}}
\]

- avg. per-day ratio \(\geq \left[\frac{1}{(n+1)^{m-1}}\right]^{1/n} \to 1\)

- With fixed % commission $c < 1$,

\[
\frac{\text{wealth of Universal}}{\text{wealth of best CRP}} \geq \frac{1}{(n(1+c) + 1)^{m-1}}
\]
Universal guarantees

- Let n be the number of days, m be the number of stocks

$$\frac{\text{wealth of Universal}}{\text{wealth of best CRP}} \geq \frac{1}{(n + 1)^{m-1}}$$

- Avg. per-day ratio $\geq \left[\frac{1}{(n+1)^{m-1}}\right]^{1/n} \to 1$

- With fixed % commission $c < 1$,

$$\frac{\text{wealth of Universal}}{\text{wealth of best CRP}} \geq \frac{1}{(n(1 + c) + 1)^{m-1}}$$

- $EG(\eta)$ algorithm
Warm-up algorithm *Split*

- Initially invest an equal amount in each stock
- Let it sit. (no trades)
Warm-up algorithm *Split*

- Initially invest an equal amount in each stock
- Let it sit. (no trades)
- wealth of SPLIT = avg. of stocks
Warm-up algorithm \textit{Split}

- Initially invest an equal amount in each stock
- Let it sit. (no trades)
- wealth of SPLIT = avg. of stocks

\[
\frac{\text{wealth of SPLIT}}{\text{wealth of best stock}} \geq \frac{1}{m}
\]
Warm-up algorithm *Split*

- Initially invest an equal amount in each stock
- Let it sit. (no trades)
- \(\text{wealth of SPLIT} = \text{avg. of stocks} \)
 \[
 \frac{\text{wealth of SPLIT}}{\text{wealth of best stock}} \geq \frac{1}{m}
 \]
- \(\text{avg. per-day ratio} \geq \frac{1}{m^{1/n}} \to 1 \text{ as } n \to \infty \)
Universal algorithm

- Split money evenly among all CRPs
- Let it sit (i.e. Do not transfer between CRPs)
Universal algorithm

- Split money evenly among all CRPs
- Let it sit (i.e. Do not transfer between CRPs)
- 4 CRPs

| CRP(\(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\)) | CRP(0,0,1) | CRP(0,1,0) | CRP(1,0,0) |
Universal algorithm

- Split money evenly among all CRPs
- Let it sit (i.e. Do not transfer between CRPs)

4 CRPs

| CRP(1/3, 1/3, 1/3) | CRP(0,0,1) | CRP(0,1,0) | CRP(1,0,0) |

100 CRPs

| CRP(1/3, 1/3, 1/3) | ... | CRP(1/7, 2/7, 4/7) | ... | CRP(0,0,1) |
Universal algorithm

- Split money evenly among all CRPs
- Let it sit (i.e. Do not transfer between CRPs)
- 4 CRPs
 \[
 \begin{array}{|c|c|c|}
 \hline
 \text{CRP}\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right) & \text{CRP}(0,0,1) & \text{CRP}(0,1,0) \\
 \hline
 \end{array}
 \]
- 100 CRPs
 \[
 \begin{array}{|c|c|c|}
 \hline
 \text{CRP}\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right) & \ldots & \text{CRP}\left(\frac{1}{7}, \frac{2}{7}, \frac{4}{7}\right) \\
 \hline
 \end{array}
 \]
- Limit is *Universal* algorithm.
Outline

1. Constant Rebalanced Portfolios

2. Universal Algorithm
 - Universal guarantees
 - Simple algorithm Split
 - Universal algorithm

3. Simple Analysis

4. Transaction Costs

5. Predicting From Expert Advice

6. Implementation
Proof idea

- Universal achieves avg. wealth of all CRP’s.
- “Near” CRPs do nearly as well.
- Lots of CRP’s are “near” the optimal CRP. (figure?)
Proof.

1. x is “near” y if $x = \frac{n}{n+1} y + \frac{1}{n+1} z$
where $x, y, z \in \beta = \{\text{set of CRPs}\}$ and $n = \# \text{ of days}$
Proof.

1. x is “near” y if $x = \frac{n}{n+1} y + \frac{1}{n+1} z$
 where $x, y, z \in \beta = \{\text{set of CRPs}\}$ and $n = \# \text{ of days}$

2. CRP$_x$ day’s gain $\geq \frac{n}{n+1}$ CRP$_y$ day’s gain

 \[
 \frac{\text{Wealth of CRP}_x}{\text{Wealth of CRP}_y} \geq (\frac{n}{n+1})^n \geq 1/e
 \]
Proof.

1. x is “near” y if $x = \frac{n}{n+1}y + \frac{1}{n+1}z$
 where $x, y, z \in \beta = \{\text{set of CRPs}\}$ and $n = \# \text{ of days}$

2. CRP$_x$ day’s gain $\geq \frac{n}{n+1} \text{ CRP}_y$ day’s gain

 \[
 \frac{\text{Wealth of CRP}_x}{\text{Wealth of CRP}_y} \geq \left(\frac{n}{n+1} \right)^n \geq \frac{1}{e}
 \]

3. Prob\{a random x is “near” y\} is

 \[
 \frac{\text{Vol}\{ \frac{n}{n+1}y + \frac{1}{n+1}z | z \in \beta \}}{\text{Vol} \beta} = \frac{\text{Vol}\{ \frac{1}{n+1}z | z \in \beta \}}{\text{Vol} \beta} = \left(\frac{1}{n+1} \right)^{m-1}
 \]
Proof.

1. x is “near” y if $x = \frac{n}{n+1} y + \frac{1}{n+1} z$
 where $x, y, z \in \beta = \{\text{set of CRPs}\}$ and $n = \# \text{ of days}$

2. CRP_x day’s gain $\geq \frac{n}{n+1}$ CRP_y day’s gain

 \[
 \frac{\text{Wealth of } CRP_x}{\text{Wealth of } CRP_y} \geq \left(\frac{n}{n+1}\right)^n \geq \frac{1}{e}
 \]

3. $\text{Prob}\{\text{a random } x \text{ is “near” } y\}$ is

 \[
 \frac{\text{Vol}\left\{ \frac{n}{n+1} y + \frac{1}{n+1} z | z \in \beta \right\}}{\text{Vol}\beta} = \frac{\text{Vol}\left\{ \frac{1}{n+1} z | z \in \beta \right\}}{\text{Vol}\beta} = \left(\frac{1}{n+1}\right)^{m-1}
 \]

4. \[
 \frac{\text{Wealth of Universal}}{\text{Wealth of best CRP}} \geq \left(\frac{1}{n+1}\right)^{m-1} \frac{1}{e}
 \]
Outline

1 Constant Rebalanced Portfolios

2 Universal Algorithm
 - Universal guarantees
 - Simple algorithm Split
 - Universal algorithm

3 Simple Analysis

4 Transaction Costs

5 Predicting From Expert Advice

6 Implementation
Transaction Costs

- Fixed % commission charged on purchases, paid for by sales
- CRPs pay commission as well

\[x = (1 - t)y + tz \] \hspace{1cm} (1)
Outline

1. Constant Rebalanced Portfolios

2. Universal Algorithm
 - Universal guarantees
 - Simple algorithm Split
 - Universal algorithm

3. Simple Analysis

4. Transaction Costs

5. Predicting From Expert Advice

6. Implementation
Outline

1. Constant Rebalanced Portfolios

2. Universal Algorithm
 - Universal guarantees
 - Simple algorithm Split
 - Universal algorithm

3. Simple Analysis

4. Transaction Costs

5. Predicting From Expert Advice

6. Implementation
Implementation