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ABSTRACT
Owners of sources registered in an information integration system,
which provides answers to a (potentially evolving) set of client
queries, need to know their contribution to the query results. We
study the problem of deciding, given a client query Q and a source
registration R, whether R is (i) “self-sufficient” (can contribute to
the result of Q even if it is the only source in the system) or (ii) “now
complementary” (can contribute, but only in cooperation with other
specific existing sources), or (iii)“later complementary” (can con-
tribute if in the future appropriate new sources join the system).
We consider open-world integration systems in which registrations
are expressed using source-to-target constraints, and queries are an-
swered under “certain answer” semantics.

1. INTRODUCTION
Mediator systems allow their client applications and users to ob-

tain information from multiple sources using a single point of ac-
cess, which is an integrated view of the data of the sources. For
example, consider a car shopping portal. Multiple car dealers con-
tribute advertisements, while at the same time third parties provide
reviews, such as the “Blue Book” (http://www.kbb.com). Then
one can easily build the, say, “Great Auto Deal” web application
that looks for cars of a user-provided make and type, selling for less
than 10% of their Blue Book value. Similarly, many biology labs
contribute to portals such as Nature magazine’s SignallingGateway
and the Gene Ontology (GO). Other biology labs and researchers
periodically search the portals for proteins or genes related to a par-
ticular species and physiological aspects that the lab studies.

We adopt the GLAV approach to integration [13], which fits best
our focus, namely mediators and corresponding integration por-
tals that collect information from a large number of independent
sources. In GLAV integration, there is (a) a number of sources (also
referred to as local databases) with different local schemas that hold
the actual data and (b) a global database over a global schema that
hides the underlying local schemas from the user. A description of
the correspondence between the local and the global schema can
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be specified using mappings from the local to the global schema.
An intuitive tool for visual mapping specification is provided by
CLIO’s front-end [18, 21, 11]. For example, Figure 2 shows the
mapping of the local source of schema S1 into the target global
schema G. Technically, mappings are expressed as constraints and
the query answers are the certain answers, as defined in [20, 13, 14,
17].

A recognized key advantage of the GLAV approach is that the
correspondence of a local schema to the global schema can be spec-
ified independently of the other sources, hence enabling large scale
systems where the source owners themselves register their sources
to community portals.

However, when a source owner wants to register a new source, he
needs to understand whether his source addresses the information
requirements of the queries issued by client applications and users.
An overkill (if at all possible) way to ensure this is to force the
source owner to map some data into every attribute of the global
schema. This approach may be simply impossible because a source
owner may not possess data for some parts of the global schema; for
example, a car dealer owns ads but not the Blue Book. Even when
it is possible, it may be economically unwise to provide data for all
attributes. In particular, global schemas are typically developed by
communities and are very expansive and detailed1. If our car dealer
owns textual ads, he may not want to painfully clean them up and
parse them in order to specify all attributes (including trivial ones)
of an ad, such as date of battery change. Instead, he may prefer
to clean up only attributes that are pertinent to the existing client
queries, such as the make, price and year of the car, and leave the
rest in an unstructured “additional data” field.

In order to guide the source owner, mapping interfaces must ex-
plain to him how to contribute towards the application query infor-
mation requirements. The first step in developing such systems is
to characterize the contribution of a given mapping.

We distinguish four qualitative categories of contributions of a
source schema/mapping pair with respect to a given application
query:

• Self Sufficient: Given the mapping, the source can contribute
certain answers to the query, even in the absence of any other
source. For example, consider a query that asks for cheap
cars, regardless of how their value compares to the Blue Book.
Then a car dealer’s contribution is self-sufficient, assuming
it provides the price and the other attributes of interest to the
query.

• Now Complementary: The source can contribute certain an-
swers but only because other sources provide complementary

1The reader is referred to the DTDs and XML Schemas of OASIS
www.oasis-open.org for an example.



∆G none PKs PKs + RICs

suff. yes yes no
now comp. yes yes no
later comp. yes yes ?
unusable yes yes ?

Figure 1: Decidability of categorizing registrations (see Sec-
tion 5 for complexity results)

data. For example, consider a query that asks for cars that are
10% cheaper than their Blue Book value and assume that the
Blue Book is already registered. Then the car dealer’s source
is now complementary since it relies on an existing source in
order to contribute.

• Later Complementary: The source cannot contribute certain
answers currently but it is possible to contribute if an appro-
priate new source is registered in the future. For example,
consider the case of “now complementary” above whereas a
source such as the Blue Book, providing typical prices, has
not yet been registered. Then the dealer’s source is later com-
plementary.

• Unusable: The source inherently does not contribute.

Contributions. We study the problem of deciding the category
of source contributions when the mappings are given by source-to-
target constraints in the language of embedded dependencies, and
the client queries are unions of conjunctive queries with equali-
ties. Figure 1 summarizes our decidability results. Each row corre-
sponds to one of the contribution tests, while columns correspond
to various assumptions on the set ∆G of constraints on the global
schema G. PKs stands for primary keys and RICs for referential
integrity constraints, all of which are expressible in the more gen-
eral class of embedded dependencies [2]. Our undecidability re-
sults therefore carry over to this class. Question marks denote open
problems, which we conjecture undecidable.

Our decidability results for self-sufficiency and now-complemen-
tarity are due to a reduction to checking satisfiability and contain-
ment of a certain rewriting R of a client query Q. R is expressed
against the local schemas and it returns the certain answers of Q.
Developing a relevant containment test is not straightforward. Pre-
vious work [10] describes only algorithms which yield a certain
rewriting as a recursive Datalog program when functional depen-
dencies (FDs) are given on the global schema. These algorithms
do not serve our purpose, as containment of recursive Datalog pro-
grams is undecidable [2]. However, we show (in Theorem 8) that,
if each relation in the target schema allows at most one FD,2 then
there exists an equivalent, nonrecursive rewriting expressed as a
union of conjunctive queries with equalities (UCQ=). This case
is quite common in practice, covering that of primary keys and
BCNF schemas. Moreover, we show how the nonrecursive certain
rewriting under the Open World Assumption can be constructed by
reusing an algorithm for finding exact rewritings under the Closed
World Assumption. Our result is therefore of independent interest
as an extension on prior work in finding certain rewritings, and also
maximally-contained rewritings [10] shown in [1] to be equivalent
in our setting to certain rewritings. The result sheds additional light
on the connection between exact rewritings in the closed world as-
sumption and certain rewritings in the open world assumption.

2This includes the case of several FDs which can be summarized
into a single one using Armstrong’s axioms [2].

2. PRELIMINARIES
Constraint-based Data Integration. We consider systems which
integrate a collection of n data sources, where for each 1 ≤ i ≤ n,
source i has a schema Si and extent DBi. The local sources con-
tribute to a global, integrated database G of global schema G, sat-
isfying the set ∆G of integrity constraints expressed in terms of G
(denoted G |= ∆G). The contribution of source i to the global
database is described by a set Mi of mapping constraints over the
combined schemas Si and G. Specifically, the constraints are of
the form U ⊆ V , with U and V queries against schema Si, respec-
tively G. Intuitively, these constraints specify that, given a local
database DBi and a global database G, the local data identified
as U(DBi) is visible among the global data identified by V (G):
U(DBi) ⊆ V (G). Notice that there are no containment statements
in the opposite direction because an individual local source owner
cannot know what other sources contribute to the global database
and therefore cannot presume to contribute all global data. For in-
stance, a local Toyota dealership’s data source may contribute its
cars to a state-wide car database, but cannot claim to offer all glob-
ally accessible car offers (including other brands). This is consis-
tent with the open world assumption [14, 17].

The global database is described indirectly as a databaseGwhich
satisfies the integrity constraints in ∆G . Moreover, together with
each local source DBi, G satisfies the mapping constraints in Mi.
This is denoted DBi, G |= Mi and defined as:

DBi, G |= Mi ⇔
∧

(U⊆V )∈Mi

U(DBi) ⊆ V (G).

GivenDBi,Mi does not fully identifyG, as it only states thatG
must hold part ofDBi’s data, leaving unspecified what elseGmay
contain. There are therefore (potentially infinitely) many possible
global databases which, together with DBi, satisfy Mi. We think
of Mi as inducing a mapping from each data source DBi to its set
of possible global databases. We denote the set of targets of DBi
through this mapping as:

targetsMi (DBi) = {G : (G |= ∆G) ∧ (DBi, G |= Mi)}.

The set of possible global databases defined by a collection of
sources DB = DB1, . . . , DBn and their sets of mapping con-
straints M̄ = M1, . . . ,Mn consists of the global databases which
are simultaneously targets of each DBi under Mi:

targetsM̄ (DB) =
n⋂

i=1

targetsMi(DBi).

Since the set of possible global databases can potentially be infinite,
clients can only inspect them indirectly, by posing queries against
them. Given a client query Q against the global schema G, the
system returns only the certain answers to Q. These are defined as
tuples appearing in the result ofQ on each possible global database.
We denote the set of certain answers to Q with certM̄

DB
(Q) and

define it as:

certM̄
DB

(Q) =

{ ∅, if targetsM̄ (DB) = ∅⋂
G∈targetsM̄ (DB) Q(G), otherwise

For an existing open-world system in which source contributions
are described using mapping constraints (called source-to-target
constraints there) and in which client queries are answered under
the “certain answers” semantics, see IBM’s Clio system [18].

Queries. A term is a variable or constant. By x̄ we denote a
finite sequence of terms x1, . . . , xk. The language of conjunctive



queries with equalities (CQ=) consists of expressions of the form
Q(z̄) :- `1(x̄1), . . . , `n(x̄n) where we define the head and body of
Q to be the parts to the left and to the right of the :- , respectively.
Each `i(x̄i) inQ’s body is a literal, i.e., an atomR(x̄i) or an equal-
ity xg = xh with x̄i = xg, xh. The language UCQ= denotes all
unions of CQ= queries.

Constraints. For a given query language QL, we consider the
corresponding constraint language

IC(QL) := {(U ⊆ V ) : U, V ∈ QL}.
Such constraints express the containment of query U in query V
and are equivalent in expressive power to embedded dependen-
cies [2] whenQL = CQ=.

Embedded dependencies can express standard integrity constraints
such as primary keys (PKs) and referential integrity constraints
(RICs). For example, the following IC(CQ=) constraint on the
global schema of Figure 2 states that Model and Seller provide a
combined PK for ads in the ad relation: (U ⊆ V ), where
V (M,S, P, P ) :- ad(M,S, P ) and
U(M,S, P1, P2) :- ad(M,S, P1), ad(M,S, P2).

RICs are particular cases of IC(CQ=) constraints stating inclu-
sions between projections of relations. For example, the follow-
ing RIC states that all ads refer via their Model attribute to cars
whose details are published in the car relation: (U ⊆ V ), where
U(M) :- ad(M,S, P ) and V (M) :- car(M,C,D,B).

In this paper, we assume that all client queries belong to UCQ=

and that all constraints belong to IC(CQ=). This is the case in all
our examples as well.

3. DEGREES OF SOURCE CONTRIBUTION
We introduce the notion of contribution of a source’s extent to a

given client query, as well as four qualitative degrees of potential
contribution of a source registration relative to the other sources
registered in the system.

Each individual source owner registers his local source i to the
integration system by declaring the source schema Si as well as the
set of mapping constraints Mi. We call the pair Ri = (Si,Mi) a
source registration. Let R = R1, ..., Rn be the list of registrations
of all sources present within the system and D = D1, ..., Dn the
corresponding source instances. Also, let Q be a query formulated
by a client application against global schema G.

Contribution of a source to a query. IfRn+1 = (Sn+1,Mn+1)
is the registration of a new source and Dn+1 an instance of it, then
the contribution of the new source toQ is denoted contrQ

R,D
(Rn+1,

Dn+1) and corresponds to the certain answers to Q which are not
provided by the already registered n sources:

contrQ
R,D

(Rn+1, Dn+1) = cert
M,Mn+1

D,Dn+1
(Q) \ certM

D
(Q)

Potential contribution of a registration. For the benefit of the
source owner, we determine whether the source has any chance to
contribute (now or in the future) any certain answers to some given
application query Q. The definitions are data independent by ex-
istentially quantifying the source extents. Specifically, we say that
source registration Rn+1 is

• Self Sufficient (written as SufQ(Rn+1))
iff there is an extent of source n + 1 (not necessarily the
current one) for which it can contribute certain answers to Q
even in the absence of any other source. Formally, iff there is

a source extent Dn+1 such that contrQ∅,∅(Rn+1, Dn+1) 6=
∅.

• Now Complementary (NCompQ
R̄

(Rn+1))
iff source n + 1 on its own brings an empty contribution
regardless of its extent, but it could contribute in cooperation
with the other sources, provided appropriate extents for them
and for source n+ 1:

– not SufQ(Rn+1) and

– there are source extents {Di}1≤i≤n+1

such that
contrQ

R,D1,...,Dn
(Rn+1, Dn+1) 6= ∅

• Later Complementary (LCompQ
R̄

(Rn+1))
iff source n + 1 is currently not now complementary given
the registrations R, but could become so given future source
registrations R′:

– not NCompQ
R̄

(Rn+1) and

– there is a list of registrationsR′, s.t. NCompQ
R′

(Rn+1)

• Unusable (UnusableQ
R̄

(Rn+1))
iff source n+1 cannot contribute now (even if its own extent
or the extents of the existing sources were to change) or in
the future (if any other sources register within the system):

– not SufQ(Rn+1) and

– not NCompQ
R̄

(Rn+1) and

– not LCompQ
R̄

(Rn+1)

4. EXAMPLES
In this section we introduce our running example and use it to

illustrate the degrees of contribution in both the absence and pres-
ence of target constraints.

Consider the creation of a car portal that integrates information
about new cars for sale. The global schema G, designed by the
portal owner, is shown on the right in Figures 2a-i and 2b-i. The
left side contains the schema S1 of the already registered source
1 and respectively, S2 of a new source 2, whose contribution we
want to check. All schemas are shown in a tree-format. Bullets
represent relations, hyphens correspond to attributes and dashed
lines connect a relation with its attributes. For example, G consists
of 3 relations: car contains the model, make, door number and
base price of a car, brand provides the headquarters’ location of a
car manufacturer and ad stores the price at which somebody sells
a model.

The registrationRi of each source i consists by a (for simplicity)
single mapping constraint (Ui ⊆ Vi) over Si and G, printed in
Figures 2a-ii and 2b-ii and represented in 2a-i and 2b-i as a set
of solid lines and arrows. The atoms of query Ui (respectively Vi)
are all relations of Si(G), that contain an attribute adjacent to an
arrow or solid line. The equalities in Ui (Vi) are depicted as solid
lines between attributes in Si (G) and the distinguished variables of
Ui (Vi) correspond to attributes serving as arrow sources (targets).
For example, source 1 provides ad prices, base prices and model
descriptions for ads having the same ad and base price. Similarly
source 2 provides the model, make and number of doors of some
cars.
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 Figure 2: Source Mappings

Note that differences between the source and global schema can
be easily handled by the mapping language. For instance, by equat-
ing the values of Model in relations car and ad, (U1 ⊆ V1)
specifies that the mapped ad and base price correspond to the same
model. Similarly (U2 ⊆ V2) maps only source values that appear
in pairs of tuples of auto and detail with the same Id (shown
in Figure 2b-ii through a solid line between the 2 occurrences of Id).

In the absence of target constraints. Assuming that ∆G = ∅,
we illustrate the 4 degrees of contribution by presenting the contri-
bution of the registration R2 to the answer of 4 queries.

Example 1. Self Sufficient
Consider a queryQ1 asking for all car models manufactured in both
a 2-door and a 4-door version:

Q1(M) :- car(M,C1,
′ 2′, B1), car(M,C2,

′ 4′, B2).

R2 is self sufficient w.r.t. Q1, since, if source 2 is the only reg-
istered source, we can find some extent DB2 of it, for which the
set of certain answers to Q1 is nonempty. Such an instance is the
following:

DB2 : auto(’1’, ’M3 98’, ’BMW’), detail(’1’, ’2’, ’V6’),
detail(’1’, ’4’, ’V6’).

In this case all global instances satisfying mapping constraints M2

contain tuples of the form
car(’M3 98’, ’BMW’, ’2’, X1) and car(’M3 98’, ’BMW’, ’4’, X2)
whereX1, X2 are constants (potentially different among global in-
stances). Thus the tuple (’M3 98’) is an answer to Q1 against each
global instance consistent with M2 (i.e. it is a certain answer). 2

Example 2. Now Complementary
Consider now another query Q2 asking for the make and corre-
sponding ad prices of cars:

Q2(C,P ) :- car(M,C,D,B), ad(M,S, P ).

R2 is now complementary w.r.t. Q2 and R1 for the following
two reasons: First, R2 is not self sufficient w.r.t. Q2, since if only
source 2 is present in the system, it does not provide any certain
answers to Q2 regardless of its extent. This follows from the fact
that always one of the global instances satisfying M2 will have an
empty relation ad (since M2 does not place any restrictions on the
contents of ad) and thus will give the empty answer to Q2. Sec-
ond, if both sources 1 and 2 are registered, R2 contributes certain
answers to Q2 for some extents DB1, DB2 of the sources 1 and 2,
respectively:

DB1 : post(’M3 98’, ’A. Brown’, ’25K’, ’25K’)
DB2 : auto(’1’, ’M3 98’, ’BMW’), detail(’1’, ’2’, ’V6’).

In particular, the set of certain answers to Q2 in presence of both
R1 and R2 equals {(’BMW’, ’25K’)}, whereas in presence of R1

alone it is empty (since M1 does not restrict the values of Car-
make). 2

Example 3. Later Complementary
Assume now that we add an atom toQ2. The new queryQ3 returns
the make and ad prices of models but only if there exist data about
their manufacturer:

Q3(C,P ) :- car(M,C,D,B), ad(M,S, P ), brand(C,O).

Since none of M1, M2 restricts the instances of target relation
brand, the set of certain answers is empty both in the presence of
R1 alone and R1, R2 together. Thus R2 is neither self sufficient,
nor now complementary w.r.t. Q3 and R1.

However R2 is later complementary, since there exists a new
registration R3 s.t. R2 is now complementary w.r.t. Q3 and R′ =
R1, R3. R3 registers a source with schema S3 = {manufacturer(
Carmake,Origin)}, which provides the headquarter’s location
for car manufacturers: R3 = (S3,M3) with M3 = {(U3 ⊆ V3)}
and U3(C,O) :- manufacturer(C,O),
V3(C,O) :- brand(C,O). Indeed for some extents DB1, DB2,
DB3 of sources 1 through 3, respectively, R2 contributes to the
certain answers of Q:

DB1 : post(’M3 98’, ’A. Brown’, ’25K’, ’25K’).
DB2 : auto(’1’, ’M3 98’, ’BMW’), detail(’1’, ’2’, ’V6’)
DB3 : manufacturer(’BMW’, ’Germany’).

In this case the set of certain answers toQ in presence of all sources
is {(’M3 98’, ’25K’)}, while in the absence of source 2, it is empty
(since R1 and R3 do not restrict the value of Carmake in the car
tuples). 2

Example 4. Unusable
Consider using again Q2 but projecting also the base price (i.e.
return the make, base and ad price of cars):

Q4(C,B, P ) :- car(M,C,D,B), ad(M,S, P ).

R2 is unusable w.r.t. Q4, because, regardless of any sources reg-
istered in the future and of the extents for them and for source 1,R2

cannot contribute certain answers to Q4. Indeed, consider arbitrary
future registrations R′ and extents for both the new sources and
source 1. By definition of certain answers, for any tuple (C,B, P )



that is a certain answer to Q4, there will exist a pair of tuples
of the form car(X1, C,X2, B), ad(X1, X3, P ) in all global in-
stances satisfying R1 and R′ (where Xi, 1 ≤ i ≤ 3 are constants
possibly different among global instances). However the existence
of these tuples is not imposed by M2, since it does not restrict, ei-
ther the ad tuples, or the value of the Baseprice attribute of the
car tuples contained in the global instances. Thus by removing
the registration R2 from the system, we will get the exact same set
of certain answers to Q4. This means that R2 does not contribute
to this set and so it is unusable w.r.t. Q4. 2

In the presence of target constraints. In the presence of in-
tegrity constraints on G (i.e. if ∆G 6= ∅), the contribution of an indi-
vidual source is harder to determine, because of the interference via
integrity constraints with data provided from other sources. Since
each constraint restricts the set of possible global instances, it may
change the set of certain answers to a query and consequently the
contribution of a source to it. We illustrate this fact by presenting
the effect of adding target constraints on some of the previous ex-
amples.

By adding constraints on G, a client queryQmay become unsat-
isfiable. In this case, the set of certain answers toQ is always empty
and hence every registration becomes unusable w.r.t. it. Such a case
is described in Example 5.

Example 5.
Consider again query Q1 from Example 1, asking for models pro-
duced both with 2 and 4 doors. If we add the target constraint:

δ1 : (U ′1 ⊆ V ′1 ) with
U ′1(M,C1, D1, B1, C2, D2, B2) :-

car(M,C1, D1, B1), car(M,C2, D2, B2)
V ′1 (M,C,D,B,C,D,B) :- car(M,C,D,B)

stating that Model is the primary key (PK) of car, then Q1 be-
comes unsatisfiable and thus R2 (which is self sufficient w.r.t. Q1

when ∆G = ∅) becomes unusable. 2

However in other cases the addition of a target constraint may
instead increase the contribution of a registration. Example 6 il-
lustrates how by adding a primary key on the global schema an
otherwise unusable registration becomes now complementary.

Example 6.
Look again at Q4 asking for the make, base and ad price of mod-
els. R2 (unusable w.r.t. Q4 when ∆G = ∅) advances to now com-
plementary w.r.t. Q4 and R1 if Model is a PK of car (i.e. if
∆G = {δ1}). Indeed, R2 contributes certain answers to Q4 for
the source extents shown in Example 2. In particular, all global in-
stances consistent with R1 and R2 contain tuples car(’M3 98’, X1,
X2, ’25K’), ad(’M3 98’,X3, ’25K’) and car(’M3 98’, ’BMW’, ’2’,
X4) (Xi may be different across instances) and in those satisfying
also ∆G , the two partially specified car tuples are merged into
car(’M3 98’, ’BMW’, ’2’, ’25K’). Thus in presence of R1 and R2,
the set of certain answers to Q4 contains (’BMW’, ’25K’, ’25K’),
while if R1 is registered alone within the system it is empty. In-
tuitively, a PK on G allows a source to contribute to a query Q by
providing only part of a tuple required byQ (the values of the other
required attributes of the tuple can be obtained by another source
via the PK). 2

Other types of target constraints may also have the same ef-
fect. Example 7 shows how the addition of referential integrity

constraints on G can lead to the contribution increase of some reg-
istration.

Example 7.
Consider again Q3 asking for the make and ad prices of models for
which there exists info about their manufacturer. If we declare the
referential integrity constraint:

δ2 : U ′2 ⊆ V ′2 with U ′2(C) :- car(M,C,D,B)
V ′2 (C) :- brand(C,O)

which states that for each car tuple, a brand tuple with the same
make also exists, then each global instance consistent withM1,M2

and δ2 contains for each car tuple provided by M2 a correspond-
ing brand tuple. Hence R2 (which is later complementary in the
absence of target constraints) becomes now complementary w.r.t.
Q3 and R1 when ∆G = {δ2}. 2

5. MAIN RESULTS
We study only self-sufficiency, now-complementarity and later-

complementarity, as unusability is by definition reducible to them.
The decidability of the self-sufficient and now-complementary

tests is based on reducing them to reasoning about the certain rewrit-
ing of the client query Q, in particular to checking satisfiability,
respectively containment of certain rewritings.

Certain Rewritings. Given registrations {Ri = (Si,Mi)}1≤i≤n,
a certain rewriting of a client query Q against G is a query against
the combined schemas Si, which returns precisely the certain an-
swers to Q for any source extents DB. Specifically, denoting a
certain rewriting with rewrR(Q), we have:

rewrR(Q)(DB) = certM̄DB(Q).

Example 8. Recall Q1 from Example 1, asking for models with
both 2 and 4-door versions. Its certain rewriting in R2’s presence
is:

Q′1(M) :- auto(I1,M,C1), detail(I1,
′ 2′, E1),

auto(I2,M,C2), detail(I2,
′ 4′, E2).

Note that it is not a priori clear that any certain rewriting exists,
and even if it does, it is not given that it is expressible in a language
in which containment and satisfiability are decidable. Indeed, even
for pure LAV data integration scenarios (which are subsumed by
the GLAV systems considered here), in the presence of functional
dependencies (FDs) on the global schema, the solutions proposed
in the literature [10] yield rewritings expressed as recursive Datalog
programs, for which containment is undecidable [2].

However, in Theorem 8 in Section 5.4, we show that when there
is only at most one FD per relation in G, the certain rewriting can
be obtained as a union of conjunctive queries, for which contain-
ment is in NP. For the sake of presentation, we present this result
last. Notice that the case of allowing only primary key constraints
is covered by this result, since PKs are particular cases of FDs, and
there can be at most one PK per relation.

When not specified otherwise, in the following results all regis-
trations are given by sets of mapping constraints from IC(CQ=),
and all queries belong to UCQ=.

5.1 Self-Sufficient Registrations
Our first result concerns the decidability of testing whether a reg-

istration R is self-sufficient when the global schema contains only
primary keys.

This result is based on the following:



LEMMA 1. Assume that Q has a certain rewriting rewrR(Q)
expressed in some query language. Then SufQ(R) holds if and
only if rewrR(Q) is satisfiable.

Lemma 1 and Theorem 8 imply:

THEOREM 1. If ∆G contains only primary keys, then for any
client queryQ ∈ UCQ= it can be decided whether SufQ(R) holds
in PTIME in the size of rewrR(Q).

Example 9. The result presented in Example 1 that R2 is self-
sufficient w.r.t. Q1 can be inferred by checking that rewrR2(Q1),
shown in Example 8, is satisfiable. 2

Theorem 1 does not apply in the presence of RICs because the
results in [10] do not provide a certain rewriting in that case. We
actually obtain the following result:

THEOREM 2. It is undecidable to check that, given ∆G con-
taining PKs and RICs, registration R and Q ∈ CQ=, SufQ(R)
holds.

The proof is by a reduction from the Post Correspondence Prob-
lem [2].

Since both PKs and RICs are expressible in IC(CQ=), we im-
mediately obtain the following corollary:

COROLLARY 1. It is undecidable to check that, given ∆G ⊆
IC(CQ=), registration R and Q ∈ CQ=, SufQ(R) holds.

5.2 Now-Complementary Registrations
The basis for our decidability result for checking now-comple-

mentarity consists in a reduction to query containment. We first
state the reduction for the most general case it applies in, although
for the purpose of decidability we will have to consider only pri-
mary keys on the global schema.

The reduction holds when full dependencies are allowed on the
global schema. Full dependencies are IC(CQ=) queries of the form
(U ⊆ V ), where all of V ’s variables appear in its head. Full depen-
dencies include all primary keys, functional dependencies, and re-
stricted referential integrity constraints in which V does not project
away any attributes.

THEOREM 3. Given ∆G containing full dependencies and given
registrations R,Rn+1, we have that NCompQ

R
(Rn+1) holds if

and only if

(i) rewrRn+1(Q) is not satisfiable and
(ii) rewrR,Rn+1

(Q) is not contained in rewrR(Q).

Theorem 3 and Theorem 8 yield the following:

COROLLARY 2. If ∆G contains only PKs, then NCompQ
R

(Rn+1)

can be checked in NP in the size of rewrR(Q) and in PTIME in
the size of rewrR,Rn+1

(Q).

We next expose an interesting connection between the problem
of deciding self-sufficiency and that of deciding now-complementa-
rity. This will help us transfer undecidability results from the for-
mer to the latter.

THEOREM 4. The problem of deciding self-sufficiency of a reg-
istration is reducible to that of deciding now-complementarity.

Theorem 2 and Theorem 4 yield:

COROLLARY 3. It is undecidable to check, given ∆G contain-
ing PKs and RICs, query Q ∈ CQ= and registrations R,Rn+1,
whether NCompQ

R
(Rn+1) holds.

Corollary 3 implies undecidability in the presence of IC(CQ=)
integrity constraints on G.

5.3 Later-Complementary Registrations
The inherent difficulty in deciding later-complementarity lies in

having to check now-complementarity with any one of an infinite
set of possible registrations. We first show that, in the absence of
target constraints (∆G = ∅), we can confine the test to a canoni-
cally chosen registration, defined below:

Identity Registration. Given G, the registration consisting of
schema G and mappings copying its extent to the global database is
called the identity registration Rid:

Rid = (G,M) with M = {(Ui ⊆ Vi) : 1 ≤ i ≤ n} and
Ui(x̄i) :- ri(x̄i), Vi(x̄i) :- ri(x̄i), where

ri the relations of G and x̄i their attributes (1 ≤ i ≤ n).

If there are no constraints on G, later-complementarity reduces
to now-complementarity w.r.t. Rid:

THEOREM 5. Assume that ∆G = ∅ and Rn+1 is not now com-
plementary w.r.t. Q and R. Then LCompQ

R
(Rn+1) holds iff

NCompQRid(Rn+1) holds.

Corollary 2 and Theorem 5 yield the following:

COROLLARY 4. If ∆G = ∅, whether LCompQ
R

(Rn+1) holds
can be decided in NP in the size of rewrR(Q) and of rewrRid(Q)
and in PTIME in the size of rewrR,Rn+1

(Q) and of
rewrRid,Rn+1(Q).

Example 10 below shows that the test based on the identity reg-
istration fails in the presence of integrity constraints and Theorem 5
cannot be relaxed to allow even PKs in ∆G .

Example 10. Consider a simplified version of our running exam-
ple. In an initially empty system we are adding source 1 via regis-
tration R1 shown in Figure 3a. The source provides Audi models
and their base prices (the equality atom Carmake = ’Audi’ is de-
picted as a box with the value ’Audi’ next to Carmake). Assum-
ing that Model is the PK of car, we want to check the contribu-
tion of R1 to a query asking for the base price of BMW M3 98:
Q(B) :- car(′M3 98′,′BMW ′, B). R1 is obviously neither self
sufficient, nor now complementary w.r.t. Q, since it provides only
data about Audis, while the query asks for the price of a BMW.

We check whether R1 is now complementary w.r.t. Q and Rid
(shown in Figure 3b). In order to get a certain answer to Q in
presence of Rid and R1, a tuple for M3 98 has to be provided by
the source with registration Rid (it cannot be given by source 1,
because it would imply that the make of M3 98 is Audi and thus
we would not get any certain answer to Q). But Rid by definition,
when giving the tuple of M3 98, will also specify all other attributes
(i.e. make and price) of the tuple for which Q is asking and thus it
will not allow the first source to contribute anything to Q. Hence
NCompQRid(R1) does not hold.

However R1 can contribute to Q if source 2 with registration
R′ = (S ′,M ′) joins the system, where its schema S ′ consists of
a single relation pair(Model1,Model2) and its set of mappings is
M ′ = {(U ′ ⊆ V ′)} with
U ′(M1,M2) :- pair(M1,M2) and
V ′(M1,M2) :- car(M1,

′BMW ′, B), car(M2, C,B),
which means that source 2 provides pairs of BMW models with
other models of the same price. Indeed, assuming the extents:
DB1 : auto(’S4 97’, ’25K’) and
DB2 : pair(’M3 98’, ’S4 97’) for sources 1 and 2, respectively,
R′ alone does not provide any certain answers to Q but R1 and
R′ together do. Intuitively R1 contributes the price of BMW M3
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Figure 3: Registrations for Example 10

98 by providing the price of Audi S4 97 (which according to the
data given by source 2 is equal to the base price of BMW M3 98).
HenceR1 is later complementary but not now complementary w.r.t.
Q and Rid. 2

Example 10 also shows that the search for the future registra-
tionR′ has to consider mappings whose queries perform self-joins.
This poses a problem, since even if we picked one of the infinitely
many schemas for S ′, we’d still be left with an infinite search space
obtained by considering all CQ= queries over G for the conclusion
of the mapping constraints inM ′ (not to mention the infinite search
space for the premise). Our decidability result is based on bounding
these search spaces as follows:

Let R = (S,M) be the registration of our source, Q the client
query, and let size(Q) be the sum of the arities of all relational
atoms in Q.

THEOREM 6. Assume that NCompQ
R

(R) does not hold, and
∆G consists only of PKs, with m denoting the maximum size of a
key.

Then LCompQ
R

(R) holds iff NCompQR′(R) holds, where R′ =

(S ′,M ′) and M ′ = {(U ′ ⊆ V ′)} such that for some 1 ≤ k ≤
size(Q), we have

• S ′ contains a single relation D of arity 2×m× k, and
• U ′ is a projection of D, and
• V ′ is a query over G, of arity at most 2×m×k, with at most

2k atoms, and whose constants (if any) appear in M or Q.

There are therefore exponentially many (in the size of Q) candi-
date registrations to consider. However, each is of size polynomial
in that of Q.

Example 11. For the registration R1 from Example 10, we have
m = 1 and size(Q) = 3. Registration R′ is found for k = 1: D
is the relation pair of arity 2 × 1 × 1, V ′ has arity 2 and has 2
atoms, while U ′ is a projection of pair. 2

5.4 Non-recursive Certain Rewritings
Previous work [1, 10] describes only algorithms which yield a

certain rewriting as a recursive Datalog program even in local-as-
view scenarios, as soon as there are functional dependencies (FDs)

in the target schema. This is justified by an example integration
scenario in [10] where the FDs force the certain rewriting to be
recursive. However, the example uses several FDs per relation.
We show here (Theorem 8 below) that, if each relation in the tar-
get schema allows at most one FD, then there exists an equivalent,
nonrecursive rewriting expressed as a union of conjunctive queries
with equalities (UCQ=). Moreover, we show that such a rewriting
can be constructed by reusing an algorithm developed in previous
work for exact rewritings under the closed world assumption [8, 9].
These results are of independent interest as they extend previous
work on finding certain rewritings, and they shed additional light
on the connection between exact rewritings in the closed world as-
sumption and certain rewritings in the open world assumption.

Exact Rewritings. Given registrations {Ri = (Si,Mi)}1≤i≤n,
an exact rewriting of a client queryQ against G is a query xrewrR(Q)
against the combined schemas Si, which returns precisely the an-
swer to Q for any source extents DB:

∀DB ∀(G ∈ targetsM (DB)) xrewrR(Q)(DB) = Q(G).

Notice that any exact rewriting is also a certain rewriting. Clearly,
in the classical GLAV scenario in which all mappings are given by
source-to-target inclusion constraints [11] (this is the case in all our
examples as well), there is no exact rewriting as the inclusions be-
tween source data and target data are not violated by adding tuples
to the target. This changesQ(G) but does not affect any query over
the sources, so its answer cannot be the same withQ(G) for all tar-
gets G. Exact rewritings are therefore meaningful only under the
Closed World Assumption.

Closed World Assumption. Traditionally, the Open and Closed
World Assumptions (OWA, respectively CWA) are defined only
when the registration mappings are given by views [1]. We extend
the definitions to constraints. Given source extents DB, registra-
tion mappings M and target G ∈ targetsM (DB), we say that
G is a minimal target of DB under M if no proper sub-instance
G′ of G is also a target (G′ 6∈ targetsM (DB)). We say that the
registration mappings M satisfy the Closed World Assumption (in
short, M are CWA mappings) if for any source extents, all targets
under M are minimal. Otherwise, M are OWA mappings.

When the registration is given only by source-to-target inclusion
constraints, the mappings are OWA.

Previous work [8, 9] has shown that the Chase&Backchase algo-
rithm introduced in [7] is sound and complete for finding all mini-
mized exact rewritings when the query is expressed in UCQ= and
the constraints in IC(UCQ=). Ignoring minimization, the results
in [8, 9] imply the existence of the following algorithm, which is
guaranteed to construct a canonical exact rewriting whenever it ex-
ists (according to Theorem 7 below).

Procedure CANREWRS,G,∆G ,M (Q)

1. chase Q with M ∪ ∆G to obtain a query U ∈ UCQ= formulated
against the combined schemas S,G. For an extension of the chase
to UCQ= queries and IC(UCQ=) constraints, see [9, 6].

2. construct a query U |S by dropping from all of U ’s rules all atoms
over G. Drop all the rules that have become unsafe (this might result
in the empty set of rules, corresponding to the unsatisfiable query).

3. return U |S .

A common scenario requiring exact rewriting under the closed
world assumption is that of rewriting using materialized views.
Example 12. Exact rewriting using views.
Consider the query Q(y, z) :- R(x, y, z) and the two materialized
views V1(x, y) :- R(x, y, z) and V2(x, z) :- R(x, y, z). Also, let
the first component of R be a key. Rewriting Q using only the



views can be seen as finding an exact rewriting of Q using the fol-
lowing CWA mapping. The global schema is G = {R}, the source
schema is S = {V1, V2} and the set of global target constraints
∆G contains only the key on R. The mapping M consists of the
constraints
{V1(x, y) ⊆ ∃z R(x, y, z), V2(x, z) ⊆ ∃y R(x, y, z),
∃z R(x, y, z) ⊆ V1(x, y), ∃y R(x, y, z) ⊆ V2(x, z)}.

Notice that the first and third constraints capture view V1, stat-
ing the inclusions between its materialized extent and the defin-
ing query. Similarly, the second and fourth constraint capture view
V2. The first two constraints in M are source-to-target constraints
(the queries are expressed as formulae with free variables), whereas
the last two state inclusions from the target to the source database.
It is easy to see that M satisfies the CWA, and that the query
Qr(y, z) :- V1(x, y), V2(x, z) is an exact rewriting of Q. Qr is
constructed by algorithm CANREWR as follows. Chasing Q with
M ∪∆G yields

U(y, z) :- R(x, y, z), Vl(x, y), V2(x, z)

(chase steps apply only with the last two constraints inM ) and U |S
yields Qr . Qr turns out to be an exact rewriting, i.e. equivalent to
Q, as can be checked by chasing Qr with the first two constraints
in M and with the key constraint, to find a containment mapping
from Q into the latter chase result. 2

If no exact rewriting exists, then algorithm CANREWR returns a
minimally-containing UCQ= rewriting of Q.

Minimally-Containing Rewritings. Given registrations {Ri =
(Si,Mi)}1≤i≤n, a containing rewriting of a client queryQ against
G is a query Qc against the combined schemas Si, such that:

∀DB ∀(G ∈ targetsM (DB)) Q(G) ⊆ Qc(DB).

Qm is a minimally-containing UCQ= rewriting of Q if it is a con-
taining rewriting and for any other containing UCQ= rewriting Qc
of Q, we have

∀DB ∀(G ∈ targetsM (DB)) Qm(DB) ⊆ Qc(DB).

THEOREM 7. Assume that the chase of Q with M ∪∆G termi-
nates, and that Q has a containing UCQ= rewriting.

Then CANREWRS,G,∆G ,M (Q) is guaranteed to return a mini-
mally containing UCQ= rewriting Qm of Q. In particular, if Q
admits an exact UCQ= rewriting, then Qm is guaranteed to be ex-
act.

The proof was given in [6]. It follows from the results in [8, 9].
Finding certain rewritings. The algorithm for finding certain

rewritings in the OWA is based on modifying the original regis-
tration mappings M to obtain the CWA mappings Mf , and then
applying algorithm CANREWR on the new mappings. Its result
will be the certain rewriting.

To obtain Mf , we start from the idea introduced in the “inverse-
rule algorithm” presented in [10]. This algorithm turns a mapping
given by a setM of IC(UCQ=) constraints into one given by a logic
program LP with function symbols, called Skolem functions. LP
has two properties: (i) it satisfies the CWA since its output is de-
fined by the minimal model semantics, and (ii) certM

DB
(Q) can be

computed by runningQ on LP (DB) and removing from the result
all tuples containing Skolem function terms.

Example 13. Inverse rules (adapted from [10])
Consider the source schema S = {s}, the global schema G = {g},
and the mapping given by M = {(U ⊆ V )} with U(P,C) :-
s(P,C) and V (P,C) :- g(A,P,C), mapping source relation s into

the projection of global relation g. M is turned into the logic pro-
gram rule

g(SkF (P,C), P, C) :- s(P,C) (1)

where SkF is a fresh Skolem function symbol. By running this
program on the extent of s, we get an extent for g whose first col-
umn contains fresh invented values computed using SkF . If we
fix SkF , the extent of g is uniquely determined by that of s. An
important requirement of SkF (coming from [10]) is that it never
assign the same value to distinct arguments, unless forced to do so
by an FD in ∆G . For instance, if we assume the FD fd1 = C → A
on g, then SkF (P,C) = SkF (P ′, C) for any values of P, P ′, in
order not to violate fd1. However, SkF (P,C) 6= SkF (P,C ′) for
all C 6= C ′. In the absence of any FDs, SkF must be injective. We
refer to this property of SkF as injectivity modulo FDs. 2

[10] shows how LP can be turned into a Datalog program DP
without function symbols, which is a certain rewriting. However, in
the presence of FDs in ∆G , DP is recursive and thus doesn’t serve
our purpose. We take an alternate approach, turning LP into a new
set of mapping constraints Mf , together with a set of new target
constraints ∆f

G . For simplicity of presentation, we only illustrate
the construction of Mf and ∆f

G on the above example.

Example 14. Capturing inverse rules with constraints
We first obtain the new global schema Gf by extending schema
G with a relation F modeling the Skolem function (its intended
meaning is that F (A,P,C) iff SkF (P,C) = A). Then we elimi-
nate the Skolem terms from the logic program rules, substituting F
for SkF . (1) thus becomes (U0 ⊆ V0) ∈Mf where
U0(P,C) :- s(P,C)
V0(P,C) :- g(A,P,C), F (A,P,C).

To ensure that F models a function, we add to ∆f
G the corre-

sponding FD PC → A on F , expressible as U1 ⊆ V1:
U1(A1, A2) :- F (A1, P, C), F (A2, P, C),
V1(A,A) :- F (A,P,C).

We specify F ’s injectivity modulo FDs as follows. Recall from
Example 13 that in the presence of fd1, SkF will return the same
A value on arguments agreeing on the C value. To express that this
is the only case when the results of SkF coincide, we add to ∆f

G
the constraint (U2 ⊆ V2):

U2(A,C,C′) :- g(A,P,C), F (A,P,C),

g(A,P ′, C′), F (A,P ′, C′)

V2(A,C,C) :- g(A,P,C), F (A,P,C)

We next turn the mapping into one satisfying the CWA. Consider
the decomposition ρ = {AC,PC} of g. This is a lossless join
decomposition, which cannot be further decomposed without com-
promising the lossless join property [2]. For each X ∈ ρ, we in-
troduce a corresponding constraint into Mf , stating that all tuples
in πX(g) must stem from the source via the evaluation of the logic
program rule on s (this is the minimality requirement). Specifically,
we add {U3 ⊆ V3, U4 ⊆ V4} to Mf , where
U3(A,C) :- g(A,P,C),
V3(A,C) :- s(P ′, C), F (A,P ′, C), and
U4(P,C) :- g(A,P,C),
V4(P,C) :- s(P,C).

Notice that these two constraints state inclusions from the target to
the source.

Now consider the queryQ(P1, P2) :- g(A,P1, C1), g(A,P2, C2).
CANREWRS,Gf ,∆fG ,Mf

(Q) proceeds as follows. It first chases Q

with (U4 ⊆ V4) (two steps), then with (U0 ⊆ V0) (two steps) and



(U3 ⊆ V3) (another two), followed by two steps with the PK on g,
and finally with (U2 ⊆ V2) (one step) to obtain

U(P1, P2) :- g(A,P1, C1), g(A,P2, C2),
s(P1, C1), s(P2, C2),
g(A′, P1, C1), F (A′, P1, C1)
g(A′′, P2, C2), F (A′′, P2, C2)
s(P ′1, C1), F (A,P ′1, C1),
s(P ′2, C2), F (A,P ′2, C2),
A = A′, A = A′′, C1 = C2

U |S yields

Qm(P1, P2) :- s(P1, C1), s(P2, C1), s(P ′1, C1), s(P ′2, C1),

which minimizes trivially to Qm(P1, P2) :- s(P1, C1), s(P2, C1).
This is the certain rewriting of Q. Intuitively, this is because Q
requires P1, P2 to be associated with the same A. Since the value
of A is not provided by the source, we use the next best condi-
tion, namely we require P1, P2 to coincide on C. Since the latter
determines A, all tuples returned by Qm are valid. 2

It turns out that, for several FDs per relation, the constraints for in-
jectivity modulo FDs become more complex, leading to guaranteed
non-termination of the chase. Interestingly, the successive queries
obtained during the infinite chase sequence enumerate the unfold-
ings of the recursive Datalog program constructed in [10] fromLP .

Algorithm CREWR(S,G,∆G , R,Q)

1. Construct the “inverse-rules” logic program LP corresponding to
mapping M .

2. Construct a new global schema Gf , a new set of target constraints

∆f
G , and new mapping constraints Mf which induce the same map-

ping as LP .
3. Return CANREWRS,Gf ,∆fG ,Mf

(Q).

THEOREM 8. If ∆G contains at most one functional dependency
per relation, then for any list of registrationsR and any client query
Q ∈ UCQ=, Q has a nonrecursive certain UCQ= rewriting and
algorithm CREWR finds such a rewriting.

The crux of the proof is that (i) M f induces the same mapping
as the inverse-rule logic program LP , and (ii) the chase with the
constraints in Mf ∪ ∆f

G is guaranteed to terminate for any client
query Q, so that Theorem 7 applies.

6. CONCLUSIONS AND RELATED WORK
We believe that a first step towards making data integration ac-

cessible to non-expert users consists in providing visual interfaces
which guide users through the process. We are currently develop-
ing a tool whose front-end uses the Clio system [18] to help the user
specify registrations. Determining whether the registration of a new
source is at all relevant to an existing application is non-trivial and
requires automated assistance. We have formulated a novel clas-
sification of registrations and studied the problem of deciding on
registration categories.

Our classification is independent of the underlying source in-
stances. We are contemplating extensions of our notions of con-
tribution degrees to take into account source extents. Technically,
we can incorporate knowledge about the data values as constraints
added to the mapping constraints. This leads us to explore the inte-
gration setting with constraints on the source schemas.

To extend applicability of our tools, we will consider extending
the class of queries and mapping constraints supported, both in the
presence of data instances and in their absence. We expect an in-
teresting trade-off between feasibility and expressivity.

Related Work. [10] provides the “inverse-rule” algorithm for
finding maximally contained rewritings for LAV integration, and
[1] shows that maximally contained rewritings coincide with cer-
tain rewritings. The result was extended in [13] to the GLAV case,
but in the absence of integrity constraints on the global schema. A
further extension to the nested relational and XML data models is
provided in [21]. [15] shows how to find the certain rewritings in a
GLAV-like setting used in peer mediation. [16] settles the complex-
ity and decidability of checking the existence of this rewriting (the
GLAV mappings are called “symmetric constraints” there), con-
sidering both cyclic and acyclic sets of mapping constraints. In
the presence of functional dependencies on the global schema, the
inverse-rule algorithm returns a recursive Datalog program, defeat-
ing our goal of reasoning about containment of certain rewritings.
[19] decides containment of certain rewritings in LAV scenarios
without integrity constraints. The authors consider limited access
capabilities, which also result in certain rewritings expressed as re-
cursive Datalog programs. [3] reduces a GLAV mapping into a
pure GAV mapping, exploiting integrity constraints on the global
schema. [4] extends the ideas in [3] to allow for inclusion depen-
dencies on the global schema. This work is extended in [5], which
performs a comprehensive study of the complexity of answering
client queries for certain answers, under the Open World Assump-
tion, but also for various relaxations of the query semantics which
are appropriate for inconsistent and incomplete information. [5]
shows that query answering is undecidable in the presence of arbi-
trary PKs and inclusion dependencies and that, for restrictions on
the inclusion dependencies, the problem becomes decidable. Vari-
ous complexities are obtained for various classes of constraints and
queries. Despite the fact that the work in [5] assumes the source
instance given while our definitions are instance-independent, we
plan to investigate whether the restrictions in [5] lead to improved
complexities in our setting.
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APPENDIX

A. SOME PROOFS

PROOF. (of Lemma 1) By definition, SufQ(R) holds if and
only if the certain answer to Q is non-empty on some database
DB, if and only if rewrR(Q) returns a non-empty answer onDB,
if and only if rewrR(Q) is satisfiable.

PROOF. (of Theorem 1) By Theorem 1, it suffices to check
satisfiability of rewrR(Q). Since by Theorem 8, we have that
rewrR(Q) ∈ UCQ=, this amounts to finding at least one satisfi-
able individual conjunct C in the union. C is satisfiable if and only
if there is no equality between distinct constants which follows by
transitivity, symmetry and reflexivity from the equality atoms of
C.

PROOF. (of Theorem 2) The proof is a reduction from the Post
Correspondence Problem (PCP). Let L1 = {ui}1≤i≤n, L2 =
{vi}1≤i≤n be lists of words over an alphabet Σ (i.e. ui ∈ Σ∗,
vi ∈ Σ∗, 1 ≤ i ≤ n). A solution to PCP is a sequence of
indexes i1, ..., im s.t. ui1ui2 ...uim = vi1vi2 ...vim . The string
ui1ui2 ...uim is called the expansion of this solution. In order to
prove the theorem, for any PCP instance we create an instance of
the Self Sufficiency Problem (SSP) (i.e. a global schema G, a set
of target constraints ∆G , a source registration R = (S,M) and a
query Q) s.t. PCP has a solution iff SufQ(R) holds.

For ease of exposition we first present a reduction using one tar-
get constraint that is neither a PK nor a RIC and then change the
SSP instance to include only PKs and RICs as target constraints.

First Cut. The constructed SSP instance that contains a non-
PK and non-RIC target constraint δ3 is shown in Figure 4. Source
relation ES is the edge relation of a labeled directed graph with
ES(s, l, t) describing the edge from node s to t with label l. The
intention is to represent a word w = a1...ap (where ai are letters)
by a chain of the form ES(x1, a1, x2), ..., ES(xp, ap, xp+1). On
the global schema, target relation C is intended to contain tuples
C(su, sv, i, tu, tv) if from pair of nodes su, sv we can reach nodes
tu, tv following paths representing ui, vi, respectively. Addition-
ally, target relation R should contain a tuple R(tu, tv) if nodes
tu, tv are reachable from the same node s by paths representing
ui1 ...uik and vi1 ...vik , respectively for some indexes i1, ..., ik. Fi-
nally, query Q asks for the existence of a tuple R(x, x), i.e. of
a node x reachable by some node s both by a path representing
ui1 ...uik and one representing vi1 ...vik . Since however the graph

• Local schema S = {ES : 3-ary }
• Global schema G = {E1

G : 3-ary, E2
G : 3-ary, C: 5-ary, R:

2-ary }
• Set of target constraints ∆G = {(U1

δ ⊆ V 1
δ ), (U2

δ ⊆
V 2
δ ), δ3}
U1
δ (s, l1, t1, l2, t2) :- E1

G(s, l1, t1), E1
G(s, l2, t2)

V 1
δ (s, l, t, l, t) :- E1

G(s, l, t)
U2
δ (t, s1, l1, s2, l2) :- E2

G(s1, l1, t), E
2
G(s2, l2, t)

V 2
δ (t, s, l, s, l) :- E2

G(s, l, t)
δ3 = (∀x, y, i[R(x, y) ∧ C(x, y, i, x′, y′)→ R(x′, y′)])

• Set of mappings M = {(U iG ⊆ V iG)|1 ≤ i ≤ 2n+ 2}
U1
G(s, l, t) :- ES(s, l, t) and V 1

G (s, l, t) :- E1
G(s, l, t)

U2
G(s, l, t) :- ES(s, l, t) and V 2

G (s, l, t) :- E2
G(s, l, t)

foreach 1 ≤ i ≤ n, let ui = a1...ak and vi = b1...bl
U i+2
G (x1, y1, i, xk+1, yl+1) :-
ES(x1, a1, x2), ES(x2, a2, x3), ..., ES(xk, ak, xk+1),
ES(y1, b1, y2), ES(y2, b2, y3), ..., ES(yl, bl, yl+1)

V i+2
G (x1, y1, i, x2, y2) :- C(x1, y1, i, x2, y2)

let l0 be a letter not in Σ
foreach 1 ≤ i ≤ n, let ui = a1...ak and vi = b1...bl

if one of ui, vi is a prefix of the other, then
U i+n+2
G (xk, yl) :-
ES(s0, l0, s),
ES(s, a1, x1), ES(x1, a2, x2), ..., ES(xk−1, ak, xk),
ES(s, b1, y1), ES(y1, b2, y2), ..., ES(yl−1, bl, yl)

V i+n+2
G (x1, y1) :- R(x1, y1)

else remove the constraint (U i+n+2
G ⊆ V i+n+2

G )

• Client Query Q() :- R(x, x)

Figure 4: Self Sufficiency Problem Instance for First Cut

contains only chains, these paths will coincide and represent the
expansion of a solution to the PCP. Thus Q has nonempty certain
answers for some source instance (i.e. SufQ(R) holds) iff PCP
has a solution.

The above semantics are specified as follows: The mapping con-
straints (U iG ⊆ V iG), 1 ≤ i ≤ 2 and target constraints (U iδ ⊆
V iδ ), 1 ≤ i ≤ 2 restrict the source instances to graphs consisting of
a set of disjoint chains and cycles. Note that the source instances
cannot be restricted to graphs containing only chains, since chains
and cycles are indistinguishable by first order formulas. Further-
more, the mapping constraints (U iG ⊆ V iG), 3 ≤ i ≤ n+2 are used
to capture the intended meaning for relation C.

Finally, target constraint δ3 and mapping constraints (U iG ⊆
V iG), n + 3 ≤ i ≤ 2n + 2 implement the semantics of relation
R, which, according to its definition, should contain the transitive
closure of C. The recursive step to obtain the transitive closure is
described by δ3 and the base case of the recursion is captured by
constraints (U iG ⊆ V iG), n + 3 ≤ i ≤ 2n + 2. The base case con-
sists of pairs of nodes tu, tv s.t. they are reachable from a node
s (with an incoming edge label l0 6∈ Σ) both through a path rep-
resenting ui and through one representing vi, where ui is a prefix
of vi or vice versa. The prefix requirement is due to the fact that
if i1, ..., im is a solution to the PCP, then one of ui1 , vi1 will be
a prefix of the other. Moreover the requirement that the start node
s has an incoming edge labeled l0 6∈ Σ avoids considering a path
from s to t as the expansion of a solution to the PCP when there
is a path from s to t through ui1 ...uim and one through vi1 ...vim
but one of these paths goes around a cycle on which s, t are located
more times than the other.

Let us now modify the SSP instance, so that ∆G consists of PKs



• Local schema S = {ES : 3-ary }
• Global schema G = {E1

G : 3-ary, E2
G : 3-ary, C ′: 7-ary, C ′′:

3-ary, C ′′′: 1-ary }
• Set of target constraints ∆G = {(U iδ ⊆ V iδ )|1 ≤ i ≤ 6}

U1
δ (s, l1, t1, l2, t2) :- E1

G(s, l1, t1), E1
G(s, l2, t2)

V 1
δ (s, l, t, l, t) :- E1

G(s, l, t)
U2
δ (t, s1, l1, s2, l2) :- E2

G(s1, l1, t), E
2
G(s2, l2, t)

V 2
δ (t, s, l, s, l) :- E2

G(s, l, t)
U3
δ (s0, tu, tv) :- C′(s0, su, sv, i, t0, tu, tv)

V 3
δ (t0, tu, tv) :- C′(s0, su, sv, i, t0, tu, tv)
U4
δ (s0, su, sv) :- C′(s0, su, sv, i, t0, tu, tv)

V 4
δ (o, t1, t2) :- C′′(o, t1, t2)
U5
δ (t0, tu, tv) :- C′(s0, su, sv, i, t0, tu, tv)

V 5
δ (o, t1, t2) :- C′′(o, t1, t2)
U6
δ (t1, t2, o1, o2) :- C′′(o1, t1, t2), C′′(o2, t1, t2)

V 6
δ (t1, t2, o, o) :- C ′′(o, t1, t2)

• Set of mappings M = {(U iG ⊆ V iG)|1 ≤ i ≤ 2n+ 3}
U1
G(s, l, t) :- ES(s, l, t) and V 1

G (s, l, t) :- E1
G(s, l, t)

U2
G(s, l, t) :- ES(s, l, t) and V 2

G (s, l, t) :- E2
G(s, l, t)

foreach 1 ≤ i ≤ n, let ui = a1...ak and vi = b1...bl
U i+2
G (x1, y1, i, xk+1, yl+1) :-
ES(x1, a1, x2), ES(x2, a2, x3), ..., ES(xk, ak, xk+1),
ES(y1, b1, y2), ES(y2, b2, y3), ..., ES(yl, bl, yl+1)

V i+2
G (x1, y1, i, x2, y2) :- C′(z1, x1, y1, i, z2, x2, y2)

let l0 be a letter not in Σ
foreach 1 ≤ i ≤ n, let ui = a1...ak and vi = b1...bl

if one of ui, vi is a prefix of the other, then
U i+n+2
G (s, xk, yl) :-
ES(s0, l0, s),
ES(s, a1, x1), ES(x1, a2, x2), ..., ES(xk−1, ak, xk),
ES(s, b1, y1), ES(y1, b2, y2), ..., ES(yl−1, bl, yl)

V i+n+2
G (s, x1, y1) :- C′(s, x1, y1, z1, z2, z3, z4)

else remove the constraint (U i+n+2
G ⊆ V i+n+2

G )

U2n+3
G (x) :- ES(s0, l0, x)

V 2n+3
G (x) :- C ′′′(x)

where l0 the same letter used above

• Client Query Q() :- C ′(s0, su, sv, i, t0, t, t), C
′′′(t0)

Figure 5: Self Sufficiency Problem Instance for Second Cut

and RICs only.
Second Cut. The new instance is shown in Figure 5. While

using the same source schema, we are now capturing the semantics
of both the relations C and R used in the first cut by a single target
relation C ′. The intention is that if from a node s0 (which has
an incoming l0 edge), we can reach nodes su, sv through chains
representing ui1 ...uik and vi1 ...vik , respectively for some indexes
i1, ..., ik and additionally from nodes su, sv we can reach tu, tv
through chains describing ui, vi, respectively for some index i,
then there should exist a tuple C ′(s0, su, sv, i, s0, tu, tv). Relation
C′′′ is a unary relation containing the nodes that can serve as starts
of a chain (i.e. nodes with an incoming edge labeled with l0).

Thus the query Q is now asking for the existence of a node t,
which is reachable from some node t0 that can serve as the start of
a chain both via a path labeled ui1 ...uik and one labeled vi1 ...vik .
For the reasons outlined in the first cut, SufQ(R) holds iff PCP
has a solution.

The intended semantics for the relations are again implemented
through constraints. As in the first cut, mapping constraints (U iG ⊆
V iG), 1 ≤ i ≤ 2 and target constraints (U iδ ⊆ V iδ ), 1 ≤ i ≤ 2

disallow the existence of anything different from disjoint chains
and cycles in the graph described by ES .

Additionally, mapping constraints (U iG ⊆ V iG), 3 ≤ i ≤ n + 2
map into C ′ what was mapped into C in the first cut. Similarly
constraints (U iG ⊆ V iG), n + 3 ≤ i ≤ 2n + 2 bring into C ′

what was mapped into R in the first cut to form the base case
for the recursion. The semantics of the recursive step are the fol-
lowing: If there exists a tuple C ′(s0, su, sv, i, t0, tu, tv) then t0
should be equal to s0 and moreover, whenever an additional tu-
ple C ′(s′0, tu, tv, i

′, t′u, t
′
v) appears in C ′, s′0 should be equal to

t0. These semantics are ensured through constraints (U iδ ⊆ V iδ ),
3 ≤ i ≤ 6. Finally the intended semantics of C ′′′ are captured by
mapping constraint (U2n+3

G ⊆ V 2n+3
G ).

PROOF. (of Theorem 3) By definition, registrationRn+1 is now
complementary iff it is not self-sufficient and there are source ex-

tents DB,DBn+1 s.t. cert
M,Mn+1

DB,DBn+1
(Q) \ certM

DB
(Q) 6= ∅.

(i) The proof of Theorem 1 shows that Rn+1 is self-sufficient iff
rewrRn+1(Q) is satisfiable.

(ii) There are source extentsDB,DBn+1 s.t. cert
M,Mn+1

DB,DBn+1
(Q)\

certM
DB

(Q) 6= ∅
iff

there are DB,DBn+1 with
rewrR,Rn+1

(Q)(DB,DBn+1) \ rewrR(Q)(DB) 6= ∅
iff

there are DB,DBn+1 with

rewrR,Rn+1
(Q)(DB,DBn+1) \ rewrR(Q)(DB,DBn+1) 6= ∅

(since rewrR(Q) does not mention the schema of DBn+1)
iff

rewrR,Rn+1
(Q) is not contained in rewrR(Q).

PROOF. (of Theorem 4) Given global schema G, local schema
S, registration R = (S,M) and query Q formulated against G, we
construct the new local schema G ′, two local schemas S1,S2 with
registrations R1, R2, and query Q′ against G′ such that R is self-
sufficient w.r.t. Q if and only if R2 is now-complementary w.r.t.
R1 and Q′: SufR(Q) iff NCompQR1

(R2).
We obtain G′ by adding to G a fresh, zero-ary relation N . Q′ is

obtained from Q by adding the atom N() to the body. S1 consists
of a single, zero-ary relationO, and the registration mappingM1 is
given by M1 = {(U ⊆ V )} with U() :- O() and V () :- N(). S2

and R2 coincide with S and R, respectively.
Notice that given the same extent to the sources of schema S,

query Q′ returns the same answer as Q if the extent of O is not
empty, and returns the empty answer otherwise.

We observe that SufQ′(R2) does not hold, as M2 does not map
into N and therefore regardless of the extent of source 2, there is
always a target database in which N is empty, and one in which
it is not (contains the empty tuple). The certain answers to Q′ are
therefore always empty if source 2 is alone in the system. That is,
R2 is not self-sufficient.

Similar reasoning shows that source 1 alone contributes no cer-
tain answers to Q′ regardless of its extent, as it does not map into
the other relations appearing in Q′.

Therefore, in order for source 2 to contribute additional certain
answers to Q′ in the presence of source 1, it suffices to contribute
any one tuple. Any such answer would be an answer to query Q as
well. We conclude that SufR(Q) iff NCompQR1

(R2).

Proof of Theorem 5 We use the concept of canonical target
instances found in the literature [11, 12]. We give its definition
for ∆G = ∅.



Canonical Target Instances. Given source registrations R and
corresponding extents DB, a canonical target instance of R and
DB is a minimal global instance that satisfies the source mappings
and contains specially constructed Skolems for all attributes whose
values are not restricted by R.

Note that due to different naming of the Skolems, many canoni-
cal target instances may exist. We denote by can(R;DB) any one
of them.

Such an instance can be easily created by treating the mapping
constraints as rules that, starting from tuples of the sources, gener-
ate tuples in G. For a detailed explanation of the construction of a
canonical target instance, see [11, 12, 21].

This work also shows that by running Q on any canonical tar-
get instance and removing from the result all tuples containing
Skolems (denoted by Q(can(M ;DB))↓) we can compute the set
of certain answers to Q:

LEMMA 2. For ∆G = ∅ and Q ∈ UCQ= the following holds:
certM

DB
(Q) = Q(can(R;DB))↓

PROOF. (of Theorem 5) (if) This direction immediately follows
by the definition of Later Complementary.
(only if) Assume that LCompQ

R̄
(Rn+1) holds. Then by definition

there exist registrations R′ and source extents DB′ and DBn+1

s.t. cert
M ′,Mn+1

DB′,DBn+1
(Q) \ certM

′
DB′(Q) 6= ∅. We will, based on the

existence of R′, DB′, show that there also exists an extent DBid
of a source with the identity registration such that

cert
Mid,Mn+1

DBid,DBn+1
(Q) \ certMidDBid

(Q) 6= ∅.
We obtain DBid by building can(R′;DB′) and replacing any

distinct Skolem value in it by a distinct fresh constant (i.e. a con-
stant that appears neither in DB, DBn+1, nor in Q). Since Rid
copies the source extent to the target without leaving any value un-
specified, it is easy to see that can(Rid;DBid) = DBid. Thus
cert

Mid
DBid

(Q) = Q(can(Rid;DBid))↓ = Q(DBid). However by

construction,DBid contains all information provided by can(R′, DB′)
plus specific new values instead of Skolems. ThusQ(DBid) (which
has been shown equal to cert

Mid
DBid

(Q)) contains all tuples of

Q(can(R′;DB′))↓ plus some new ones, each of which contains
at least one of the fresh constants introduced in DBid. Thus if we
denote by A this set of new tuples, the following holds:

cert
Mid
DBid

(Q) \Q(can(R′;DB′))↓= A.

Using Lemma 2, this transforms to:

cert
Mid
DBid

(Q) \ certM
′

DB′(Q) = A

and combined with the fact that

cert
M ′,Mn+1

DB′,DBn+1
(Q) \ certM

′
DB′(Q) 6= ∅

yields

cert
M′,Mn+1

DB′,DBn+1
(Q) \ cert

Mid
DBid

(Q) 6= ∅ (2)

(since all tuples in A contain fresh constants and thus they can not

appear in cert
M ′,Mn+1

DB′,DBn+1
(Q)).

We will now compare cert
M′,Mn+1

DB′,DBn+1
(Q) and cert

Mid,Mn+1

DBid,DBn+1
(Q),

which by Lemma 2 equal to Q(can(R′, Rn+1;DB′, DBn+1))↓
and Q(can(Rid, Rn+1;DBid, DBn+1))↓, respectively. As previ-
ously, by the construction of DBid from DB it follows that

cert
Mid,Mn+1

DBid,DBn+1
(Q) ⊇ cert

M′,Mn+1

DB′,DBn+1
(Q). (3)

Equations 2 and 3 yield:

cert
Mid,Mn+1

DBid,DBn+1
(Q) \ cert

Mid
DBid

(Q) 6= ∅.

Hence NCompQRid(Rn+1) holds.

PROOF. (of Theorem 6) Consider the registration R and a fu-
ture registration Rf . In the presence of both registrations, Q must
have at least one certain answer, therefore it must have a match
against the canonical instance as defined in the proof of Theo-
rem 5. The image of Q’s atoms consists of tuples in the canonical
instance corresponding toR,Rf (canR,Rf ). These tuples couldn’t
all have existed in the canonical instance of R alone, canR, (since
Q would have been self-sufficient), or in that of Rf , canRf , (since
Rwouldn’t be now complementary withRf ). There must therefore
exist a nonempty set of tuples in canR such that some k attributes
in them do not have the value needed to serve as image ofQ. These
attributes are turned into the desired values once the registration
Rf is added. The only way these values can be changed by Rf is
if they are Skolems in canR. It is easy to see that, since each reg-
istration introduces its own Skolems, the only way Rf can affect
Skolems introduced by R is by interference through PKs. That is,
Rf can change some Skolem Sk into some value v only if canR
contains some tuple t in some relation P whose attribute set X is
a key, such that none of t[X] are Skolems, and such that for some
attribute A 6∈ X , t[A] = Sk. Rf must insert into canR,Rf a new
P -tuple t′ such that t[X] = t′[X] and t′[A] = v. Note that P does
not have to be mentioned by Q, since Skolems can occur in several
places in canR. Sk may occur in a tuple which will serve as im-
age for Q once Rf arrives, and also in some (potentially distinct)
P -tuple.

The value v may come from (i) the source f , or (ii) it may be
moved from another tuple in canR.

Case (i) requires source f to contribute data via some mapping
of form D[Y ] ⊆ P [X,A], where D[Y ] is the query projecting D
on its attribute set Y and |Y | = |X| + 1. Case (ii) requires some
mapping of form D[X,Y ] ⊆ σA=B(N [Y,B] × P [X,A]), where
relation N is not necessarily distinct from P , Y is the key for N ,
and B is some non-key attribute of N . The mapping “loads” the
value v = t′′[B] from some N -tuple t′′ ∈ canR by providing an
N -tuple t′′′ which coincides with t′′ on the key value and which
holds a Skolem in the B attribute. Due to the PK on N , t′′[B] =
t′′′[B] = v. v is then “stored” into t[A], because the mapping
provides a P -tuple t′ agreeing with t on the key, and holding v in
its A attribute.

The set of all k mappings as above can be summarized into a
single mapping stating the inclusion of the Cartesian product of
the left-hand queries into the Cartesian product of the right-hand
queries. The size of D and of the mapping queries follows.


