
Generating Tests by Example

Hila Peleg, Dan Rasin, Eran Yahav

Technion {hilap,danrasin,yahave}@cs.technion.ac.il

Abstract. Property-based testing is a technique combining parametric
tests with value generators, to create an efficient and maintainable way to
test general specifications. To test the program, property-based testing
randomly generates a large number of inputs defined by the generator to
check whether the test-assertions hold.

We present a novel framework that synthesizes property-based tests from
existing unit tests. Projects often have a suite of unit tests that have been
collected over time, some of them checking specific and subtle cases. Our
approach leverages existing unit tests to learn property-based tests that
can be used to increase value coverage by orders of magnitude. Further,
we show that our approach: (i) preserves the subtleties of the original test
suite; and (ii) produces properties that cover a greater range of inputs
than those in the example set.

The main idea is to use abstractions to over-approximate the concrete
values of tests with similar structure. These abstractions are then used
to produce appropriate value generators that can drive the synthesized
property-based test.

We present JARVIS, a tool that synthesizes property-based tests from
unit tests, while preserving the subtleties of the original unit tests. We
evaluate JARVIS on tests from Apache projects, and show that it pre-
serves these interesting tests while increasing value coverage by orders of
magnitude.

1 Introduction

Parametric unit-tests [55, 54, 47, 56, 58] are a well-known approach for increas-
ing coverage and thus increasing confidence in the correctness of a test artifact.
Parametric unit tests (PUTs) are also a common target of automatic test gen-
eration [24, 9] and unit test generalization [25, 53, 12]. A parametric unit test
consists of a test body defining the parametric code to execute, and a set of
assumptions that define the requirements from input values.

Parametric unit tests can either be symbolically executed or instantiated,
which is the process of turning them back into unit tests [55, 54]. One way to
instantiate PUTs is to provide them with concrete values based on whitebox
knowledge of the program under test [56, 61]. Another way is to provide a value
generator for the parameters, usually hand-crafted by an expert, which generates
appropriate values on demand. This type of test is called a property-based test
(PBT) [21, 13, 18, 32].



The paradigm of property-based testing [15, 5, 2, 45] defines the desired be-
havior of a program using assertions on large classes of inputs (“property”). To
test the program, property-based testing generates inputs satisfying the precon-
dition to check whether the assertion holds. Property-based testing is known to
be very effective in checking the general behavior of the code under test, rather
than just on a few inputs describing the behavior. It does this by describing
the behavior as assertions over classes of input, generating random inputs from
that class to check the assertion against. This has the advantages of increasing
both instruction coverage and value coverage, and exposing bugs which may be
hidden behind the selection of specific representative test cases.

In this paper we present a technique for automatic synthesis of PBTs—
parametric unit tests, together with an appropriate value generator—from repet-
itive unit tests.

The value generators synthesized by our approach follow relationships cap-
tured by an abstract representation to explore values within the test’s input
assumptions. In contrast to the assumptions of parametric unit tests which
require a separate enumeration technique (e.g., based on whitebox guidance),
abstraction-based generators contain nothing but the definition of the desired
input space, and so can be sampled directly and repeatedly to provide a large
number of additional values that satisfy the required assumptions.

Our approach generalizes existing unit tests by finding tests with a similar
structure such that their concrete values can be over-approximated using an ab-
stract domain. This allows us to use the executed code from the original test, as
well as the oracle (assertion) of the test, and execute them with new concrete
values. Our approach learns from both positive and negative test-cases (i.e.,
tests expected to succeed and fail, resp.), enabling a more precise generalization
of tests. Specifically, it finds an over-approximation for the positive examples,
while excluding any negative examples, and vice versa. In addition, our general-
ized tests preserve constraints inherent in concrete unit tests, such as types and
equalities, which allow us to address the subtle nuances tested by them.

Challenges To achieve our goal, we have to address the following challenges:

– Identify which tests, along with their oracles, should be generalized together
to obtain parametric tests.

– Generalize matching tests to find an over-approximation that represents all
positive examples but none of the negative ones. This will allow us to syn-
thesize value generators that match the generalized tests.

Existing Techniques Thummalapenta et al. [53] conducted an empirical study
analyzing the cost and benefits of manually generalizing unit tests, and have
shown that the human effort pays off in increased coverage and newly detected
bugs. Shamshiri et al. [49] conducted a test of state-of-the-art test-generators and
concluded that they do not create tests as meaningful as human-written tests,
leading to the conclusion that basing generalization on existing tests will lead
to better results. Fraser and Zeller [25] create tests with pre- and postconditions
on parameters, but do so by assuming a baseline version of the program and, in
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practice, incorporate its bugs into the tests. Francisco et al. [23] created PBTs
for web services, but did so from a semantic description that had to be manually
written for each web service. Loscher and Sagonas [36] improve upon PBTs with
guided value generation, rather than simple random sampling.

Our Approach The main idea is to leverage the repetitive nature of existing
unit tests to automatically synthesize parametric tests and generators. Techni-
cally, we define a partial order on the set of tests, that captures the generality
of the test data. This order allows our technique to use the same unit test as
an example for several different PBTs, capturing different subtleties, and at the
same time staves off over-unification of example sets that would yield meaningful
results individually, but a non-informative generalization together. We use safe
generalization [44] to separate positive and negative examples.

Dividing Tests Provided with individual example unit-tests to be used as a
training set, we aim to divide them into sets to be abstracted, in order to create
the smallest number of abstractions that are still meaningful, and can still be
sampled. We then aim to determine how many value generators are to be created
for each such abstracted region of the parameter space. The goal of the division
is to create a set of value generators for the property-based tests that will be
generated such that each abstracted region can over-approximate the maximal
number of examples, and different value generators are created over the same
region preserve the testing nuances seen in the original tests. The motivation is
that a generator for a PBT must contain the constraints of the subtle cases that
were selected by the programmer, to guarantee that these cases are covered in a
non-negligible probability when the PBT is executed.

To support this goal, we define a partial order of generality between PBTs.
This allows us to create a value generator for each testing nuance, and do so on
the maximal number of examples that are compatible with this subtlety.

Safe Generalization of Tests Given a set of compatible positive tests (ex-
pected to succeed) and negative tests (expected to fail), we wish to generalize
them into a region that a PBT’s value generator can sample. To that end, we
use an abstraction method for separating positive and negative examples, called
Safe Generalization [44].

Implementation We present JARVIS (Junit Abstracted for Robust Valida-
tion In Scalacheck), a tool that extracts repetitive tests from unit test suites,
determines their place in the partial order, and synthesizes from them PBTs
that generate inputs based on preserved properties. We test JARVIS on unit
tests from Apache projects. We also show that sampling the abstracted over-
approximations increases value coverage[10, 31] of the exercised code while not
losing instruction coverage. In addition, we demonstrate JARVIS’s ability to
discover historical bugs when run on test suites in the previous versions.

Main Contributions The contributions of this paper are:

– An inclusion relation between parameterized tests that allows the sharing
of examples between different abstracted generators without hindering the
ability to abstract.
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– A technique that generalizes test values from individual unit tests into value
generators for a PBT using safe generalization (separating positive and neg-
ative examples).

– A tool, JARVIS, that automatically synthesizes parametric tests, oracles
and abstraction-based generators from unit tests, while preserving the subtle
cases that are captured in these tests.

2 Overview

Unit tests are an integral part of the software development process. They are
used to test small components of large software systems independently. Such
components can typically receive many possible inputs, and in order to cover
their different behaviors, a component is often run using the same test code
with several different input values. In practice this leads to repetitive test code
to exercise the same unit under test again and again. An initial study of the
repetitiveness in the test suites of five large Apache projects (Commons-Math,
Commons-Codec, Collections, Sling and Spark core) showed that of 13, 359 total
tests, 40% are not unique test scenarios, and 17% are repetitive by being written
as an assertion called inside a loop. In some test files, all test code is non-unique
either by virtue of repetition or loops. This means that repetition of individual
tests is not only present but frequent.

However, these tests still use the same values every time the test suite is run.
Running identical code with other possible values may reveal a bug, and new
bugs may be introduced that will not be tested because of the test values are
constant. In fact, tracing through the history of the testing code shows us many
such cases: identical tests with a small change of constant values that were later
added to represent a bug that has been discovered, and often has been in the
code for a full version or more.

We set out to take repetitive test suites and synthesize from them testing
properties for property-based testing. Once we have in our possession a parame-
terized test with an assertion to test its postcondition, as well as a set of values
for the parameters labeled for expected success or failure of the test, we can use
previous work [50, 52, 35, 22, 19] to learn a precondition on the data and convert
it to a data generator for a PBT.

However, dividing test traces into compatible sets is not trivial. Tests may
seem to be representing the same case but in their over-unification harm the
abstraction. In addition there may be sets of tests that represent an interesting
test case, such as equal parameters or a subtype being used, which should be
preserved when sampling.

This paper addresses the following problems:

1. Finding individual tests that can be generalized together (“compatible”);
2. Generalizing the tests into a property-based test that would cover a superset

of the original tests; and
3. Creating abstraction-based value generators that will sample the abstraction

while preserving testing nuances.
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1 Assert.assertTrue(Precision.equals (153.0000 , 153.0000 , .0625));
2 Assert.assertTrue(Precision.equals (153.0000 , 153.0625 , .0625));
3 Assert.assertTrue(Precision.equals (152.9375 , 153.0000 , .0625));
4 Assert.assertFalse(Precision.equals (153.0000 , 153.0625 , .0624));
5 Assert.assertFalse(Precision.equals (152.9374 , 153.0000 , .0625));

Fig. 1. Several unit tests from the test suite of the Apache commons-math project,
using the JUnit testing framework.

To solve 1 we define the notion of tests that are compatible—that test the
same thing, and so have the same notion of correctness behind the examples. To
solve 2, we use the notion of Safe Generalization in order to find an abstraction
that will separate completely the example test cases that are expected to suc-
ceed from those that are expected to fail. Finally, to solve 3, we sample these
abstractions in a constrained manner dictated by the original tests.

We demonstrate these steps on a real-world example taken from the Apache
Commons-Math test suite.

The code segment in Fig. 1 depicts duplicate tests with different constant
values in the class PrecisionTest in the Commons-Math project. We notice that
the seemingly straightforward duplication is not exact duplication. For instance,
the test in line 1 uses the same value twice, creating an equality constraint. In
fact, in the larger file, there are several such tests, using different constants but
repeating the value between the first and second parameter.

This means that there is an explicit intention to test the case where the two
parameters are equal. Leaving this to chance while drawing reals would make
getting two equal values highly unlikely, and the synthesized property would be
skipping an intentional special test case if this is not performed. We therefore
wish to generate as our output not one but two tests: one for the general case
and one for the test with the equality constraint.

Parameterized tests Each test trace is turned into a parameterized test. In
a parameterized test, constants are extracted and replaced by parameters of
the same type. Parameter extraction takes into account constraints that ex-
ist in the concrete test, which means that if the same value appears more
than once it will be extracted as the same parameter every time. For instance,
assertTrue(Precision.equals(153.0000, 153.0000, .0625))); (line 1) will be pa-
rameterized to pt1 = assert(Precision.equals(x, x, y)); with types type(x) =
type(y) = double, and the parameter mapping of {x 7→ 153.0, y 7→ .0625, res 7→
+} is preserved, where res signifies the expected result of the assert. Similarly,
lines 2− 5 will all be parameterized into pt2 = assert(Precision.equals(x, y,

z)); with type(x) = type(y) = type(z) = double, with four matching parameter
mappings.

Grouping parameterized tests into scenarios Parameterized tests that test
the same sequence of statements but for the different parameters are grouped
together into scenarios. All parameterized tests in such a scenario would yield a
property-based test that runs the same code, only with differently drawn values

5



for the parameters. In Fig. 1, both the parameterized tests pt1 and pt2 are testing
assert(Precision.equals(?,?,?)) and will be grouped into the same scenario.

All parameterized tests in the same scenario execute the same trace, or in
other words test the same thing. A naive solution could use the parameterized
data from all test traces belonging to a scenario, and simply perform the ab-
straction on them, generating a single property-based test for the entire scenario.
However, because of the transition from constant values to randomly generated
ones, information about the intent of the test is lost. E.g., if the parameter-
ized test sends an integer to a double argument of a method, there is an intent
for a number with no fractional part. If the parameterized test repeats a value
throughout the test (e.g. between method arguments) there may be an intent
for equality. In both cases, the chance of obtaining a value that fits the intention
when drawing random values—e.g. from R3 in the case of Fig. 1—is slim at best.

A simple solution for this could be to keep the tests separated by the pa-
rameterized tests that contain them. This means all examples from tests that
match assert(Precision.equals(x,x,y)) with type(x) = type(y) = double will
be joined, separate from those that match assert(Precision.equals(x,y,z))

with type(x) = type(y) = type(z) = double. This would generate an additional
test forcing the equality of arguments, but would withhold from the uncon-
strained case with three parameters the additional data points that were sep-
arated out. Since both these parameterized tests call the same method, these
data points contribute to the understanding of the method’s general behavior,
and this would cause the generalization of the second test to learn from fewer
samples.

A hierarchy of tests A more realistic solution is to abstract as many examples
as can be safely unified together, and sample each abstracted region separately
later. To do this, we create a hierarchy of parameterized tests based on their
parameters. For each parameterized test, we may also consider the data from all
the tests below it in the hierarchy. When creating abstractions for the scenario,
we consider the maxima of the hierarchy, along with all additional tests that
have propagated up to them. This shares as many examples as possible, while
preventing over-unification.

To do this, we define an inclusion relation between parameterized tests be-
longing to the same scenario, based on the sequence of all parameter uses in the
test trace. In our example, pt1 has the parameter sequence x · x · y whereas pt2
has the parameter sequence x · y · z.

We will say pt1 is a subtest of pt2 because (i) every parameter in place i
in the sequence for pt1 has an implicit conversion to the parameter type of the
parameter in place i in the sequence of pt2, and (ii) any equality constraint in
the usage sequence of pt2 (i.e. the parameter is repeated between places i and
j) is also present in the sequence of pt1. In this case, (i) holds trivially as the
types are the same, and (ii) holds because the constraints in pt1 are relaxed to
no constraints in pt2.

Section 4.2 details the v relation between two parameterized tests. Section 7
presents experimental data on the importance of using the hierarchical approach.
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Abstracting the test data Now that the parameterized tests have been ordered
and their concrete samples shared, we can abstract the values of the maxima of
the v relation to a more general behavior. Earlier we parameterized the expected
result of the trace with the assignment for res, indicating whether the concrete
test should succeed when tested with the constants in the current parameter
assignment. This can be used as a label for the parameter assignments as positive
or negative examples of the more general property, which we wish to abstract.
The examples comprising pt2 yield the following two sets:

Positive = {(153.0000, 153.0000, .0625),

(153.0000, 153.0625, .0625),

(152.9375, 153.0000, .0625)}
Negative = {(153.0000, 153.0625, .0624),

(152.9374, 153.0000, .0625)}

We are interested in finding an abstraction for the Positive and Negative
sets which explains the partition above, and enables us to generate many more
positive and negative examples. It is vital that the abstraction will create a clear-
cut separation between the positive and negative examples, in order to ensure
that the values drawn will be a superset of the existing examples. This is also a
reason that having a large example set is important: having more examples helps
grow the abstraction, and having more counterexamples will limit the positive
abstraction from covering portions of the input space that should be negative.

To do this, we use the notion of Safe Generalization, and abstract both the
positive and negative samples simultaneously, checking that the abstraction of
positive examples has not grown to cover negative examples and vice versa.

If there are several maxima in the relation that are being abstracted sep-
arately, we notice that the Negative set for each of them contains negative
examples for the scenario behavior. This means each Positive set should be
separated from all Negative sets, and vice versa. These additional points to be
used as counterexamples will improve the separation.

In our case, the abstraction describing the positive examples is |x − y| ≤
z, and its negation for the negative examples. Section 5 formally defines Safe
Generalization and details the use of JARVIS’s template library.

In cases where the abstraction is performed on very few samples, there is
a lot of room for error for any abstraction. In other programming by example
tools such as [30, 33], the solution is to allow the user to mark the solution
as incorrect and provide more examples. Section 5.1 discusses the reasons the
abstraction may not be ideal and possible solutions.

Sampling the abstraction Once an abstraction is obtained for some set PT =
{pt1, pt2, . . . , ptn} of parameterized tests, we turn our attention to sampling the
abstracted region, and to the preservation of testing nuances. Because we con-
sider test cases written by the user a weighted sampling of the abstract behavior,
we want to make sure we model the sampling of our PBTs in the same fashion.
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1 val gen_double_1_pos = for(
2 y <- Arbitrary.arbitrary[Double ].map(Math.abs);
3 x <- Arbitrary.arbitrary[Double ];
4 z <- Gen.choose[Double ](x - y, x + y)
5 ) yield (x,y,z)
6 forAll (gen_double_1_pos) {_ match {
7 case (d1: Double ,d3: Double ,d2: Double) =>
8 Precision.equals(d1 , d2, d3)
9 }}

10 val gen_double_1_neg = for(
11 y <- Arbitrary.arbitrary[Double ].map(Math.abs);
12 x <- Arbitrary.arbitrary[Double ];
13 z <- Gen.oneOf(
14 Gen.choose[Double ]( Double.MinValue ,x - y). suchThat(_ < x - y),
15 Gen.choose[Double ](x + y,Double.MaxValue ). suchThat(_ > x + y))
16 ) yield (x,y,z)
17 forAll (gen_double_1_neg) {_ match {
18 case (d1: Double ,d3: Double ,d2: Double) =>
19 !( Precision.equals(d1, d2, d3))
20

21 }}

Fig. 2. The ScalaCheck properties synthesized from the test traces shown in Fig. 1.

To do this, we generate an abstraction-based value generator for each pti ∈
PT , which will practice constrained sampling, i.e., draw values from the abstract
region under the parameter constraints of the parameterized test. Section 6 de-
tails the way value generators are created over the abstract region.

Finally, we synthesize a PBT to includes each value generator. Fig. 2 shows
the resulting properties both the positive and negative data abstractions applied
to the concrete samples in PT = {pt1, pt2}, sampled according to pt2.

Running this property will test the parameterized test on hundreds of values
each time. This means that values matching the expected behavior but not
covered by the concrete tests will now be tested. This can find bugs that are
simply not tested for, and if the test property is added to the test suite, can
help stave off bugs that will be added in future changes to the code. Section 9
shows a case study of a historical bug in Apache Commons-Math that was found
by using JARVIS on the library’s test suite in the version before the bug was
corrected.

3 Preliminaries

In this section we introduce concepts used in this paper, including property-based
testing and value-based coverage metrics.

Unit test A unit test consists of stand-alone code executed against a Unit
Under Test (UUT), the result of which is tested against an oracle (an assertion)
for correctness. In practice, the code exercising the UUT often targets a small
unit, and the oracle is implemented by a set of assertions testing the state and
output of the unit test code. Unit testing tools such as JUnit [3] and NUnit [4]
provide an environment that can execute an entire test suite of unit tests.
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Property-based test PBTs consist of test code and an oracle that are defined
over parameterized classes of values. For that class of values, the PBT is phrased
as a “forall” statement or axiom on the behavior of a component. This means
PBTs mirror not a specific code path, but the specifications of the UUT. For
example, a simple property on strings would specify that ∀s1, s2, len(s1 · s2) =
len(s1) + len(s2).

A property-based test is comprised of two parts: the test body and oracle,
which are the code operating on the UUT and the boolean statement which must
hold, in this example concatenating and testing the length of strings; and the
generator, which defines the class of inputs on which the PBT is defined, in this
example any two non-null strings.

This is similar to the way parameterized unit tests [55] are defined. However,
PUTs define the input class by assumptions on the parameters. This means that
in order to run as tests in the test suite, PUTs need to be run through a solver or
a symbolic execution of the UUT in order to be instantiated with values for the
parameters, methods which are usually whitebox. The instantiated parameters
are added to the test, which is then transformed into a conventional unit test.
Barring a re-run of the solver, the values on which the resulting tests are run
are constant.

In contrast, PBTs are intended for execution of the test body on a random
sample of values that are drawn from the generator. The generator, rather than
describing the input class as a boolean formula (i.e., the conjunction of all as-
sumptions) that filters inputs, defines concretely a portion of the input space
from which values can be drawn.

A test using the generator can be added as-is to a test suite using PBT frame-
works such as QuickCheck [32, 15], PropEr [43], JSVerify [2] and ScalaCheck [5]
that include an initial implementation for the building blocks of generators, such
as ScalaCheck’s Gen.choose used in Fig. 2.

It has been shown [53] that test parametrization is worthwhile in terms of the
human effort it requires and the bugs that are detected. It can be extrapolated
that PBTs, for which it is easier to draw a large set of test values, would be a
worthwhile substitute.

4 Compatible Tests

4.1 From Test Trace to Parameterized Test

In this section, we formally describe how different unit test within a single test
suite can be viewed as a repetition of the same test with different parameters. We
then continue and formalize what we consider as subtle cases, or testing nuances,
appearing is such a group of repetitive tests, and explain how our technique still
preserves them.

The first step of our technique is to identify test traces in the original test
suite. A test trace is a sequence of (not necessarily adjacent) statements ending
with a single tested assertion, that can be executed sequentially.
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For example, lines 3−4 of Fig. 3 form the test trace Interval interval = new

Interval(2.3,5.7); assertEquals(3.4,interval.getSize());. Each line in Fig. 1
forms its own test trace, e.g. assertTrue(Precision.equals(153.0,153.0,.0625));
is formed by line 1.

To handle the many test traces in a library’s test suite, we must group them
into sets of tests that are compatible for a common abstraction. To this end, we
first normalize them and create tests that do not use any specific constant values.
This normal form is called a parameterized test. Technically, a parameterized
test obtained from a test trace contains the same statements as in the test trace,
where constant values are replaced by an uninterpreted parameter of the same
type as the constant. Moreover, if the same constant appears multiple times in
the test trace (at different locations), all occurrences are replaced by the same
parameter. Finally, specific assertions such as assertTrue or assertFalse are
replaced with a general assert command.

As seen in Section 2, the test trace in line 1 of Fig. 1 is parameterized as
pt1 = assert(Precision.equals(x, x, y)); with types type(x) = type(y) =
double. Similarly, the test trace in lines 3−4 of Fig. 3 is parameterized as Interval
interval = new Interval(x,y); assert(z==interval.getSize()); with type(x) =
type(y) = type(z) = double.

Note that while a concrete test trace holds correctness information (i.e., the
desired result of the assertion on a concrete execution of the trace), a parame-
terized test no longer encodes any such information. The expected result of the
assertion is stripped along with the constant values, as it depends on them: the
exact same parameterized test might be a positive test on one set of values and
a negative test on another.

The relation between a parameterized test and a test trace from which it was
originated, relies on the following definition:

Definition 1 (Parameter mapping). A parameter mapping for a parameter-
ized test is a function f that maps every parameter x to a constant c = f(x) s.t.
type(x) = type(c). Additionally, f maps a new variable res to {+,−}.

Essentially, a parameter mapping is a function that reproduces the original test
trace from a parameterized test. The role of res in the definition above is to
represent the type of the assertion (positive or negative). We can think of a
test suite as a set of parameterized tests, where each such parameterized test is
equipped with a set of parameter mappings F = {f1, . . . , fn}. Applying each fi
to pt will yield a concrete test trace ti.

4.2 Separation

Section 5 will explore the abstraction mechanism, but it is easy to see that an ab-
stract representation could be more accurate when working on as large a number
of examples as possible. An abstraction that only takes into account the values
obtained by the parameter mappings attached to a certain parameterized test
may result with a small number of concrete samples. This may yield an abstract
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representation which is too coarse. Even worse, the abstract representation may
provide no generalization.

To address this, we introduce another definition relying only on the state-
ments in the test trace:

Definition 2 (Scenario). A scenario S is a set of parameterized tests which
execute the same sequence of statements, differing only by their parameters. The
code of a scenario S, is the sequence of statements mutual to all parameterized
tests in S, after discarding parameter information. We say that a parameterized
test pt belongs to a scenario S if the code of S is obtained by discarding pt’s
parameter information.

Continuing our example with pt1 = assert(Precision.equals(x, x, y));, if
S is the scenario to which pt1 belongs, then the code of S is the statement
assert(Precision.equals(?, ?, ?)); (without parameter information).

The unification of parameterized tests into scenarios is driven by the fact that
despite the different parameter mappings, they are all running the same code (It
is important to note that method overloading information is not discarded.)

Next, we formalize subsumption between parameterized tests of the same
scenario. These definitions will allow us to increase the number of parameter
mappings that can be attached to a single parameterized test.

To define subsumption, we wish to compare two parameterized tests from
the same scenario and assess their generality. To do that, we need to compare
the parameter uses in the parameterized test in sequence. We therefore rely on
the following definition:

Definition 3 (Sequence of parameters). Given a parameterized test pt, let
params(pt) be the sequence of parameters across all statements in the parame-
terized test pt (with repetitions).

This notion is needed so that we may compare two parameterized tests in the
same scenario with a different number of parameters or with equality constraints
in different places in the test trace. E.g., for pt =foo(x,y);assert(bar(x,z)); we
have params(pt) = x · y · x · z.

Definition 4 (generality of parameterized tests, v). For two parameter-
ized tests pt1, pt2 with params(ptk) = xk1 · · · xkn for k ∈ {1, 2}, both belonging to
the same scenario S, we say that pt1 v pt2 if ∀i, j ∈ {1 . . . n}:

1. type(x1
i ) v type(x2

i ) (we use the standard notion of this relation, e.g. int v
double, String v Object.)

2. name(x2
i ) = name(x2

j )⇒ name(x1
i ) = name(x1

j )

The definition above allows us to create a parameter mapping f2 for a param-
eterized test pt2 from a parameter mapping f1 for parameterized test pt1, such
that pt1 v pt2. We do this by defining the result of f2 for every x2

i ∈ params(pt2)
by f2(x2

i ) = f1(x1
i ).

The implication of the correctness of behavior described by all parameterized
tests in a scenario is that all parameter mappings in a scenario can and should
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be abstracted together. However, creating a single abstraction for the entire
scenario will create a unification problem.

Example 1. Let us consider three parameterized tests that have several parame-
ter mappings each: pt1 = int prev = x.size(); x.add(y); assert(x.size() ==

prev + 1); with type(x) = List<String> and type(y) = String, pt2 is identical
to pt1 except for having type(x) = ArrayList<String>, and pt3 is identical to
pt1 except for having type(x) = Set<String>. Since add and size are methods
on List and Set’s shared parent interface Collection, pt1, pt2, and pt3 all belong
to the same scenario.

Since params(pt1) = params(pt2) = params(pt3) = x · x · y · x, and since
ArrayList is a subtype of List, but Set and List only share a common ancestor,
we see that pt2 v pt1, and pt3 is incomparable with both.

We notice that even though pt1 and pt3 are incomparable, there exists a pa-
rameterize test pt4, with the same test code and type(x) = Collection<String>
and type(y) = String for which pt1 v pt4 and pt3 v pt4.

If we aim to abstract pt4, we can see that our unification problem is twofold.
First, we now need to abstract (and later generate values for) collections in
general, not just lists and sets, from concrete data that only includes lists and
sets. We also see that there is a difference in behavior between sets and lists in this
test code which needs to be captured by the abstraction: for a set, res 7→ true
only if y is not already a member of the set, whereas for a list (ArrayList or
otherwise), res 7→ true always. This problem is made even worse in cases where
the shared ancestor is Object.

In order to avoid these problems we set a unification rule as follows:

Definition 5 (Abstraction candidates). Let T ⊆ S be the set of parameter-
ized tests in a scenario S such that for every pt ∈ T , ¬∃pt′ ∈ S.pt v pt′∧pt 6= pt′.
We define the abstraction candidates for S to be the sets of parameter mappings
ACS = {{f ∈ pt′ | pt′ v pt} | pt ∈ T}. When performing abstraction, each
s ∈ ACS will be abstracted on its own.

In other words, given the DAG defined by the v relation, we create an ab-
straction for every root pt, including with it the parameter mappings of every
parameterized test reachable from pt. This means we only create abstractions for
parameterized tests that exist “in the wild”, whilst reusing as many test traces
as possible in order to abstract them.

5 Abstracting the test data

In the following section, we abstract each of the sets of examples in ACS .
Once a parameterized test has its final set of concrete test traces, the res

parameter can be used to divide them into positive and negative samples. For
instance, the parameterized test for Precision.equals(x,y,z) with type(x) =
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type(y) = type(z) = double from Fig. 1 has the following data:

C+ = {(153.0, 153.0, .0625), (153.0, 153.0625, .0625), (152.9375, 153.0, .0625)},
C− = {(153.0, 153.0625, .0624), (152.9374, 153.0, .0625)}.

Safe Generalization We are interested in an abstraction in some language
that would be a Safe Generalization [44], or an abstraction that provides sepa-
ration from a set of counterexamples. Safe Generalization is defined as an op-
eration that further generalizes a set of abstract elements A from an abstract
domain [16] into another set of abstract elements, A′, while avoiding a set of
concrete counterexamples Ccex, and provides the following properties:

1. Abstraction: A′ contains every concrete element that is abstracted by A
(even though A v A′ may not hold)

2. Separation: No c ∈ Ccex is abstracted by A′

3. Precision: Generalization is a direct result of the elements in A.

as well as a strive for maximality that is not relevant for this use. We wish to
generate two properties for the parameterized test that we are abstracting: one
expecting the test to succeed, and one expecting it to fail. The code in these two
properties is the same except for a negation of the assertion, but they require
different data generators. In order to create these two generators, we need two
abstractions, A+ for the positive examples of the parameterized test, and A−

for the negative.
It is important to notice that, when a scenario has multiple abstraction can-

didate sets, they are still all representing the same behavior in the code under
test, which means they are influenced by the counterexamples in the other sets
as well. Specifically, while the positive examples were separated by the unifica-
tion rule, and should not be abstracted together, they should still be separated
from every negative point in the scenario, as they all represent some negative
case for the same code. This applies symmetrically to the negative points.

We therefore define for an abstraction candidate a ∈ ACS the following
example sets:

C+ = {f ∈ a|f(res) = +} C− = {f ∈ a|f(res) = −}

C+
cex =

⋃
b∈ACs

{f ∈ b|f(res) = −} C−cex =
⋃

b∈ACs

{f ∈ b|f(res) = +}

and attempt to attain the separating abstraction for A+ from (C+, C+
cex) and

for A− from (C−, C−cex).
It is clear that not every abstraction language will be able to accommodate

this requirement. In addition, when there are few samples, many different ele-
ments from each language may fit, and we are not necessarily interested in the
most precise one, which means we will need to relax the precision requirement
of Safe Generalization.

In some domains such as Intervals, we are able to easily compute Safe Gener-
alization using algorithms such as Hydra [38], but we may still wish to perform
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a controlled loss of precision on the result. In other domains, computing Safe
Generalization will be doubly exponential. Instead, we utilize a Safe Generaliza-
tion relation, denoted SG(C,Ccex), which includes the set of abstractions that
are safe generalizations for ({β(c) | c ∈ C}, Ccex), where β is the abstraction
function for a single concrete element. SG relaxes the precision requirement,
allowing abstractions to be included in SG(C,Ccex) even for very small example
sets C,Ccex.

In theory we would construct SG over every available abstraction. In practice,
we use SG to test a set of given abstractions.

Abstraction templates In order to select an abstraction language and an ele-
ment of that language, JARVIS contains a library of abstraction templates, such
as |x− y| ≤ z, x ∈ [a, b], etc. As previously shown by the FlashFill project [51],
the case of learning from few examples (in FlashFill, often only one example)
requires the notion of ranking the possible programs, or in our case, possible
abstractions, so that correct programs will be ranked higher than incorrect ones,
and likely programs higher than unlikely ones. While in [51] this ranking is
learned from examples, in our implementation the templates have a predefined
ranking that is applied for all instantiated abstractions that hold for all samples.

Every template t of the template library is instantiated, and in the case of
templates such as x ∈ [a, b] or |a ∗ x − y| ≤ b, the parameters are selected
based on the existing samples. Templates are instantiated in pairs, one as an
abstraction for the positive examples and one for the negative. The result is
A = {(A+, A−)|(A+, A−) ∈ SG(C+, C+

cex), (A−, A+) ∈ SG(C−, C−cex)}. We
then select from A the highest ranking (A+, A−), and create code sampling
them as the generators for the properties.

This means the template library can be extended to include more abstrac-
tions, and the ranking can be modified to better suit a specific project or domain.

5.1 Handling Impreciseness

The abstractions we use are conservative, and overapproximate the concrete data
that they abstract. On the one hand, this guarantees that cases that are present
in the original unit test will be included in the generated PBTs. However, in
some cases, even the best abstraction available in the template library will be
too conservative, and also represent data points that will fail the PBT. This can
happen for one of two reasons:

– The abstraction itself is not precise enough (e.g. a single interval, when the
data requires a disjunctive abstraction, or a set of intervals).

– The number of examples is too low to precisely generalize from (e.g. gen-
eralizing from two examples, there is not enough data to reduce the set of
abstraction templates).

Both cases require manual intervention: in the first case, the user can provide
a finer abstraction, in the second case she can provide more examples, and in
either case she can manually edit the resulting tests.
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6 Sampling from the Abstraction

We now wish to sample the abstraction that was created in the previous sec-
tion. When creating the abstraction-based value generators that will sample the
abstraction, we take our cue from the original test traces and their parameter-
ized tests. We consider the original tests written by the programmers to be a
weighted sample from the region of the domain that is described by the “true”
precondition of the tested behavior. That is, the user has already selected points
that they deem important. We therefore wish to preserve them.

We have created an abstraction of each region – an underapproximation of
the positive and negative regions for each of the maxima of the v relation. We
now wish to generate property-based tests, or in essence, to generate code that
will sample from the concretization of our abstraction. The sampling component
of the code in Fig. 2 is shown in lines 1 − 6 and 11 − 17. It is composed of the
representation of the space and types of the variables to be sampled into.

In this section we describe the creation of such sampling for the abstractions
we performed.

Sampling based on user-encoded testing nuances We notice that we may
wish to sample each abstracted region more than once. Since the constraints
of parameterized tests lower in the hierarchy represent constrained values sam-
pled by the user, we wish to cover them in our generated sampling. Let us ex-
amine the parameterized test pt1 = assert(Precision.equals(x, x, y)); with
type(x) = type(y) = double from Section 2. It is sampled out of the region
abstracted for the entire scenario S containing pt1 as well as other tests for
Precision.equals. Abstracting the topmost parameterized test by the v rela-
tion yields an abstraction in R3. When sampling (x, y, z) ∈ A ⊆ R3 the odds
of satisfying the constraint in pt1, i.e., x = y, are infinitesimal. If we wish to
preserve the constraint entered by the user, we must sample the special case in
which x = y on its own.

Sampling the constraints In order to sample each set of constraints on its
own, we create a sampling component as follows: for every pt ∈ S, we create
a sampling component over each abstraction for an abstraction candidate s for
which pt has contributed its parameter mappings. If, according to the v relation,
there are positive parameter mappings that apply to pt, a sampling component
for the positive abstraction will be generated. Likewise for negative parameter
mappings.

For each region sampled, the constraints of pt are added to the restrictions
on the domain. For example, when sampling the region |x− y| ≤ z for pt1 seen
in Section 2, the new sampling constraints are |x − y| ≤ z ∧ x = y, or 0 ≤ z,
sampling (x, z) out of this region s.t. type(x) = type(z) = double.

Sampling guarantee Finally, we formulate our guarantee for points that will
be sampled:

Claim. Let T be a set of test traces from the same scenario S, |T | ≥ 2. For each
t ∈ T , if ∃t′ 6= t s.t. PT (t) v PT (t′), then
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Scenarios Repeating scenarios Hierarchy
no. of no. PTs have no. of

avg repeating traces per scenario multiple height roots
Library size scenarios avg max avg max PTs avg max avg max
Commons-CLI 4.2 38.3% 3.5 14 1.067 2 6.7% 1.033 2 1.50 2
Commons-Codec 2.2 38.2% 3.4 8 1.088 2 8.8% 1.088 2 1.00 1
Commons-Collections 2.1 13.3% 2.8 5 1.133 4 6.7% 1.033 2 2.50 3
Commons-Configuration 3.5 14.6% 3.7 15 1.015 2 1.6% 1.012 2 1.25 2
Commons-CSV 3.2 27.8% 2.0 2 1 1 0.0% 1.000 1 1.00 1
Commons-Email 2.3 60.0% 2.7 5 1.1 2 10.0% 1.100 2 1.00 1
Commons-IO 2.9 23.8% 3.6 14 1.069 4 4.7% 1.042 2 1.11 2
Commons-JEXL 4.6 25.9% 2.4 4 1.037 2 3.7% 1.000 1 2.00 2
Commons-Lang 2.1 36.7% 5.5 37 1.273 5 19.1% 1.212 3 1.04 3
Commons-Math 4.3 19.7% 4.1 45 1.182 9 10.2% 1.075 4 1.79 6
Commons-Pool 3.9 33.3% 2.0 2 1.222 2 22.2% 1.222 2 1.00 1
Commons-Text 2.5 36.7% 6.2 15 1.133 2 13.3% 1.133 2 1.00 1

Table 1. Scenario makeup of the JUnit test suites of Apache-Commons projects. Re-
peating scenarios are those with the number of concrete test traces greater than 1.

1. t will be used in an abstraction, and
2. PT (t) will be used to create an abstraction-based value generator for a PBT.

This allows for a maximal reuse of examples for abstraction, and on the other
hand, the sampling of all special cases that are abstracted.

7 Experimental evaluation

We implemented JARVIS to operate on JUnit test suites written in Java and to
synthesize ScalaCheck PBTs. Scala has a seamless interoperability with Java [40],
which means properties for ScalaCheck, which are written in Scala, can mimic
completely the functionality of the original test traces. JARVIS uses the Polyglot
compiler [39] and the ScalaGen [6] project to translate test traces from Java to
Scala, and they are then paired with generators from the selected abstraction
which are outputted directly to Scala. Template instantiation is aided by the Z3
SMT solver [17].

We ran JARVIS on the test suites of several open source libraries. We tested
whether the hierarchy and unification rule of abstraction candidates are relevant
to real-world test suites.

7.1 Examining Apache test suites

Tab. 1 shows the result of running JARVIS on the test suites of 12 Apache
Commons projects. This summary of JARVIS’s ability to unify shows us several
things in regard to the problems it addresses:

Identifying tests In all projects, the average length of extracted test traces is
over two statements. This shows JARVIS identifies and extracts elaborate tests.

Repetition of tests The data shows that there is, in fact, enough repetition
of tests to justify test generalization. In the project with the least amount of
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repetition, Commons-Collections, only 13% of the scenarios contain more than
one concrete test trace, but in half the projects this number is over 30%.

Existence of constraints When examining the scenarios that contain more
than one test trace, we see that this is, on average, 9% of scenarios, with as many
as 9 separate parameterized tests, or sets of constraints, in the same scenario.
These are all user-encoded sampling constraints that would see their probability
plummet without a specific sampler generated for them.

Importance of the unification rule In scenarios that have multiple param-
eterized tests, we see that the number of roots in the hierarchy DAG (i.e., in-
comparable maxima of the relation) is, on average, 1.35. This means that it is
not infrequent to have scenarios where the least upper bound of two or more
parameterized tests does not occur in the test traces. Since this is a frequent
occurrence in the real world, we deem it frequent enough to address the issues
that arise from over-unification within the scenario (as described in Section 4.2).

8 Instruction and value Coverage

Coverage metrics Test generation papers often use instruction or branch cov-
erage as their guiding metric. However, when approaching a codebase with an
existing test suite, these are already high. Additionally, as has been shown [10],
even 100% instruction coverage is no guarantee for a bug-free program. The val-
ues selected have a meaningful effect on actually finding faults in the program.

This has led to the development of several value-related coverage metrics. Pa-
rameter value coverage and parameter value interaction coverage [48] counts the
parameter values or parameter combinations that have not previously appeared.
Predicate coverage [10] aims to divide the program into equivalence classes of
observable states and capture more complex data relationships needed to cover
all reachable observable states. Likewise, logical coverage [8] aims to find values
that will cover predicates or clauses of the logical expressions in the program.
Boundary value coverage [31] aims to test the values at the boundary values of
predicates on which the program branches, thereby aiming at off-by-one errors
and similar bugs.

Most of these metrics are still anchored in the structure of the program.
The implications of this are threefold: (i) blackbox methods of test generation
cannot be driven by these metrics, as they would need access to the predicates
and branches, (ii) they are still not sufficient in themselves to create a bug-free
program, and (iii) tests generated by them will not suffice as regression tests for
code changes. Consider, for instance, a program statement that might divide by
zero. If there is no branch on the value of the divisor, tests generated to maximize
the above metrics will have no reason to try two values – and specifically, zero.
Additionally, consider a generated test suite, which is being used for regression
testing while the code is modified. It may have originally had high coverage, but
it is easy to insert new branches that were not considered in generation and so
will now not be visited.
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Because of these issues, we opt for a combination of two simple metrics:
parameter value coverage, combined with instruction coverage. This allows us
to perform blackbox synthesis of the tests – meaning the library’s code need not
even compile, as long as the tests do – and aim for the spirit of PBTs, making
axiomatic claims about the UUT that can be used for regression testing once
the code has changed.

We tested two additional coverage questions:

1. Is instruction coverage preserved when testing with PBTs generated by
JARVIS?

2. Is parameter value coverage increased when testing with PBTs generated by
JARVIS?

parameter
Java CUT Scala PBT

test space IC PVC IC PVC

L
a
n
g CharUtilsTest::isAscii char 37 6 37 59

CharUtilsTest::isPrintable char 40 195 40 45

C
o
m

m
o
n
s-

M
a
th

FastMathTest::testMinMaxDouble double2 782 9 770 400

FastMathTest::toIntExact int 738 2001 738 65

IntervalTest double2 38 2 3869 2

PolynomialFunctionTest::testConstants double 53 5 53 105

PolynomialFunctionTest::testfirstDerivativeComparison double 117 7 117 264

PolynomialFunctionTest::testLinear double 71 5 71 160

PrecisionTest double3 871 8 876 102

UnivariateFunctionTest::testAbs double 739 5 739 506

Table 2. Instruction coverage (IC) and parameter value coverage (PVC) figures for
tests from Apache test suites and the PBTs generated for them by JARVIS.

Tab. 2 shows the coverage figures for repetitive unit tests from the Apache
Commons-Math and Commons-Lang projects. For each test, it indicates its
method of origin, or class of origin if there are several methods, the space of
parameters the method accepts, and instruction coverage and parameter value
coverage figures for both original JUnit tests and Scala PBTs synthesized by
JARVIS. Instruction coverage figures were collected by JaCoCo [1]. Parameter
value coverage figures were collected from the PBTs by running it with the
ScalaCheck default of 100 tests each, conserving the values sampled by the gen-
erator.

We notice that while instruction coverage was generally not improved by the
synthesized PBTs, it was at least as great as the instruction coverage of the
conventional JUnit tests in every case but one. In addition, the parameter value
coverage for the PBTs was, on average, 26 times greater than the parameter value
coverage for the JUnit tests. Parameter value coverage for the PBTs dropped
below that of the JUnit tests in two tests, which we describe below.
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IntervalTest The parameter value coverage for the IntervalTest tests, which
are shown in Fig. 3 is only 2, the same as the coverage of the JUnit test. This
is because the PBT generated for this test (shown in Fig. 4) has found a bug.
Because this bug is frequently occurring in terms of values in the parameter
space of the function, the test failed, on average, on the second value generated.
This is also the reason this test has managed to increase instruction coverage
by two orders of magnitude: it has exercised code not previously seen by the
conventional unit test. This bug is discussed in greater depth in Section 9.1.

isPrintable and toIntExact In two tests, isPrintable and toIntExact, the
conventional unit test’s parameter value coverage was greater than that of the
synthesized PBTs. In both of these cases, the test function is run inside a loop
on a large number of values, while each PBT’s execution was limited to 100
iterations.

While examining the PBT resulting from isPrintable, we noticed what ap-
peared to be an inconsistency with the conventional unit test values in the
JARVIS abstraction. Upon closer inspection, a copy-paste bug was revealed in
the test code, testing some values with the wrong method. The test was fixed,
and the commit was accepted by the Commons-Lang project1.

testMinMaxDouble The test testMinMaxDouble (which is actually two tests, for
FastMath.min and FastMath.max) is the only one in which the instruction coverage
of the PBT is lower than that of the JUnit test. This is because the conventional
unit test tests, among other values, Double.NaN, while the abstractions in JARVIS

do not abstract or create generators that can sample Double.NaN. As NaN (not
a number) is often handled in a separate code path, this leaves uncovered code
when compared to the unit test.

Conclusion Having examined these special cases, we can answer questions 1
and 2 in the affirmative: instruction coverage is preserved and parameter value
coverage is increased in most cases by JARVIS.

9 Discovering Bugs: A Case Study

In this section we review two historical bugs in Apache Commons-Math that we
discovered by running JARVIS on the unit test suite for the version before the
bug was fixed.

9.1 MATH-1256: Interval bounds

In Apache Commons-Math versions prior to 3.6, the test suite for the Interval

class included the code in Fig. 3. A bug in the interval class which is not tested
in these unit tests was opened as “MATH-1256: Interval class upper and lower
check”2. An Interval object could be created with a lower bound greater than its
upper bound, which would result in an invalid interval with a negative size. The

1 http://github.com/apache/commons-lang/pull/230
2 http://issues.apache.org/jira/browse/MATH-1256
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1 @Test
2 public void testInterval () {
3 Interval interval = new Interval (2.3, 5.7);
4 Assert.assertEquals (3.4, interval.getSize(),
5 1.0e -10);
6 Assert.assertEquals (4.0, interval.getBarycenter (),
7 1.0e -10);
8 Assert.assertEquals(Region.Location.BOUNDARY ,
9 interval.checkPoint (2.3, 1.0e -10));

10 // Other asserts on properties of interval
11 }
12 // ...
13 @Test
14 public void testSinglePoint () {
15 Interval interval = new Interval (1.0, 1.0);
16 Assert.assertEquals (0.0, interval.getSize(),
17 Precision.SAFE_MIN );
18 Assert.assertEquals (1.0, interval.getBarycenter (),
19 Precision.EPSILON );
20 }

Fig. 3. Unit test code for the Interval class from the Apache Commons-Math project

1 val gen_double_1_pos = for(
2 x <- Gen.posNum[Double ];
3 y <- Arbitrary.arbitrary[Double ];
4 z <- Gen.oneOf(y-x,y+x)
5 .suchThat(t => Math.abs(t-y) == x)
6 ) yield (x,y,z)
7

8 forAll (gen_double_1_pos) {_ match {
9 case (double_1 ,double_3 ,double_2) =>

10 val interval = new Interval(double_1 , double_2)
11 double_3 ~= interval.getSize
12 }}

Fig. 4. The ScalaCheck generator and property generated by JARVIS from the unit
tests in Fig. 3.

bug report shows test code initializing Interval interval0 = new Interval(0.0,

(-1.0)); and showing that it would result in interval0.getSize() being −1.0.

This bug hinges on the two parameters accepted by the Interval constructor.
Since it only requires y > x, it exists in nearly 50% of the parameter space.
However, the conventional unit tests in IntervalTest only cover 2 values.

Running JARVIS on IntervalTest.java from release 3.5 yields 9 different sce-
narios. The scenario testing getSize contains two parameterized tests, one for
the parameters double1, double2 and double3, from the code in testInterval

and one for double1 and double2 from the code in testSinglePoint. We de-
note them pt3 and pt4, respectively. Since pt4 v pt3, the concrete test from
testSinglePoint is added to the parameterized test for testInterval, resulting
in C+ = {(2.3, 5.7, 3.4), (1.0, 1.0, 0.0)}.

From the abstraction template library for 3D abstractions, the abstraction
selected for these points by the criteria outlined in Section 5 is |y − z| = x.
JARVIS outputs the code in Fig. 4 to generate values matching the abstraction.
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Running the test with ScalaCheck fails in cases where the upper bound of the
interval is negative while the lower bound is generated as always positive. Since
the bug exists in nearly 50% of the space, it occurs almost immediately when
running the PBT. These cases expose MATH-1256 without the additional unit
tests that were later added after it was reported and fixed.

9.2 MATH-785: Discovering a deep bug with manual intervention

In Commons-Math 3.0, the FDistributionTest.java test file included three tests
that instantiate an FDistribution object, and test that cdf−1(cdf(x)) = x.
A bug in ContinuedFraction caused an exception while computing cdf−1 of
an FDistribution instantiated with sufficiently large values for the numera-
tor and denominator degrees of freedom. This has been reported as “MATH-
785: Numerical Underflow in ContinuedFraction”3. This problem is also re-
lated to another bug, MATH-718, and impacted another Commons-Math class,
BinomialDistribution.

The two concrete tests that appear in the 3.0 version of FDistributionTest.java
are parameterized into the same parameterized test with parameters int1 and
double1, with the data set C+ = {(1, 0.975), (100000, 0.999)}. In an environment
where precision is not an issue, the ideal abstraction for this case would be int1 >
0∧ 0 ≤ double1 ≤ 1. JARVIS selects the abstraction |0int1− double1| <= 0.999.
While this is a model example of the difficulty of abstracting from few exam-
ples, an important fact–the lack of relation between int1 and double1–has been
captured. Values that trigger the bug may be generated from this abstraction,
but they are unlikely. Values causing a false positive are far more likely.

Fig. 5(a) shows the original code created by JARVIS. We now describe the
manual process used to discover the bug:

Running the code produced by JARVIS resulted in the failure: ! Falsified

after 0 passed tests.

> ARG 0: (2147483647,-0.5649371160559484). This test failure leads us to two
changes in the generator code. The first is to limit int1 to lower values, as when
it is sufficiently high, every call to cumulativeProbability returns 0 due to lack of
precision, and to positive values which are required by the class. The second is to
limit double1 to not only values greater than 0 but very near 1 as floating point
arithmetic causes the cdf−1(cdf(x)) calculation to vary greatly from x through
no fault of the code.

Running the code after the changes, seen in Fig. 5(b), in ScalaCheck now
fails with an exception caused by the bug:
! Exception raised on property evaluation.

> ARG 0: (213726,0.9918989284020788)

> Exception: org.apache.commons.math3.exception.NoBracket-ingException: function

values at endpoints do not have different signs, endpoints: [0, 1.001], values:

[-0.03, -?]

3 http://issues.apache.org/jira/browse/MATH-785
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1 val gen_int_1_pos = for(
2 x <- Arbitrary.arbitrary[Int];
3 y <- Gen.choose[Double ](0.0 * x - 0.999 ,
4 0.0 * x + 0.999)
5 ) yield (x,y)
6 forAll (gen_int_1_pos) {_ match {
7 case (int_1: Int ,double_2: Double) =>
8 val fd = new FDistribution(int_1 , int_1)
9 val p = fd.cumulativeProbability(double_2)

10 val x = fd.inverseCumulativeProbability(p)
11 double_2 ~= x
12 }}

(a)

1 val gen_int_1_pos = for(
2 x <- Gen.choose[Int ](1 ,320000);
3 y <- Gen.choose[Double ](0.975 ,
4 0.0 * x + 0.999)
5 ) yield (x,y)
6 forAll (gen_int_1_pos) {_ match {
7 case (int_1: Int ,double_2: Double) =>
8 val fd = new FDistribution(int_1 , int_1)
9 val p = fd.cumulativeProbability(double_2)

10 val x = fd.inverseCumulativeProbability(p)
11 double_2 ~= x
12 }}

(b)

Fig. 5. (a) The ScalaCheck generator and property generated by JARVIS for
FDistribution. (b) The code from (a) after manual modifications to the generator
in lines 2 and 3.

10 Related Work

Learning from examples Learning from examples or “Programming by Ex-
ample” is a field of synthesis with many different applications, such as Inductive
Programming [20], string processing [30, 29, 51] and data extraction [33]. In par-
ticular, the FlashFill and FlashExtract projects [51, 33] present an interactive
algorithm for synthesis by examples used to generate code for string manipu-
lation, showing that it is possible to synthesize a program from few examples,
despite having several compatible solutions.

Genrating Tests and Oracles An experiment described in [49] reveals that
state of the art automatic test generation tools are far from satisfactory. However,
an experiment described in [46] shows that manual unit tests, written by devel-
opers aided by an automatic test generation tool, create better code coverage.
[42] use code instrumentation of the system under test to guide test generation
by path discovery. [41] suggest a technique that improves random test genera-
tion by avoiding sequences calls after an object has reached an illegal state. [60]
extend this technique further to increase coverage and diversity for automati-
cally generated tests. However, their method only generates the tests and they
do not suggest how to generate oracles. [24] describe a technique for automat-
ically generating unit tests together with appropriate pre and post-conditions,

22



based on mutations of the tested class and test inputs. However, the basis for
the postcondition is the observable state after the test execution, which means
that bugs in the program will result in incorrect postconditions. [26] suggests a
mutation-based technique to select variables for which an oracle would detect a
high number of faults in the program. However, a tester is still required to write
the oracles. [61] generate unit tests using symbolic execution and incremental re-
finement. [57] generate both tests and oracles from use case specifications, using
natural language processing techniques.

Parameterized Unit Tests PUTs are defined in [55] and as “theory-based
testing” in [47] and developed further in [54, 56, 58]. [53] is an empirical study
in unit test parametrization that strongly advocates parameterized unit testing.
Generalizing unit tests to parameterized unit tests was shown as useful in de-
tecting new bugs and required feasible human effort, though one that required
expertise with additional tools. However, their proposed methodology contains
manual steps for parametrization and generalization, and they do not address
the problem of extracting and grouping the tests. [25] extends [24] to parame-
terized unit tests, but exactly as in [24], the postcondition is derived from the
observable state after the test execution. In contrast, JARVIS creates test oracles
from the oracles of the original unit tests, and treats their assertions as part of
the generalization, making no assumptions based on the execution.

Property Based Testing and Fuzzing [23] creates PBTs for web services,
but does so from both a syntactic and manually-written semantic description
of the service. Later work [34] is intended to track API changes in web services
and update existing PBTs. [27] recognizes the important connection between
conventional unit tests and PBTs, and describe a tool that checks whether a
given unit test is covered by a given PBT. [59] is a tool for automatic PBT
generation, based on feedback directed random test generation [41]. However,
similar to previous feedback directed random test generation techniques, the or-
acles are specified by the developer. Fuzz testing or “fuzzing”, another testing
technique, is very similar to property-based testing: it draws inputs or enumer-
ates them, but usually does not use oracles, only looks for crashes, and does not
test components but rather the whole program. Works such as [11] draw their
inputs from grammars of valid or invalid inputs. Others add to this a white-box
approach [28, 37], attempting to draw inputs that increase coverage. [14] suggest
combining fuzzing with ranking, based on the diversity of the test cases. [7] aim
to draw inputs for fuzzing that will direct the fuzzing to a part of the program.

11 Conclusion

We presented JARVIS, a tool to extract repetitive tests from unit test suites and
synthesize from them property-based tests. We have shown the foundations for
its operation: sorting the existing unit tests into sets of compatible tests; a better
abstraction, achieved using a hierarchy of generality between parameterized tests
which allows abstractions to generalize more tests; generalizing the examples to
a data generator, taking into consideration the positive and negative examples
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(tests expected to succeed and fail, resp.) using the notion of Safe Generaliza-
tion; and preserving the subtleties of human-written unit tests by sampling each
abstracted region according to constraints found in the test data.

We applied JARVIS to the JUnit test suites of 12 Apache Commons APIs,
and have shown there is ample repetition in the data of real-world test suites,
which can be used to generate PBTs. We have also shown that the repetition
often includes subtleties, in the same testing scenario. Additionally, we have
shown that JARVIS-generated PBTs maintain the instruction coverage of the
original unit tests, and increase parameter value coverage by as much as two
orders of magnitude. PBTs generated by JARVIS have found a known bug in
Apache Commons-Math, and with the help of JARVIS we identified a bug in
the Commons-Lang test suite.
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