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Many examples are inherently ambiguous
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Input:
"abdfibfcfdebdfdebdihgfkjfdebd"
Output: "bd"
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input.takeRight (2)

* PBE aims for consistency with examples
* Examples don’t convey intent uniquely
* In other words:
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Problem [: Differentiating examples are hard

Examples
that rule
out current
program

Examples
for desired
behavior

Differentiating
examples

Usually takes a REPL
and some time

* Example: find the median

* Input: [1,2,3] Output: 2

* Candidate program:
input[input.length / 2]

* To create a differentiating example:

* Figure out why this happened
* Turn that back into an example

* Make sure the median is not in the
middle

* Input: [1,3,2] Output: 2
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A narrower scope: synthesis for programmers

* Programmers can interact on a lower
level

* They understand sub-problems
* They understand the code

* (They can be helped to understand)

* They should be given the power
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Granular operations: an example set

Exclude

exclude (f.g.h):
never show programs
of the form
input...f.g.h...

Retain

retain(f.g.h):
only show programs
of the form

input...f.g.h...

Essentially, creates a
procedure

Affix

affix (f.g.h):
only show programs
of the form
input.f.g.h...
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Back to our example: most frequent bigram

Input:"abdfibfcfdebdfdebdihgfkjfdebd"

Output: "bd"

input . CakeRtett(2)

The user can answer locally:
exclude takeRight (2)



Another step

The synthesizer produces another candidate program

input //"abdfibfcfdebdfdebdihgfkifdebd"
.drop(l) //"bdfibfcfdebdfdebdihgfkjfdebd"
.take (2) //"bd"
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Another step

The synthesizer produces another candidate program

input //"abdfibfcfdebdfdebdihgfkjfdebd"
op //"obdfibfcfdebdfdebdihgfkyfdebd"
) ) //"bd"

Answer: exclude drop (1) - take (2)
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And another

The synthesizer answers

input//"abdfibfcfdebdfdebdihgfkjfdebd"

.zip (input.drop (1)) //List ((a,b), (b,d), (d,€), (£,1), ...

.take(2)//List ((a,b), (b,d))
.map(p => p. l.toString + p. 2)//List("ab", "bd")
.max//"bd"

User provides a compound answer:

12



And another

The synthesizer answers

input//"abdfibfcfdebdfdebdihgfkjfdebd"

.zip (input.drop (1)) //List ((a,b), (b,d), (d, ), (f,1), ...)
.take(2)//List ((a,b), (b,d))

.map(p => p. l.toString + p. 2)//List("ab", "bd")
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And another

The synthesizer answers

input//"abdfibfcfdebdfdebdihgfkjfdebd"

.z1ip (input. drop( V) //List ((a,b), (b,d), (d,f), (£f,i),...)
t:32e<ZIZ/Llst b), (b,d))

-map (p => p._1. tostrlng + p. _2)//List("ab","bd")
maX//"bd"

User provides a compound answer:
affix zip (input.drop (1))
exclude take (2)
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And another

The synthesizer answers

input//"abdfibfcfdebdfdebdihgfkjfdebd"
.zip (input.drop (1)) //List ((a,b), (b,d), (d, ), (f,1), ...)

TowetZ]//List ((a,b), (b,d))

.map(p => p. l.toString + p. 2)//List("ab", "bd")
.max//"bd"

User provides a compound answer:

affix zip (input.drop (1))

exclude take (2)

And possibly even retainmap (p => p. l.toString + p. 2)
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Until finally

input//"abdfibfcfdebdfdebdihgfkjfdebd"
.zip(input.drop(l))//List((a,b), (b,d), (d,f), (f,1),..
.map(p => p._1l.toString + p. 2)//List("ab","bd",..
.groupBy (x => X) //Map ("bf"->List ("bf"),"ib"->List (..
.map (kv => kv. 1 -> kv. 2.length) //Map ("bf"->1, ..
.maxBy ( . 2)//("bd", 4)

._1//mpar
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Evaluating GIM

Synthesizer:

 Scala functional programs

* Precomputed program space
* We record only user time

Three groups:
1. PBE: examples only (11)

2. (S}/(r)\)tax: only syntactic operations

3. GIM: both examples and
syntactic (11)

Three problem sets:

1. Most frequent word
2. No. lines with text
3. Histogram

Research questions:

1. Are answers consisting of
syntactic predicates easier
(faster) to §enerate than example

predicates

2. Isthe total time to solution
faster?

3. Do users prefer examples?

4. Are users’ answers correct?



RQ1+2: Iteration times and total times
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Users like examples (but not that much)
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RQ4: More examples -> more correctness
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summary

* Programmers want power and options
* Syntax operations are easier than examples

* And better at getting rid of ambiguity and distracting
elements

* Users like examples, but like having other tools
* Let’s make synthesizers that cater to programmers!



