Programming by Example

Hila Peleg
Sharon Shoham

Eran Yahav

The research leading to these results has received funding from the European Union's - Seventh Framework Programme
(FP7) under grant agreement n° 615688 — ERC- COG-PRIME.

Program Synthesis

AWate SW

Programming by Example

A&l

) e . 3
q (B 04| P
@ S QU el i
et e

Many examples are inherently ambiguous

-
4

Input:
"abdfibfcfdebdfdebdihgfkjfdebd"
Output: "bd"

bd
de
eb
df

N W W b

Many examples are inherently ambiguous

c>
4

Input:
"abdfibfcfdebdfdebdihgfkjfdebd"
Output: "bd"

input.takeRight (2)

bd
de
eb
df

N W W b

Many examples are inherently ambiguous

c>
4

Input:
"abdfibfcfdebdfdebdihgfkjfdebd"
Output: "bd"

bd
de
eb
df

N W W b

input.takeRight (2)

* PBE aims for consistency with examples
* Examples don’t convey intent uniquely

Many examples are inherently ambiguous

c>
4

Input:
"abdfibfcfdebdfdebdihgfkjfdebd"
Output: "bd"

bd
de
eb
df

N W W b

input.takeRight (2)

* PBE aims for consistency with examples
* Examples don’t convey intent uniquely
* In other words:

Problem [: Differentiating examples are hard

Examples
that rule
out current
program

Examples
for desired
behavior

Problem [: Differentiating examples are hard

Examples
that rule
out current
program

Examples
for desired
behavior

Differentiating
examples

Problem [: Differentiating examples are hard

 Example: find the median
* Input: [1,2,3] Output: 2

Examples
that rule
out current
program

Examples
for desired
behavior

Differentiating
examples

Problem [: Differentiating examples are hard

Examples
that rule
out current
program

Examples
for desired
behavior

Differentiating
examples

* Examp
* Input:
* Candic

e: find the median
1,2,3] Output: 2

ate program:

input[input.length / 2]

Problem [: Differentiating examples are hard

Examples
that rule
out current
program

Examples
for desired
behavior

Differentiating
examples

* Examp
* Input:
* Candic

e: find the median
1,2,3] Output: 2

ate program:

input[input.length / 2]

* To create a differentiating example:

* Figure out why this happened
* Turn that back into an example

Problem [: Differentiating examples are hard

Examples
that rule
out current
program

Examples
for desired
behavior

Differentiating
examples

* Examp
* Input:
* Candic

e: find the median
1,2,3] Output: 2

ate program:

input[input.length / 2]

* To create a differentiating example:

* Figure out why this happened
* Turn that back into an example

* Make sure the median is not in the

middle

Problem [: Differentiating examples are hard

Examples
that rule
out current
program

Examples
for desired
behavior

Differentiating
examples

* Example: find the median

* Input: [1,2,3] Output: 2

* Candidate program:
input[input.length / 2]

* To create a differentiating example:

* Figure out why this happened
* Turn that back into an example

* Make sure the median is not in the
middle

* Input: [1,3,2] Output: 2

Problem [: Differentiating examples are hard

Examples
that rule
out current
program

Examples
for desired
behavior

Differentiating
examples

Usually takes a REPL
and some time

* Example: find the median

* Input: [1,2,3] Output: 2

* Candidate program:
input[input.length / 2]

* To create a differentiating example:

* Figure out why this happened
* Turn that back into an example

* Make sure the median is not in the
middle

* Input: [1,3,2] Output: 2

Problem II: Examples are terrible when you
(kind of) know what you want

abdfibfc.. ab,bd,df, .. bd,df, f1,.. bd

N\ \~ \ g
input.sliding(2) .drop(1l) .min

Problem II: Examples are terrible when you
(kind of) know what you want

abdfibfc.. ab,bd,df, .. bd,df, f1, .. bd
input.sliding(2) .drop(1l) .min
Input: "abbba", Output: "bb"

Problem II: Examples are terrible when you
(kind of) know what you want

abdfibfc..

ab,bd,df, ..

bd,df, f1,..

bd

N\

A\

N \
input.sliding(2) .drop(1l) .min

Input: "abbba", Output: "bb"

abdfibfc.. ab,bd,df, ..

N\ NS

N7

bd,df, f1i,.. bd,df, fi,

N7

bd

e

input.sliding(2) .drop(1l) .dropRight(1l) .min

N\ /\

abbba ab,bb, ..

bb,bb,ba

/L

bb ,bb

bb

A narrower scope: synthesis for programmers

* Programmers can interact on a lower
level

A narrower scope: synthesis for programmers

* Programmers can interact on a lower
level

* They understand sub-problems
* They understand the code

* (They can be helped to understand)

A narrower scope: synthesis for programmers

* Programmers can interact on a lower
level

* They understand sub-problems
* They understand the code

* (They can be helped to understand)

* They should be given the power

The Granular Interaction Model (GIM)

input * A programmer can talk at
//ab,bd, df, .. the level of the program
.sliding (2) * Read debug info

//bd,df, fi,.. * Reason about subtrees or
.drop (1) sequences of methods

/ /bd * Or intermediate states
.min * But also examples, if those

happen to be easier

The Granular Interaction Model (GIM)

input * A programmer can talk at
//ab,bd,df, .. That looks right the level of the program
.sliding (2) * Read debug info

//bd,df, f1,.. * Reason about subtrees or
.drop (1) sequences of methods

/ /bd * Or intermediate states
.min * But also examples, if those

happen to be easier

The Granular Interaction Model (GIM)

input * A programmer can talk at
//ab,bd,df, .. That looks right the level of the program
.sliding (2) * Read debug info
//bd,df, f1,.. * Reason about subtrees or
.drop (1) sequences of methods
/ /bd * Or intermediate states

: hose are wron .
.Mm1n ' ® eButalso examples, if those

happen to be easier

Granular operations: an example set

Exclude

exclude (f.g.h):
never show programs
of the form
input...f.g.h...

Granular operations: an example set

Exclude Retain

exclude(f.g.h): |[|[retain(f.g.h):
never show programs || only show programs
of the form of the form

input..£f.g.h... input..£f.g.h...

Granular operations: an example set

Exclude Retain

exclude(f.g.h): |[|[retain(f.g.h):
never show programs || only show programs
of the form of the form

input..£f.g.h... input..£f.g.h...

Essentially, creates a
procedure

Granular operations: an example set

Exclude

exclude (f.g.h):
never show programs
of the form
input...f.g.h...

Retain

retain(f.g.h):
only show programs
of the form

input...f.g.h...

Essentially, creates a
procedure

Affix

affix (f.g.h):
only show programs
of the form
input.f.g.h...

Back to our example: most frequent bigram

Input:"abdfibfcfdebdfdebdihgfkjfdebd"

Output: "bd"

input.takeRight (2)

Back to our example: most frequent bigram

Input:"abdfibfcfdebdfdebdihgfkjfdebd"

Output: "bd"

input.takeRight (2)

The user can answer locally:

Back to our example: most frequent bigram

Input:"abdfibfcfdebdfdebdihgfkjfdebd"

Output: "bd"

input . CakeRtett(2)

The user can answer locally:
exclude takeRight (2)

Another step

The synthesizer produces another candidate program

input //"abdfibfcfdebdfdebdihgfkifdebd"
.drop(l) //"bdfibfcfdebdfdebdihgfkjfdebd"
.take (2) //"bd"

11

Another step

The synthesizer produces another candidate program

input //"abdfibfcfdebdfdebdihgfkjfdebd"
op //"obdfibfcfdebdfdebdihgfkyfdebd"
)) //"bd"

Answer: exclude drop (1) - take (2)

11

And another

The synthesizer answers

input//"abdfibfcfdebdfdebdihgfkjfdebd"

.zip (input.drop (1)) //List ((a,b), (b,d), (d,€), (£,1), ...

.take(2)//List ((a,b), (b,d))
.map(p => p. l.toString + p. 2)//List("ab", "bd")
.max//"bd"

User provides a compound answer:

12

And another

The synthesizer answers

input//"abdfibfcfdebdfdebdihgfkjfdebd"

.zip (input.drop (1)) //List ((a,b), (b,d), (d,), (f,1), ...)
.take(2)//List ((a,b), (b,d))

.map(p => p. l.toString + p. 2)//List("ab", "bd")
.max//"bd"

User provides a compound answer:
affix zip (input.drop (1))

12

And another

The synthesizer answers

input//"abdfibfcfdebdfdebdihgfkjfdebd"

.z1ip (input. drop(V) //List ((a,b), (b,d), (d,f), (£f,i),...)
t:32e<ZIZ/Llst b), (b,d))

-map (p => p._1. tostrlng + p. _2)//List("ab","bd")
maX//"bd"

User provides a compound answer:
affix zip (input.drop (1))
exclude take (2)

12

And another

The synthesizer answers

input//"abdfibfcfdebdfdebdihgfkjfdebd"
.zip (input.drop (1)) //List ((a,b), (b,d), (d,), (f,1), ...)

TowetZ]//List ((a,b), (b,d))

.map(p => p. l.toString + p. 2)//List("ab", "bd")
.max//"bd"

User provides a compound answer:

affix zip (input.drop (1))

exclude take (2)

And possibly even retainmap (p => p. l.toString + p. 2)

12

Until finally

input//"abdfibfcfdebdfdebdihgfkjfdebd"
.zip(input.drop(l))//List((a,b), (b,d), (d,f), (f,1),..
.map(p => p._1l.toString + p. 2)//List("ab","bd",..
.groupBy (x => X) //Map ("bf"->List ("bf"),"ib"->List (..
.map (kv => kv. 1 -> kv. 2.length) //Map ("bf"->1, ..
.maxBy (. 2)//("bd", 4)

._1//mpar

13

Evaluating GIM

Synthesizer:

 Scala functional programs

* Precomputed program space
* We record only user time

Three groups:
1. PBE: examples only (11)

2. (S}/(r)\)tax: only syntactic operations

3. GIM: both examples and
syntactic (11)

Three problem sets:

1. Most frequent word
2. No. lines with text
3. Histogram

Research questions:

1. Are answers consisting of
syntactic predicates easier
(faster) to §enerate than example

predicates

2. Isthe total time to solution
faster?

3. Do users prefer examples?

4. Are users’ answers correct?

RQ1+2: Iteration times and total times

180

160

[EEN
N
o

=
N
o

=
o
o

80

60

Median iteration time (sec)

40

20

histogram no. lines with text

®m PBE (control) = Syntax

GIM

most frequent word

e Syntax-only iterations are
fastest

e GIM iterations are almost
as fast

* There’s no statistically
significant difference in
total time (RQ2)

15

Users like examples (but not that much)

RQ3

histogram

2
. dl
0

most frequent word

3
2
1
, B l

no. lines with text

| B

s1asn

s1asn

s1asn

i

91%-100%

81%-90%
71%-80%
61%-70%
51%-60%
41%-50%
31%-40%
21%-30%
11%-20%
1%-10%
0%

91%-100%

81%-90%
71%-80%
61%-70%
51%-60%
41%-50%
31%-40%
21%-30%
11%-20%
1%-10%
0%

91%-100%

81%-90%
71%-80%
61%-70%
51%-60%
41%-50%
31%-40%
21%-30%
11%-20%
1%-10%
0%

Percentage of feedback is examples Percentage of feedback is examples

Percentage of feedback is examples

16

91%-100%
81%-90%
71%-80%
61%-70%
51%-60%
41%-50%
31%-40%
21%-30%
11%-20%
1%-10%
0%

histogram

2
; dl
0

s1asn

91%-100%
81%-90%
71%-80%
61%-70%
51%-60%
41%-50%
31%-40%
21%-30%
11%-20%
1%-10%
0%

most frequent word

3
2
1
il l

s1asn

91%-100%
81%-90%
71%-80%
61%-70%
51%-60%
41%-50%
31%-40%
21%-30%
11%-20%
1%-10%
0%

Users like examples (but not that much)

no. lines with text

-

RQ3

s1asn

Percentage of feedback is examples Percentage of feedback is examples

Percentage of feedback is examples

Users who used no examples < 30%

16

Users like examples (but not that much)

RQ3

histogram

2
. JI
0

s1asn

most frequent word

3
2
1
o B B

s1asn

no. lines with text

-

s1asn

i

91%-100%

81%-90%
71%-80%
61%-70%
51%-60%
41%-50%
31%-40%
21%-30%
11%-20%
1%-10%
0%

91%-100%

81%-90%
71%-80%
61%-70%
51%-60%
41%-50%
31%-40%
21%-30%
11%-20%
1%-10%
0%

91%-100%

81%-90%
71%-80%
61%-70%
51%-60%
41%-50%
31%-40%
21%-30%
11%-20%
1%-10%
0%

Percentage of feedback is examples Percentage of feedback is examples

Percentage of feedback is examples

Max examples used < 90%

Users who used no examples < 30%

16

RQ4: More examples -> more correctness

70%
60%
40%
30%
20%
10%

0%

histogram no. lines with text most frequent word

B PBE M Syntax B GIM

% correct answer
S
X

17

RQ4: More examples -> more correctness

100%
90%

80%

~
N
X

60%
50%

40%

% correct answer

30%
20%
10%

0%

histogram no. lines with text most frequent word

B PBE M Syntax B GIM

17

RQ4: More examples -> more correctness

100%
90%

80%
60%
50%
40%
30%
20%
10%

0%

histogram no. lines with text most frequent word

B PBE M Syntax B GIM

~
N
X

% correct answer

RQ4: More examples -> more correctness

100%
90%

80%

~
N
X

60%
50%

40%

% correct answer

30%
20%
10%

0%

histogram no. lines with text most frequent word

B PBE M Syntax B GIM

17

summary

* Programmers want power and options
* Syntax operations are easier than examples

* And better at getting rid of ambiguity and distracting
elements

* Users like examples, but like having other tools
* Let’s make synthesizers that cater to programmers!

