

TEST FRAMEWORKS FOR ELUSIVE BUG TESTING

W.E. Howden

CSE, University of California at San Diego, La Jolla, CA, 92093, USA

howden@cse.ucsd.edu

Cliff Rhyne

Intuit Software Corporation, 6220 Greenwich D., San Diego, CA, 92122 USA

cliff_rhyne@intuit.com

Keywords: Testing, elusive, bugs, frameworks, bounded exhaustive, JUnit

Abstract: Elusive bugs can be particularly expensive because they often survive testing and are released in a deployed

 system. They are characterized as involving a combination of properties. One approach to their detection is

 bounded exhaustive testing (BET). This paper describes how to implement BET using a variation of JUnit,

 called BETUnit. The idea of a BET pattern is also introduced. BET patterns describe how to solve certain

 problems in the application of BETUnit. Classes of patterns include BET test generation and BET oracle

 design. Examples are given of each.

1 INTRODUCTION

1.1 Background

A variety of defect detection testing guidelines have

been proposed. Some are based on empirical

evidence that certain kinds of test cases, such as so-

called "corner cases" or "boundary cases", are more

prone to be associated with defects. Others require

that all parts of the code have been tested, as in

branch or statement testing.

 We are interested in a certain kinds of defects that

are not amenable to discovery using standard testing

methods, which we have called "elusive bugs". This

kind of bug often has the following characteristics: i)

it occurs late in the testing cycle or after release, ii) it

occurs when a certain combination of conditions

takes place, and iii) it is not reliably found by

standard testing methods.

 Approaches to the discovery of these kinds of

defects include the use of area-specific defect lists

[e.g. Jha, Kaner, 2003] and test selection patterns

[e.g. Howden, W.E., 2005]. Lists and patterns do not

work well for the following reasons: they quickly

become too long, they are difficult to organize into

useful classes, and they are based on hindsight - the

next defect may require yet another addition to the

list.

 This paper is concerned with the use of "Bounded

Exhaustive Testing" (BET) for the detection of

elusive bugs. More specifically, it is concerned the

development of a testing tool similar to JUnit that

facilitates BET.

 Our discussion of the problem, and the

BETUnit approach, will involve the following

example.

1.1.1 Account Break Example
A production accounting program contained code for

processing a sorted file of transactions. Each record

had an account number and was either financial or

non-financial. The program was supposed to

construct totals for the financial records for each

account, which would appear as a group in the sorted

file. It processed the records one at a time, and was

supposed to output the current account's total when it

observed an "account break". A break occurs when

the account number in the transaction record

changes.

 The bug in the program occurred because it failed

to check for account breaks when the last record of a

group was non-financial. Under certain

circumstances, this would result in the incorrect

addition of one account's transactions to the total for

the next account.

 One of the functional properties that a tester

might focus on is correct processing of account

breaks. In addition, he would probably test for

processing of both financial and non-financial

records. But it is the combination of these two

factors, along with data that would cause the defect

to result in incorrect output, which is relevant.

1.2 Bounded Exhaustive Testing

In general, it is not possible to test a program over all

possible inputs. In Bounded Exhaustive Testing, a

bounded subcase of the application is formulated,

and all possible behaviors of the subcase are tested.

It is argued that many of the faulty behaviors that can

occur for the general case will also occur for the

bounded subcase. Our experience indicates that, in

particular, the combinations associated with elusive

bugs will occur in both the full-sized application and

the bounded subproblem

 Similar ideas have been used in the past. For

example, when a program has loops for which the

numbers of iterations that are carried out depends on

input data, it is common to use bounded tests that

will cause 0,1 and possibly one or two larger

numbers of iterations. In [Howden, W.E., 2005], an

approach to bounded exhaustive testing is described

which uses real input to bound the problem and

symbolic input to summarize the complete behavior

of a program within the bounded domain. Model

checking is also a kind of exhaustive approach, in

which all states in a bounded version of the problem

are examined. However, in model checking the

focus is on analysis rather than testing.

 Recent BET research has been carried out in the

context of class-based unit testing and involves

straight testing rather than testing combined with

symbolic evaluation or analysis. In addition, it has

resulted in new research on methods for defining and

generating bounded input domains. One of the first

of these, the Iowa JML/JUnit project, described in

[Cheon, Y., Leavens, G., 2002], has a method for

defining and generating BET tests. BET was also the

focus of the Korat project research, described in

[Boyapati, C., Khurshid, S., Marinov, D., 2002.].

1.3 Overview Of Paper

This paper is organized as follows. Section 2 is a

review of JUnit. Section 3 describes the BETUnit

approach and Section 4 describes an example

scenario for BetUnit usage. Section 5 describes other

work, and in particular, the Iowa JML/JUnit and

Korat projects. Section 6 contains conclusions and

future work.

2 JUNIT – REVIEW

JUnit consists of a collection of classes and a test

automation strategy. The TestRunner class runs

tests. It is given a file containing a class definition

for a subclass of the TestCase class which is

expected to contain a suite() method. suite() will

return an object of type TestSuite, which contains a

collection of test cases. Each of these test cases is an

instance of a subclass of TestCase containing a test

method. TestRunner executes each test object in the

suite. It does this by calling its run() method.. It

passes a TestResult instance as an argument to run(),

which is used to record test results. run() runs the

setUp(), runTest() and tearDown () methods in the

TestCase subclass instance. runTest() runs the test

method in that instance. There are several

approaches to implementing runTest(). One is to

have it run the method whose name is stored in a

special class variable in the instance.

 The user of JUnit has two options: default and

custom. In the default use, the default definition for

the suite() method is used when TestRunner is given

an instance of a subclass S of TestCase. S must also

contain all of the test methods, whose names must

have the prefix "test". The default suite() method

will use reflection to find the test methods. It will

then build instances of S for each of the test methods.

For each test x, the name of the test method can be

stored in the special class variable that is used by the

runTest() method to identify the test method to run.

These TestCase instances will be added to the

TestSuite instance that suite() it creates, which is

what it returns to TestRunner.

 In the custom approach, the tester creates a new

subclass of TestCase with a custom suite() method

definition. Typically, suite() will create an instance

TestSuite, and then add instances of subclasses of

TestCase. Each of these subclasses will have a

defined test method that will be run when the

TestRunner executes the suite. This method can be

identified by the class variable x used to store the

name of the method to be run. It can be set by using

the TestCase constructor which takes a string

parameter that will be stored in x. It is possible to

create a composite of TestSuite and TestCase

subclass instances. The composite forms a tree, with

the TestCase instances at the leaves. The run()

method for a TestSuite instance will call the run()

methods of its TestSuite children. At the leaves, the

run() methods for the TestCase instances will be

called.

 JUnit uses an assertion approach to oracles. A

special exception class called Assertion is defined. It

is subclassed from Error rather than Exception

because it is not supposed to be caught by the

programmer's code. Programmers are required to

insert assertions in their code, in the form of calls on

the Assertion Class methods that generate the

exceptions.

 JUnit uses the Collecting Parameter pattern to

return results. A collecting parameter is one that is

passed around from one method to another in order

to collect data. As mentioned above, TestResult

objects are created and then passed to run() methods.

They are used to record the results of tests. When a

run() method catches an assertion violation, it

updates the TestResult object passed to it. Different

TestResult objects can be defined but there is a

simple default version that records the kind of

exception and where it was created.

 Assertions are not always adequate or practical

for use as test oracles. In the cases where it is not

feasible to construct an assertion-based oracle we can

settle for robustness testing, in which the only results

that are reported are system failures. This can be

done since the run() method in JUnit catches error

exceptions and reports them. In other cases the best

solution to the oracle problem is to have an

externally defined second version of the program

whose results can be compared with the application

results. WE call this the "2-version oracle pattern".

 Many varieties of JUnit have been produced.

There's a JUnit port to C++ called CppUnit. NUnit is

for the .net framework. Also, there is a rich library

of tools available for JUnit. Development

environments like Eclipse come with a GUI for

running and examining the results of JUnit tests.

JUnit tests can be run from Ant build scripts.

3 BETUnit

3.1 Possible Approaches

The goal of our BET work was to have set of classes

like those in JUnit, which would allow the user to

have full flexibility in creating tests, while at the

same time having the convenience of a test runner

and a set of test case classes from which he could

inherit capabilities for creating his test cases. A

central focus was the automated generation of

combinations that will reveal elusive bugs.

 One approach would be to have users subclass

TestCase and provide a custom suite() method that

would construct a complete suite of BET tests.

Unfortunately, BET can involve a very large number

of tests, so the memory requirements for this suite

could be enormous, more than can be handled with a

standard JUnit implementation.

 Another approach is to have the user break down

a BET set of test cases into batches. However, this is

a clumsy high maintenance solution.

 Any successful approach will have to allow for

just-in-time generation of BET tests, where each test

is run before the next is generated. One approach is

to define a new subclass of TestCase that does this

called BETCase, which is described here.

 Another goal for the BETUnit project was to

develop generic combinational generators that could

be used to automatically test different input

combinations, and to facilitate the use of different

kinds of combinators, such as all-pairs, in addition to

standard BET exhaustive combinations.

 We used the concept of a test domain, which is a

set of tests or test components. These are defined

using TestDomain classes. Users of the domains

generate instances of specialized subclasses of

TestDomain, possibly supplying parameters to the

constructor. TestDomain subclass instances are then

used to automatically generate tests from the

associated test domain. For example, intDomain

generates elements from a specified range of

integers. The constructor has min and max integer

parameters. More complex TestDomains may have

constructors that take other TestDomain instances as

parameters. TestDomain classes all have a next()

and a more() method. The latter returns true if there

are more items to be generated. TestDomains also

have other methods, such as reset().

3.2 Sample Approach

The approach described here involves the use of a

subclass BETCase of TestCase. Testers will

construct a subclass of BETCase, rather than a

subclass of TestCase.

 When a tester subclasses BETCase, he will

supply a definition for initDomain() and a definition

for a test method m. m is the method that creates

instances of the CUT and then tests the CUT by

executing its methods. initDomain() constructs a

data generator object of type Domain and assigns it

to a BETCase class variable called "testDomain".

initDomain() will be called by the constructor for

BETCase. When you call the first()/next()

methodsof the testDomain object, it automatically

generates the next test object to use in an execution

of the test method m defined in the BETCase

subclass.

 initDomain() may be written to use one of the

standard BET generators, or it could contain its own

class definitions to define or modify a standard

generator.

 The run() method in BETCase is similar to the

run() method in TestCase, but with some added

twists. It calls the setUp(), runTest(), and

tearDown() methods. It calls these methods

repeatedly until there are no more test data objects

that will be returned from the generator set by

initDomain(). runTest() will run the defined test

method m, which in the variation of JUnit described

above, is identified from the special class variable in

the TestCase instance. Unlike classic JUnit, the test

method m is expected to have input. runTest() calls

the test method m with the data returned from

executing x.next(), where x is the domain generator

object set by initDomain(). next() is expected to

return a data object of the type expected by m. For

each test cycle, run() uses x.more() to see if there are

more tests in the sequence to be generated.

3.3 Variations

There are several possible variations on the above.

For example, we could write test methods m that get

their input from a special class variable rather than a

parameter.

 Also, we could allow the use of more than one

domain generator in a BETUnit subclass. This

would involve the tester adding a set of testDomain

variables, giving them values in initDomain(). It

would be necessary to incorporate some kind of

correspondence mechanism from the testDomain

variables to either the class variables in BETCase or

the test method input parameters, whichever

approach is used for input to a test. In the case of

parameters, typing could be used to perform the

mapping correspondence.

3.4 Default suite() Option With Multiple

Test Method BETCase Instances

In the non-default mode for JUnit, the user defines a

suite() method in the TestCase subclass supplied to

the TestRunner. A similar approach is used in

BETUnit. The user creates a subclass of TestCase

(i.e. of BETCase) with a suite method that returns a

suite object. The test case vector in the suite object

will contain one or more instances of BETCase

subclasses, each having the required definitions for

initDomain(), and the new run() method.

 As mentioned earlier JUnit has a default approach

in which the user can define a TestCase subclass with

a set of test methods, all of which begin with "test".

The default suite() method uses a special constructor

for a TestSuite instance which takes the TestCase as

a parameter. The suite constructor then generates

individual instances of the TestCase subclass, one for

each test method, which it puts in its suite vector. A

class parameter is set to identify the test method of

interest for that subclass instance.

 The BETUnit analog to the JUnit default version

is the following. The user supplies a BETCase

subclass with the default suite() method. The

subclass has the new versions of run(), the domain

generator variable, and one or more test methods

whose name has the prefix "test". The default suite

method uses a TestSuite constructor with the name of

the BETCase subclass as a parameter. This

constructor use reflection to find the test methods,

and creates an instance of the BETCase subclass for

each. Note that in this approach, it is assumed that

all the test methods have the same input type, and are

tested over the same set of BET tests, generated by

the test generator installed by initDomain(). This

limitation could be removed, at the cost of more

complexity if it is seen to be necessary.

3.5 BET Runner

The same test runner used in JUnit can also be used

in BETUnit. The user prepares a BETCase subclass,

with the custom or the default suite() method. suite()

generates a TestSuite instance, whose run() method

is called by the test runner.

3.6 BET Oracle And Data Generation

Test Patterns

Test patterns describe strategies for accomplishing

different kinds of testing goals or tasks. Earlier we

mentioned the 2-version oracle pattern, in which a

second version of a program is used to serve as an

oracle for a primary version. This pattern is

attractive when an oracle version can be produced

more easily than the application code, and using a

different design approach to avoid coincidental

common defects. We identified a useful 2-version

pattern for BET testing of the Account-Break

example. The central control structure of the

application under test is a loop that reads in records,

and has to perform account break activities when it

detects that the account number has changed. The

program has an asynchronous structure in the sense

that it is not possible to know in advance when the

account break will occur. When test data is being

generated by BET, this information is known in

advance and could be supplied as input along with

the record files, so that a "synchronous" oracle

version could be built. Such a version would know

exactly when the account breaks occur, so that it

could use "for" loops with fixed bounds and

increments rather than "do-while" loops. We call

this the Synchronized Sequence Oracle pattern, and

expect it to be widely applicable in BET oriented

testing. We have also identified other BETUnit-

oriented oracles that take advantage of the fact that i)

the test cases will be "small" and ii) certain kinds of

meta-data can be generated for each input case,

which can be used to construct a different kind of

design for the application.

 Other BET-oriented patterns can be identified that

are associated with test data generation. Recall that

the goal with BETUnit is to find elusive bugs, and

that these are associated with combinations. The

Sequence Permutation Test Generation pattern is a

variation on all possible combinations test

generation. In this pattern, the tester prepares a seed

set of data items such as instances of records. The

test data generator generates all permutations of this

set. It differs from all-combinations in that there is

no exhaustive generation involving the possible data

that is stored in the records, only the seed set is used

that are permuted. Other BET oriented test generator

patterns include the Stratified Permutation pattern

used in the following example.

4 EXAMPLES
In the following two examples we will describe the

use of two test generators that were applied to the

account break example described earlier in the paper.

The Synchronized Sequence Oracle pattern was used

to construct an oracle. In the first example, the

Sequence Permutation pattern is used was used for

automated test generation, and in the second the

Stratified Permutation pattern was used. For both

generators, the bug was discovered. For each

example we give some statistics associated with the

generation and testing process. Both of the test

generator classes that were constructed were just-in-

time domain generators, generating the next test

input as it is needed.

4.1 Permutation Generator

In this example, we assume the availability of the

PermDomain() class. Instances of PermDomain will

return all possible permutations of a set of objects.

The set of objects is passed to the constructor in a

parameter. PermDomain has a "just in time"

generator for giving us the next permutation. Results

are returned in a vector.

 For this example, PermDomain is wrapped in

AccountFileDomain. The next() method for

AccountFileDomain returns an object with two parts,

a metadata part and an instance of AccountFile.

AccountFile instances are vectors of record objects.

Record is also a class, whose instances are the kinds

of records seen in the account break example. Since

there are two kinds or records, we subclass to

produce FinancialRecord and NonFinancialRecord.

 AccountFileDomain instances are created with a

seed vector of records that is used to create a

PermDomain instance. The next() method of

AccountFileDomain calls the next() method of

PermDomain. Since the input files to the application

are expected to be sorted, the next() method in

AccountFileDomain also sorts them .

 We used the Synchronized Sequence Oracle

pattern for this example. The metadata part of an

object returned by the next() method of

AccountFileDomain is a vector with a number of

items equal to the number of accounts in the

associated AccountFile object. Each entry gives the

number of records for an account. This information

is determined by AccountFileDomain. It can

determine this by first counting the number of

different accounts, and then counting the number for

each account. It is important that it compute this

from the seed, rather than by reading through a

candidate sorted input, detecting when the account

breaks occur. If it did this, it would be duplicating

the asynchronous nature of the application, and could

have the same defects. The test methods in our

BETCase subcase were written so that when they are

handed an input test object, they know that the first

part is the metadata and the second part is the input

AccountFile. The whole object is given to a

synchronous sequence oracle implementation of the

account break application, which computes a result

for the given file. The comparison is wrapped in an

assertion.

 The example was run with 4, 8 and 12-record

seeds. The first had 1 account with 4 records, the

second 2 accounts with 4 records, and the third 3

accounts with 4 records. The figures in Table 1

Table 1: Simple permutation generation

Input Size Test Case Count Duration (sec)

4 (1/4) 24 0.047

8 (2/4) 40,320 6.2

Input Size Test Case Count Duration (sec)

12 (3/4) 479,001,600 11,760 (3 h, 16 m)

indicate the numbers of tests run and the amount of

time required.

4.2 Stratified Permutation Generator
The previous example is not as efficient as it could

be since each input needs to be sorted before it can

be passed to the function being tested. Many tests

will be identical. Rather than generate and then

rerun duplicates we devised an alternative approach

in which we separated each account into its own

permutation domain so that redundant tests are no

longer generated. In the new approach we used a

new general purpose domain generator called

StratifiedPermDomain. There are several possible

approaches to a StratifiedPermDomain. In one

approach the domain generator takes a set of k vector

objects. It generates all combinations in which there

is a sequence of k objects, with the i'th object taken

from the i'th set. Instances of StratifiedPermDomain

are constructed with a vector of vectors. We used a

variation on this idea.

 For this application StratifiedPermDomain is

wrapped in a StratifiedFileDomain generator. The

constructor for this generator creates in instance of

StratifiedPermDomain which it uses to generate

AccountFile objects. As in the other example it also

returns meta-data that is used by the synchronized

sequence oracle for the application testing.

 In our experiment with a stratified generator, we

used seeds with 8, 12 and 16 records. The first seed

had 2 accounts with 4 records each, the second had 3

accounts with 4 records, and the third had 4 accounts

with 4 records each. Table 2 summarizes the

numbers of tests run and the duration of the tests.

The improvement in test case count and test duration

in the new approach is staggering. Only 0.0029% of

the test cases are generated from an input size of 12,

and the test finishes in a little over a minute instead

of over 3 hours. The domain creates (x1! * x2! * ...

xn!) inputs, where n is the number of accounts and xi

is the number of records for account i.

Table 2: Stratified permutation generation

Input Size Test Case Count Duration (seconds)

8 (2/4) 576 .407

12 (3/4) 13,824 3.4

Input Size Test Case Count Duration (seconds)

16 (4/4) 331,776 87

5 OTHER BET RESEARCH

5.1 Iowa JML Approach

A research team at Iowa State University developed

a framework for Java class testing that incorporated a

BET component. There were 5 key features in their

approach: use of JML for assertions, pre and

postconditions, postconditions as test oracles,

automated generation of JUnit test classes from Java

classes, exhaustive testing of all combinations of

input values, and user determination of finite sets of

values for seeding the tests.

 The Iowa system takes a Java class and generates

a TestCase subclass that contains a set of class

variables that are used to organize the tests. Each of

these is an array variable. The type of the first one is

the type of the class under test, and is used to hold

instances of that class, each constructed with a

different set of actual parameters for the class

constructor. The others correspond to the types of

the parameters of the methods in the CUT. Each will

be assigned a finite set of values that represents that

type in the tests. A test method is generated for each

of the CUT methods. The test method t for a CUT

method m contains a set of local array variables, one

for each parameter for m. These are initialized to the

values from the class variables for parameter types.

Each test method contains a set of nested loops that

iterate over the test method arrays, constructing all

possible combinations of values with one element

from each array. This is then used to run the method

in the class under test.

 The tester subclasses the above test, constructing

a custom setUp() method that assigns values to the

class variable test data arrays. Recall that these hold

two kinds of things. One is a set of instances of the

CUT, created with different values for the

constructor parameters. The others are arrays of

values for the types of the CUT method parameters.

These values are in turn assigned to the local variable

arrays in a test method when it is run.

 This system carries out the type of BET testing

we are interested in, but is restricted in various ways.

Since the combination mechanism is automatically

generated there is no opportunity for the tester to try

different kinds of combinatory mechanisms such as

all-pairs or the permutation BET generators

described above in the Account Break examples.

Another limitation is that the same set of instances of

a type must be used for all method parameters with

that type. There is no idea that different finite sets of

values might be appropriate for different method

parameters of the same type. There is also a

common set of CUT object instances that must be

used for the different test methods for the different

CUT methods. Finally, there is the dependence on

JML for assertions, which is not widely known or

used. Related to this is the use of a postcondition

oracle written in JML, which may not be appropriate

for some programs that do not have a natural

declarative specification.

5.2 Korat

Korat, like the Iowa system, focuses on automated

test data generation and execution, use of

preconditions to filter out invalid tests, and use of

postconditions/assertions as program oracles.

 The central driving entity in Korat is

"finitization". This involves the creation of a finite

domain of values that can be assigned to fields (class

variables). For all primitive types, a finite set of

values is chosen for the domain. For each field type

class for a class, a finite set of instances of that class

is created. The instances are indexed to identify

them. This is called a class domain. Null is included

in the domain for field variables whose value is a

class instance. All of the primitive type finite

domains, together with the class domains, form a

total finite domain of field values D. The primitive

domain contents and the number of instances of a

class in a class domain are specified in a finitization

object. There is a correspondence between each field

in the objects in a domain D and the subsets of D that

are candidate values for that field. A candidate

vector is an assignment of properly typed elements of

D to fields in elements of D.

 If a class method has no parameters, then a set of

values for its class's variables, taken from the

finitization specified domain, forms the input for

testing that method. If the method has parameters,

then a class can be constructed whose fields

correspond to those parameters, which is then used in

the construction of the finitization domain for the

parameters. This will result in the definition of a set

of inputs for testing the method.

 The candidate vector generation process

incorporates two main optimizing strategies. The

first uses preconditions to filter out invalid

combinations. There could be many of these because

any instance of a class C in a domain could be

assigned as the value of any field of an object in the

domain that has that type.

 Precondition filter effectiveness is expanded as

follows. Suppose that a precondition predicate

evaluates to False for a candidate vector. This means

the candidate is not a suitable test. Suppose that the

precondition only involves the values of a subset of

the candidate vector. This means that the

precondition is independent of the other values in the

vector, so any candidate vector which differs from

the tested one only in the non-used variables can also

be rejected as invalid

 The second optimization strategy recognizes that

when a class domain is constructed, the instances are

not really distinguishable, so that test inputs that

differ only in domain class instance indices will

cause the same program behavior. Consequently, the

test generator is designed to only generate a single

instance of a possible class of such "isomorphic"

values.

 The test automation procedure in Korat is built

into the system. It uses a fixed strategy for all

applications, with special features to optimize the

numbers of tests generated.

 BETUnit also automatically generates tests but is

more flexible. For example, in BETUnit we would

not need an isomorphism suppresser for a program

that manipulates binary trees because this could be

built into the binary tree generator that was used by

the test data generator for the application.

 Korat differs from BETUnit in that all tests in

Korat are generated before test execution begins.

BETunit specifically depends on just-in-time

generation to avoid huge memory requirements.

Korat, like BETUnit, has test domains from which

values are chosen. Unlike Korat, BETUnit

incorporates the generation of the combinations into

the domain objects from which the elements of the

combination are drawn. This follows the

expert/object animation pattern in object oriented

programming. In the case of Korat, the combining

mechanism is built into the system, making it more

difficult to use alternative combining strategies such

as all-pairs as opposed to all-combos.

 The emphasis of BET is different from Korat. In

JML/Junit and Korat the emphasis is on fully

automatic testing. The emphasis in BETUnit is

finding elusive bugs. It assists the user by providing

automated test data generation classes that can be

used to focus BET on possible elusive bug hiding

places. Ongoing work focuses on the automated

elusive bug detection aspect of BETUnit.

6 SUMMARY AND FUTURE WORK

Testing for elusive bugs involves running tests that

explore different kinds of input combinations.

Testing using rules that are based on specific

application-oriented kinds of combinations has not

been generally successful. There are often too many

combinations and, in any case, we do not know what

combinations to look at until after the defect has been

discovered and analyzed. One way to solve this

problem is to use some form of bounded exhaustive

testing. However, we do not want to do this just for

the sake of automating testing, we want to maintain

some control over the combinatory mechanisms.

BetUnit accomplishes this, both in the way it is a

subspecialty of JUnit, and its use of separately

defined combinatory mechanisms.

 In our work we developed the concept of a BET

Pattern. This is a test pattern that offers suggestions

on certain aspects of BET Testing. One area of BET

Patterns is test data generation where we defined two

combinatory patterns: Permutation and Stratified

Permutation. Both were applied to an Account Break

example. We also found that we needed to consider

BET-oriented oracle patterns. The effectiveness of

postconditions for oracles, where they correspond to

logical expressions, is too limited. As is well known

in testing, many programs have an algorithmic rather

than a declarative specification. For such

applications we need a secondary version of the

application program to test the output of the prime

application program. The problem with this

approach is that the two versions may contain the

same defects. One way of avoiding this is to use

different design strategies. We have identified

several kinds of oracle design patterns, including the

Sequence Synchronizing Oracle pattern used in the

Account Break example, that produce "orthogonal"

application program designs. In this example, the

input generator returns certain metadata along with

the suggested input. This metadata makes it possible

to write a simpler oracle version of the program.

More specifically, instead of waiting for some

condition to happen during a computation, it knows

in advance from the metadata exactly when it will

happen. At the implementation level, this allows

simple "do" loops instead of complex "while" loops.

 In the version of BET described earlier, each

BETCase has a single domain generator. This means

that all of the test methods defined in a single

BETCase must use the same parameters. In a way

this is more limited than the Iowa approach. In that

approach, the test values for the sets of test method

parameters must all be defined by a common set of

type finitizations, but each test method may have a

different subset, i.e. the test methods do not have to

have the same parameters. This limitation could be

removed in BetUnit by allowing the definition of

multiple Domain variables in a BETCase, which was

included in our prototype.

 In the Account Break example, BETUnit was

successfully applied using the Permutation Generator

BET pattern and the Synchronized Sequence Oracle

pattern. So far, only a small number of domain

generators have been implemented. A solid library

of complex and primitive domains will be needed.

We are now doing this, and applying our test

approach to a wide variety of problems. The version

of BETUnit described in this paper is based on JUnit

3.8. This provided a very flexible tool. We are now

exploring the use of JUnit 4 with BETUnit to see if

its advantages are maintained in this context. In

addition, we are examining alternative BET

strategies using frameworks other than JUnit.

ACKNOWLEDGEMENTS

 The authors would like to thank Nathan Farrington

for his help in the development of BETUnit.

REFERENCES

Boyapati, C., Khurshid, S., Marinov, D., 2002. Korat:
 Automated Testing Based on Java Predicates, In

 ISSTA, IEEE Press.

Cheon, Y., Leavens, G., 2002. A Simple and Practical

 Approach to Unit Testing: The JML and the JUnit

 Way, In ECOOP 2002 -- Object-Oriented

 Programming, 16th European Conference, Malaga,

 Spain, June 2002, Proceedings. Volume 2374 of
 Lecture Notes in Computer Science. Springer-Verlag.

Howden, W.E., 2005. Software Test Selection Patterns

 and Elusive Bugs, In Proceedings COMPSAC 2005,

 IEEE Press.

Howden, W.E., 1987. pp. 112, 114. Functional Program

 Testing and Analysis, McGraw Hill.

Jha. A., Kaner, C., 2003. Bugs in the brave new unwired

 world. In Pacific Northwest Software Quality
 Conference.

.

