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Abstract:   Elusive bugs can be particularly expensive because they often survive testing and are released in a deployed 

  system.  They are characterized as involving a combination of properties.  One approach to their detection is 

  bounded exhaustive testing (BET).  This paper describes how to implement BET using a variation of JUnit, 

  called BETUnit.  The idea of a BET pattern is also introduced.  BET patterns describe how to solve certain 

  problems in the application of BETUnit.  Classes of patterns include BET test generation and BET oracle 

  design.  Examples are given of each. 

 
1  INTRODUCTION 

 

1.1 Background 
 
A variety of defect detection testing guidelines have 

been proposed.  Some are based on empirical 

evidence that certain kinds of test cases, such as so-

called "corner cases" or "boundary cases", are more 

prone to be associated with defects.  Others require 

that all parts of the code have been tested, as in 

branch or statement testing. 

 We are interested in a certain kinds of defects that 

are not amenable to discovery using standard testing 

methods, which we have called "elusive bugs".  This 

kind of bug often has the following characteristics: i) 

it occurs late in the testing cycle or after release, ii) it 

occurs when a certain combination of conditions 

takes place, and iii) it is not reliably found by 

standard testing methods. 

 Approaches to the discovery of these kinds of 

defects include the use of area-specific defect lists 

[e.g.  Jha, Kaner, 2003] and test selection patterns 

[e.g. Howden, W.E., 2005]. Lists and patterns do not 

work well for the following reasons: they quickly 

become too long, they are difficult to organize into 

useful classes, and they are based on hindsight - the 

next defect may require yet another addition to the 

list. 

 This paper is concerned with the use of "Bounded 

Exhaustive Testing" (BET) for the detection of 

elusive bugs. More specifically, it is concerned the 

development of a testing tool similar to JUnit that 

facilitates BET. 

 Our discussion of the problem, and the 

BETUnit approach, will involve the following 

example. 

1.1.1 Account Break Example 
A production accounting program contained code for 

processing a sorted file of transactions.  Each record 

had an account number and was either financial or 

non-financial.  The program was supposed to 

construct totals for the financial records for each 

account, which would appear as a group in the sorted 

file.  It processed the records one at a time, and was 

supposed to output the current account's total when it 

observed an "account break".   A break occurs when 

the account number in the transaction record 

changes. 

 The bug in the program occurred because it failed 

to check for account breaks when the last record of a 

group was non-financial.  Under certain 

circumstances, this would result in the incorrect 

addition of one account's transactions to the total for 

the next account. 

 One of the functional properties that a tester 



   

might focus on is correct processing of account 

breaks.   In addition, he would probably test for 

processing of both financial and non-financial 

records.  But it is the combination of these two 

factors, along with data that would cause the defect 

to result in incorrect output, which is relevant. 

1.2 Bounded Exhaustive Testing 
 
In general, it is not possible to test a program over all 

possible inputs.  In Bounded Exhaustive Testing, a 

bounded subcase of the application is formulated, 

and all possible behaviors of the subcase are tested.  

It is argued that many of the faulty behaviors that can 

occur for the general case will also occur for the 

bounded subcase.  Our experience indicates that, in 

particular, the combinations associated with elusive 

bugs will occur in both the full-sized application and 

the bounded subproblem 

 Similar ideas have been used in the past.  For 

example, when a program has loops for which the 

numbers of iterations that are carried out depends on 

input data, it is common to use bounded tests that 

will cause 0,1 and possibly one or two larger 

numbers of iterations.  In [Howden, W.E., 2005], an 

approach to bounded exhaustive testing is described 

which uses real input to bound the problem and 

symbolic input to summarize the complete behavior 

of a program within the bounded domain.  Model 

checking is also a kind of exhaustive approach, in 

which all states in a bounded version of the problem 

are examined.  However, in model checking the 

focus is on analysis rather than testing. 

 Recent BET research has been carried out in the 

context of class-based unit testing and involves 

straight testing rather than testing combined with 

symbolic evaluation or analysis.  In addition, it has 

resulted in new research on methods for defining and 

generating bounded input domains.  One of the first 

of these, the Iowa JML/JUnit project, described in 

[Cheon, Y., Leavens, G., 2002], has a method for 

defining and generating BET tests.  BET was also the 

focus of the Korat project research, described in 

[Boyapati, C., Khurshid, S., Marinov, D., 2002.].    

 

1.3 Overview Of  Paper 
 
This paper is organized as follows.  Section 2 is a 

review of JUnit.  Section 3 describes the BETUnit 

approach and Section 4 describes an example 

scenario for BetUnit usage.  Section 5 describes other 

work, and in particular, the Iowa JML/JUnit and 

Korat projects.  Section 6 contains conclusions and 

future work. 

 
2 JUNIT – REVIEW 

 
JUnit consists of a collection of classes and a test 

automation strategy.  The TestRunner class runs 

tests.  It is given a file containing a class definition 

for a subclass of the TestCase class which is 

expected to contain a suite() method.  suite() will 

return an object of type TestSuite, which contains a 

collection of test cases.  Each of these test cases is an 

instance of a subclass of TestCase containing a test 

method.  TestRunner executes each test object in the 

suite.  It does this by calling its run() method..  It 

passes a TestResult instance as an argument to run(), 

which is used to record test results. run() runs the 

setUp(), runTest() and tearDown () methods in the 

TestCase subclass instance.  runTest()  runs the test 

method in that instance.  There are several 

approaches to implementing runTest().  One is to 

have it run the method whose name is stored in a 

special class variable in the instance.  

 The user of JUnit has two options: default and 

custom.  In the default use, the default definition for 

the suite() method is used when TestRunner is given 

an instance of a subclass S of TestCase.  S must also 

contain all of the test methods, whose names must 

have the prefix "test".  The default suite() method 

will use reflection to find the test methods.  It will 

then build instances of S for each of the test methods.  

For each test x, the name of the test method can be 

stored in the special class variable that is used by the 

runTest() method to identify the test method to run. 

These TestCase instances will be added to the 

TestSuite instance that suite() it creates, which is 

what it returns to TestRunner. 

  In the custom approach, the tester creates a new 

subclass of TestCase with a custom suite() method 

definition. Typically, suite() will create an instance 

TestSuite, and then add instances of subclasses of 

TestCase.  Each of these subclasses will have a 

defined test method that will be run when the 

TestRunner executes the suite.  This method can be 

identified by the class variable x used to store the 

name of the method to be run.  It can be set by using 

the TestCase constructor which takes a string 

parameter that will be stored in x. It is possible to 

create a composite of TestSuite and TestCase 

subclass instances.  The composite forms a tree, with 

the TestCase instances at the leaves.  The run() 

method for a TestSuite instance will call the run() 

methods of its TestSuite children.  At the leaves, the 

run() methods for the TestCase instances will be 



   

called. 

 JUnit uses an assertion approach to oracles.  A 

special exception class called Assertion is defined.  It 

is subclassed from Error rather than Exception 

because it is not supposed to be caught by the 

programmer's code.  Programmers are required to 

insert assertions in their code, in the form of calls on 

the Assertion Class methods that generate the 

exceptions. 

 JUnit uses the Collecting Parameter pattern to 

return results.  A collecting parameter is one that is 

passed around from one method to another in order 

to collect data.  As mentioned above, TestResult 

objects are created and then passed to run() methods.  

They are used to record the results of tests.  When a 

run() method catches an assertion violation, it 

updates the TestResult object passed to it.  Different 

TestResult objects can be defined but there is a 

simple default version that records the kind of 

exception and where it was created. 

 Assertions are not always adequate or practical 

for use as test oracles.  In the cases where it is not 

feasible to construct an assertion-based oracle we can 

settle for robustness testing, in which the only results 

that are reported are system failures.  This can be 

done since the run() method in JUnit catches error 

exceptions and reports them.  In other cases the best 

solution to the oracle problem is to have an 

externally defined second version of the program 

whose results can be compared with the application 

results.  WE call this the "2-version oracle pattern".  

 Many varieties of JUnit have been produced.  

There's a JUnit port to C++ called CppUnit.  NUnit is 

for the .net framework.  Also, there is a rich library 

of tools available for JUnit.  Development 

environments like Eclipse come with a GUI for 

running and examining the results of JUnit tests.  

JUnit tests can be run from Ant build scripts. 

 
3 BETUnit 

3.1 Possible Approaches 
 
The goal of our BET work was to have set of classes 

like those in JUnit, which would allow the user to 

have full flexibility in creating tests, while at the 

same time having the convenience of a test runner 

and a set of test case classes from which he could 

inherit capabilities for creating his test cases.  A 

central focus was the automated generation of 

combinations that will reveal elusive bugs.  

 One approach would be to have users subclass 

TestCase and provide a custom suite() method that 

would construct a complete suite of BET tests.  

Unfortunately, BET can involve a very large number 

of tests, so the memory requirements for this suite 

could be enormous, more than can be handled with a 

standard JUnit implementation. 

 Another approach is to have the user break down 

a BET set of test cases into batches.  However, this is 

a clumsy high maintenance solution. 

 Any successful approach will have to allow for 

just-in-time generation of BET tests, where each test 

is run before the next is generated.  One approach is 

to define a new subclass of TestCase that does this 

called BETCase, which is described here. 

 Another goal for the BETUnit project was to 

develop generic combinational generators that could 

be used to automatically test different input 

combinations, and to facilitate the use of different 

kinds of combinators, such as all-pairs, in addition to 

standard BET exhaustive combinations. 

 We used the concept of a test domain, which is a 

set of tests or test components.  These are defined 

using TestDomain classes.  Users of the domains 

generate instances of specialized subclasses of 

TestDomain, possibly supplying parameters to the 

constructor.  TestDomain subclass instances are then 

used to automatically generate tests from the 

associated test domain. For example, intDomain 

generates elements from a specified range of 

integers.  The constructor has min and max integer 

parameters.  More complex TestDomains may have 

constructors that take other TestDomain instances as 

parameters.  TestDomain classes all have a next() 

and a more() method.  The latter returns true if there 

are more items to be generated. TestDomains also 

have other methods, such as reset(). 

 

3.2 Sample Approach 
 
The approach described here involves the use of a 

subclass BETCase of TestCase.  Testers will 

construct a subclass of BETCase, rather than a 

subclass of TestCase. 

 When a tester subclasses BETCase, he will 

supply a definition for initDomain() and a definition 

for a test method m.  m is the method that creates 

instances of the CUT and then tests the CUT by 

executing its methods.  initDomain() constructs a 

data generator object of type Domain and assigns it 

to a BETCase class variable called "testDomain".  

initDomain() will be called by the constructor for 

BETCase.  When you call the first()/next() 

methodsof the testDomain object, it automatically 

generates the next test object to use in an execution 

of the test method m defined in the BETCase 



   

subclass. 

 initDomain() may be written to use one of the 

standard BET generators, or it could contain its own 

class definitions to define or modify a standard 

generator. 

 The run() method in BETCase is similar to the 

run() method in TestCase, but with some added 

twists.  It calls the setUp(), runTest(), and 

tearDown() methods. It calls these methods 

repeatedly until there are no more test data objects 

that will be returned from the generator set by 

initDomain().  runTest() will run the defined test 

method m, which in the variation of JUnit described 

above, is identified from the special class variable in 

the TestCase instance.  Unlike classic JUnit, the test 

method m is expected to have input.  runTest() calls 

the test method m with the data returned from 

executing x.next(), where x is the domain generator 

object set by initDomain(). next() is expected to 

return a data object of the type expected by m.  For 

each test cycle, run() uses x.more() to see if there are 

more tests in the sequence to be generated.   

 

3.3 Variations 
 
There are several possible variations on the above.  

For example, we could write test methods m that get 

their input from a special class variable rather than a 

parameter. 

 Also, we could allow the use of more than one 

domain generator in a BETUnit subclass.  This 

would involve the tester adding a set of testDomain 

variables, giving them values in initDomain().  It 

would be necessary to incorporate some kind of 

correspondence mechanism from the testDomain 

variables to either the class variables in BETCase or 

the test method input parameters, whichever 

approach is used for input to a test.  In the case of 

parameters, typing could be used to perform the 

mapping correspondence. 

 

3.4 Default suite() Option With Multiple 

Test Method BETCase Instances 
 
In the non-default mode for JUnit, the user defines a 

suite() method in the TestCase subclass supplied to 

the TestRunner.  A similar approach is used in 

BETUnit.  The user creates a subclass of TestCase 

(i.e. of BETCase) with a suite method that returns a 

suite object.  The test case vector in the suite object 

will contain one or more instances of BETCase 

subclasses, each having the required definitions for 

initDomain(), and the new run() method. 

 As mentioned earlier JUnit has a default approach 

in which the user can define a TestCase subclass with 

a set of test methods, all of which begin with "test".  

The default suite() method uses a special constructor 

for a TestSuite instance which takes the TestCase as 

a parameter.  The suite constructor then generates 

individual instances of the TestCase subclass, one for 

each test method, which it puts in its suite vector.  A 

class parameter is set to identify the test method of 

interest for that subclass instance. 

 The BETUnit analog to the JUnit default version 

is the following.  The user supplies a BETCase 

subclass with the default suite() method.  The 

subclass has the new versions of run(), the domain 

generator variable, and one or more test methods 

whose name has the prefix "test".  The default suite 

method uses a TestSuite constructor with the name of 

the BETCase subclass as a parameter. This 

constructor use reflection to find the test methods, 

and creates an instance of the BETCase subclass for 

each.  Note that in this approach, it is assumed that 

all the test methods have the same input type, and are 

tested over the same set of BET tests, generated by 

the test generator installed by initDomain().  This 

limitation could be removed, at the cost of more 

complexity if it is seen to be necessary. 

 

3.5 BET Runner 
 
The same test runner used in JUnit can also be used 

in BETUnit.  The user prepares a BETCase subclass, 

with the custom or the default suite() method.  suite() 

generates a TestSuite instance, whose run() method 

is called by the test runner. 

 

3.6 BET Oracle And Data Generation 

Test Patterns 
 
Test patterns describe strategies for accomplishing 

different kinds of testing goals or tasks.  Earlier we 

mentioned the 2-version oracle pattern, in which a 

second version of a program is used to serve as an 

oracle for a primary version.  This pattern is 

attractive when an oracle version can be produced 

more easily than the application code, and using a 

different design approach to avoid coincidental 

common defects. We identified a useful 2-version 

pattern for BET testing of the Account-Break 

example.  The central control structure of the 

application under test is a loop that reads in records, 

and has to perform account break activities when it 

detects that the account number has changed.  The 

program has an asynchronous structure in the sense 



   

that it is not possible to know in advance when the 

account break will occur.  When test data is being 

generated by BET, this information is known in 

advance and could be supplied as input along with 

the record files, so that a "synchronous" oracle 

version could be built.  Such a version would know 

exactly when the account breaks occur, so that it 

could use "for" loops with fixed bounds and 

increments rather than "do-while" loops.  We call 

this the Synchronized Sequence Oracle pattern, and 

expect it to be widely applicable in BET oriented 

testing.  We have also identified other BETUnit-

oriented oracles that take advantage of the fact that i) 

the test cases will be "small" and ii) certain kinds of 

meta-data can be generated for each input case, 

which can be used to construct a different kind of 

design for the application. 

 Other BET-oriented patterns can be identified that 

are associated with test data generation.  Recall that 

the goal with BETUnit is to find elusive bugs, and 

that these are associated with combinations.  The 

Sequence Permutation Test Generation pattern is a 

variation on all possible combinations test 

generation. In this pattern, the tester prepares a seed 

set of data items such as instances of records.  The 

test data generator generates all permutations of this 

set.  It differs from all-combinations in that there is 

no exhaustive generation involving the possible data 

that is stored in the records, only the seed set is used 

that are permuted.  Other BET oriented test generator 

patterns include the Stratified Permutation pattern 

used in the following example. 

4 EXAMPLES  
In the following two examples we will describe the 

use of two test generators that were applied to the 

account break example described earlier in the paper.  

The Synchronized Sequence Oracle pattern was used 

to construct an oracle.  In the first example, the 

Sequence Permutation pattern is used was used for 

automated test generation, and in the second the 

Stratified Permutation pattern was used.  For both 

generators, the bug was discovered.  For each 

example we give some statistics associated with the 

generation and testing process.  Both of the test 

generator classes that were constructed were just-in-

time domain generators, generating the next test 

input as it is needed. 

 

4.1 Permutation Generator 
 
In this example, we assume the availability of the 

PermDomain() class.  Instances of  PermDomain will 

return all possible permutations of a set of objects.  

The set of objects is passed to the constructor in a 

parameter. PermDomain has a "just in time" 

generator for giving us the next permutation.  Results 

are returned in a vector. 

 For this example, PermDomain is wrapped in 

AccountFileDomain.  The next() method for 

AccountFileDomain returns an object with two parts, 

a metadata part and an instance of AccountFile. 

AccountFile instances are vectors of record objects.  

Record is also a class, whose instances are the kinds 

of records seen in the account break example.  Since 

there are two kinds or records, we subclass to 

produce FinancialRecord and NonFinancialRecord. 

 AccountFileDomain instances are created with a 

seed vector of records that is used to create a 

PermDomain instance.  The next() method of 

AccountFileDomain calls the next() method of 

PermDomain.  Since the input files to the application 

are expected to be sorted, the next() method in 

AccountFileDomain also sorts them . 

 We used the Synchronized Sequence Oracle 

pattern for this example.  The metadata part of an 

object returned by the next() method of 

AccountFileDomain is a vector with a number of 

items equal to the number of accounts in the 

associated AccountFile object.  Each entry gives the 

number of records for an account.  This information 

is determined by AccountFileDomain. It can 

determine this by first counting the number of 

different accounts, and then counting the number for 

each account.  It is important that it compute this 

from the seed, rather than by reading through a 

candidate sorted input, detecting when the account 

breaks occur.  If it did this, it would be duplicating 

the asynchronous nature of the application, and could 

have the same defects.  The test methods in our 

BETCase subcase were written so that when they are 

handed an input test object, they know that the first 

part is the metadata and the second part is the input 

AccountFile.  The whole object is given to a 

synchronous sequence oracle implementation of the 

account break application, which computes a result 

for the given file.  The comparison is wrapped in an 

assertion. 

 The example was run with 4, 8 and 12-record 

seeds. The first had 1 account with 4 records, the 

second 2 accounts with 4 records, and the third 3 

accounts with 4 records. The figures in Table 1  

Table 1: Simple permutation generation 
 

Input Size Test Case Count Duration (sec) 

4 (1/4) 24 0.047 

8 (2/4) 40,320 6.2 



   

Input Size Test Case Count Duration (sec) 

12 (3/4) 479,001,600 11,760 (3 h, 16 m) 

 

indicate the numbers of tests run and the amount of 

time required. 

 

4.2 Stratified Permutation Generator 
The previous example is not as efficient as it could 

be since each input needs to be sorted before it can 

be passed to the function being tested.  Many tests 

will be identical.  Rather than generate and then 

rerun duplicates we devised an alternative approach 

in which we separated each account into its own 

permutation domain so that redundant tests are no 

longer generated.  In the new approach we used a 

new general purpose domain generator called 

StratifiedPermDomain.  There are several possible 

approaches to a StratifiedPermDomain. In one 

approach the domain generator takes a set of k vector 

objects.  It generates all combinations in which there 

is a sequence of k objects, with the i'th object taken 

from the i'th set.  Instances of StratifiedPermDomain 

are constructed with a vector of vectors.  We used a 

variation on this idea. 

 For this application StratifiedPermDomain is 

wrapped in a StratifiedFileDomain generator.  The 

constructor for this generator creates in instance of 

StratifiedPermDomain which it uses to generate 

AccountFile objects. As in the other example it also 

returns meta-data that is used by the synchronized 

sequence oracle for the application testing.  

 In our experiment with a stratified generator, we 

used seeds with 8, 12 and 16 records.  The first seed 

had 2 accounts with 4 records each, the second had 3 

accounts with 4 records, and the third had 4 accounts 

with 4 records each.  Table 2 summarizes the 

numbers of tests run and the duration of the tests. 

The improvement in test case count and test duration 

in the new approach is staggering.  Only 0.0029% of 

the test cases are generated from an input size of 12, 

and the test finishes in a little over a minute instead 

of over 3 hours.  The domain creates (x1! * x2! * ... 

xn!) inputs, where n is the number of accounts and xi 

is the number of records for account i. 

 

 

 

Table 2:  Stratified permutation generation 
 

Input Size Test Case Count Duration (seconds) 

8 (2/4) 576 .407 

12 (3/4) 13,824 3.4 

Input Size Test Case Count Duration (seconds) 

16 (4/4) 331,776 87 

 
5 OTHER BET RESEARCH 

 

5.1 Iowa JML Approach 
 
A research team at Iowa State University developed 

a framework for Java class testing that incorporated a 

BET component.  There were 5 key features in their 

approach: use of JML for assertions, pre and 

postconditions, postconditions as test oracles, 

automated generation of JUnit test classes from Java 

classes, exhaustive testing of all combinations of 

input values, and user determination of finite sets of 

values for seeding the tests. 

 The Iowa system takes a Java class and generates 

a TestCase subclass that contains a set of class 

variables that are used to organize the tests.  Each of 

these is an array variable.  The type of the first one is 

the type of the class under test, and is used to hold 

instances of that class, each constructed with a 

different set of actual parameters for the class 

constructor.  The others correspond to the types of 

the parameters of the methods in the CUT.  Each will 

be assigned a finite set of values that represents that 

type in the tests.   A test method is generated for each 

of the CUT methods.  The test method t for a CUT 

method m contains a set of local array variables, one 

for each parameter for m.  These are initialized to the 

values from the class variables for parameter types.  

Each test method contains a set of nested loops that 

iterate over the test method arrays, constructing all 

possible combinations of values with one element 

from each array.  This is then used to run the method 

in the class under test.   

 The tester subclasses the above test, constructing 

a custom setUp() method that assigns values to the 

class variable test data arrays. Recall that these hold 

two kinds of things.  One is a set of instances of the 

CUT, created with different values for the 

constructor parameters.  The others are arrays of 

values for the types of the CUT method parameters.  

These values are in turn assigned to the local variable 

arrays in a test method when it is run.   

 This system carries out the type of BET testing 

we are interested in, but is restricted in various ways.  

Since the combination mechanism is automatically 

generated there is no opportunity for the tester to try 

different kinds of combinatory mechanisms such as 

all-pairs or the permutation BET generators 



   

described above in the Account Break examples. 

Another limitation is that the same set of instances of 

a type must be used for all method parameters with 

that type.  There is no idea that different finite sets of 

values might be appropriate for different method 

parameters of the same type.  There is also a 

common set of CUT object instances that must be 

used for the different test methods for the different 

CUT methods.  Finally, there is the dependence on 

JML for assertions, which is not widely known or 

used.  Related to this is the use of a postcondition 

oracle written in JML, which may not be appropriate 

for some programs that do not have a natural 

declarative specification. 

 

5.2 Korat  
 
Korat, like the Iowa system, focuses on automated 

test data generation and execution, use of 

preconditions to filter out invalid tests, and use of 

postconditions/assertions as program oracles.   

 The central driving entity in Korat is 

"finitization".   This involves the creation of a finite 

domain of values that can be assigned to fields (class 

variables).  For all primitive types, a finite set of 

values is chosen for the domain.  For each field type 

class for a class, a finite set of instances of that class 

is created.  The instances are indexed to identify 

them.  This is called a class domain. Null is included 

in the domain for field variables whose value is a 

class instance.  All of the primitive type finite 

domains, together with the class domains, form a 

total finite domain of field values D.  The primitive 

domain contents and the number of instances of a 

class in a class domain are specified in a finitization 

object.  There is a correspondence between each field 

in the objects in a domain D and the subsets of D that 

are candidate values for that field.  A candidate 

vector is an assignment of properly typed elements of 

D to fields in elements of D.   

 If a class method has no parameters, then a set of 

values for its class's variables, taken from the 

finitization specified domain, forms the input for 

testing that method.  If the method has parameters, 

then a class can be constructed whose fields 

correspond to those parameters, which is then used in 

the construction of the finitization domain for the 

parameters.  This will result in the definition of a set 

of inputs for testing the method. 

 The candidate vector generation process 

incorporates two main optimizing strategies.  The 

first uses preconditions to filter out invalid 

combinations.  There could be many of these because 

any instance of a class C in a domain could be 

assigned as the value of any field of an object in the 

domain that has that type. 

 Precondition filter effectiveness is expanded as 

follows.  Suppose that a precondition predicate 

evaluates to False for a candidate vector.  This means 

the candidate is not a suitable test.  Suppose that the 

precondition only involves the values of a subset of 

the candidate vector.  This means that the 

precondition is independent of the other values in the 

vector, so any candidate vector which differs from 

the tested one only in the non-used variables can also 

be rejected as invalid 

 The second optimization strategy recognizes that 

when a class domain is constructed, the instances are 

not really distinguishable, so that test inputs that 

differ only in domain class instance indices will 

cause the same program behavior. Consequently, the 

test generator is designed to only generate a single 

instance of a possible class of such "isomorphic" 

values. 

 The test automation procedure in Korat is built 

into the system.  It uses a fixed strategy for all 

applications, with special features to optimize the 

numbers of tests generated.   

 BETUnit also automatically generates tests but is 

more flexible.  For example, in BETUnit we would 

not need an isomorphism suppresser for a program 

that manipulates binary trees because this could be 

built into the binary tree generator that was used by 

the test data generator for the application.   

 Korat differs from BETUnit in that all tests in 

Korat are generated before test execution begins.  

BETunit specifically depends on just-in-time 

generation to avoid huge memory requirements.  

Korat, like BETUnit, has test domains from which 

values are chosen.  Unlike Korat,  BETUnit 

incorporates the generation of the combinations into 

the domain objects from which the elements of the 

combination are drawn.  This follows the 

expert/object animation pattern in object oriented 

programming.   In the case of Korat, the combining 

mechanism is built into the system, making it more 

difficult to use alternative combining strategies such 

as all-pairs as opposed to all-combos. 

 The emphasis of BET is different from Korat.  In 

JML/Junit and Korat the emphasis is on fully 

automatic testing.  The emphasis in BETUnit is 

finding elusive bugs.  It assists the user by providing 

automated test data generation classes that can be 

used to focus BET on possible elusive bug hiding 

places.  Ongoing work focuses on the automated 

elusive bug detection aspect of BETUnit.   

 



   

6 SUMMARY AND FUTURE WORK 

 
Testing for elusive bugs involves running tests that 

explore different kinds of input combinations.  

Testing using rules that are based on specific 

application-oriented kinds of combinations has not 

been generally successful. There are often too many 

combinations and, in any case, we do not know what 

combinations to look at until after the defect has been 

discovered and analyzed.  One way to solve this 

problem is to use some form of bounded exhaustive 

testing.  However, we do not want to do this just for 

the sake of automating testing, we want to maintain 

some control over the combinatory mechanisms.  

BetUnit accomplishes this, both in the way it is a 

subspecialty of JUnit, and its use of separately 

defined combinatory mechanisms.   

 In our work we developed the concept of a BET 

Pattern.  This is a test pattern that offers suggestions 

on certain aspects of BET Testing.  One area of BET 

Patterns is test data generation where we defined two 

combinatory patterns: Permutation and Stratified 

Permutation.  Both were applied to an Account Break 

example.  We also found that we needed to consider 

BET-oriented oracle patterns.  The effectiveness of 

postconditions for oracles, where they correspond to 

logical expressions, is too limited.  As is well known 

in testing, many programs have an algorithmic rather 

than a declarative specification.  For such 

applications we need a secondary version of the 

application program to test the output of the prime 

application program.  The problem with this 

approach is that the two versions may contain the 

same defects.  One way of avoiding this is to use 

different design strategies.  We have identified 

several kinds of oracle design patterns, including the 

Sequence Synchronizing Oracle pattern used in the 

Account Break example, that produce "orthogonal" 

application program designs.  In this example, the 

input generator returns certain metadata along with 

the suggested input.  This metadata makes it possible 

to write a simpler oracle version of the program.  

More specifically, instead of waiting for some 

condition to happen during a computation, it knows 

in advance from the metadata exactly when it will 

happen.  At the implementation level, this allows 

simple "do" loops instead of complex "while" loops. 

 In the version of BET described earlier, each 

BETCase has a single domain generator.  This means 

that all of the test methods defined in a single 

BETCase must use the same parameters.  In a way 

this is more limited than the Iowa approach.  In that 

approach, the test values for the sets of test method 

parameters must all be defined by a common set of 

type finitizations, but each test method may have a 

different subset, i.e. the test methods do not have to 

have the same parameters.  This limitation could be 

removed in BetUnit by allowing the definition of 

multiple Domain variables in a BETCase, which was 

included in our prototype.   

 In the Account Break example, BETUnit was 

successfully applied using the Permutation Generator 

BET pattern and the Synchronized Sequence Oracle 

pattern.  So far, only a small number of domain 

generators have been implemented.  A solid library 

of complex and primitive domains will be needed.  

We are now doing this, and applying our test 

approach to a wide variety of problems.  The version 

of BETUnit described in this paper is based on JUnit 

3.8. This provided a very flexible tool. We are now 

exploring the use of JUnit 4 with BETUnit to see if 

its advantages are maintained in this context. In 

addition, we are examining alternative BET 

strategies using frameworks other than JUnit.   
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