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Abstract. This paper explores reasoning about space and time, e.g.,
in metaphors of time as space; an important method is to find minimal
assumptions needed to reach the same conclusions that humans reach.
Some mathematical language, including the notion of triad, is introduced
for this purpose, formalizing and generalizing the cognitive semantics ap-
proaches to conceptual spaces (in the senses of both Fauconnier & Turner
and of Gärdenfors), blending, and metaphor; in particular, continuous
mathematics is used to model space and time. A new explanation of
emergent structure in blend spaces is also discussed, and proposed as a
source of creativity. Four main examples illustrate the approach, and an
appendix encapsulates the most difficult mathematics.

1 Introduction

Space and time are very fundamental human concepts, but despite great
advances in physics, and extensive research in experimental psychology,
our understanding of how humans actually use these concepts is still very
incomplete, and the best cognitive science results are all rather recent.
Although practical human reasoning about space and time is quite effi-
cient, machine reasoning is often very poor; we would like to understand
how humans do it, and to help machines do it better. Recent work in
cognitive linguistics has found that human reasoning is very often me-
diated by metaphor1. Therefore the study of reasoning with metaphors
that involve space and time is of particular interest.

Other recent research in cognitive linguistics claims that metaphor
is best seen as the result of integrating (blending) conceptual spaces2,
because this generalizes and subsumes prior work of Lakoff and others
on metaphor as a map from a more concrete source space to a more ab-
stract target space, by introducing a “blend space” that includes relevant
content from both the source and target spaces, plus perhaps new “emer-
gent” structure [6]. Under either view, for metaphors involving time or

1 This theme runs throughout [6], and [29] is an extended study of metaphor in
mathematics.

2 The word “space” is used metaphorically here as a “container” of symbolic entities;
conceptual spaces are explained in detail in the next section.



space, it is necessary to represent those concepts in conceptual spaces, in
a way that supports inference. Surprisingly3, we have found that familiar
mathematical representations of space, time and motion are adequate for
this purpose: time can be represented by intervals I from either the real
numbers or the integers, space can be represented by a manifold M (i.e.,
a smooth4 subset of n-dimensional Euclidean space

�
n, where

�
denotes

the space, i.e., the line, of all real numbers), and motion by a function
I → M (which should be smooth when I is a subset of

�
).

This paper explores four examples in some detail, each exhibiting a dif-
ferent kind of ambiguity. The first (Example 2) is Peter Gärdenfors’ skin
color example [9], which uses geometrical conceptual spaces. The second
(Example 3) discusses the many different blends of “house” and “boat”
[11]. The third (in Section 4) is a puzzle from [6], in which a Buddhist
monk ascends and then descends a sacred mountain; this is also where we
discuss recruitment and creativity in blending. The fourth example (in
Section 5) discusses reasoning about time using spatial metaphors [34];
sentences like “The Wednesday meeting was moved forward two days”
have been studied experimentally by Núñez [33], and found to be ambigu-
ous in interesting ways5; the method is to determine minimal assumptions
needed to derive particular conclusions, such as that there are one (or two,
or three) different dates for the rescheduled meeting; when the conclusion
reached is the same as that of human subjects, this provides a method
for validating models. Readers not interested in the mathematics should
focus on these examples, but should also look at the other, non-main, ex-
amples for continuity. Natural language understanding is not addressed,
because we focus on reasoning about understandings as represented by
models.

Section 2 reviews some cognitive science research on concepts and con-
ceptual spaces. Section 3 introduces Unified Concept Theory (abbreviated
UCT) [14, 16] in a somewhat informal way that avoids the category theory
used in [16]. Section 4 uses the Buddhist monk example of [6] to introduce
the basics of our modeling methods for space and time, demonstrating
the need to enrich the conceptual spaces of Gilles Fauconnier with types,
functions and axioms, and to enrich the machinery of cognitive linguistics
with (what we call) triads and triad blending; a solution is also suggested

3 In view of the phenomenological research of Husserl, Merleau-Ponty and others,
though of course it is not likely to surprise physicists.

4 Technically, this means that the nth derivative exists and is continuous for every
integer n.

5 Note that the spatial term “forward” is metaphorically applied to time in this
sentence.
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to the mystery of how “emergent structure” appears in blends. Section
5 discusses time as space metaphors, focussed on examples like those in
[33], and Section 6 draws some conclusions, while Appendix A provides
further mathematical details of UCT; readers who are not very familiar
with category theory and institutions6 will find a definition of institution
that uses no category theory in Appendix A, followed by a brief expo-
sition of some basic notions on category theory, with some illustrative
diagrams.

This paper does not aim to contribute new theories of human cogni-
tion; rather, it aims to contribute a new language in which certain kinds
of theories of human cognition can be expressed and explored with much
greater precision than has previously been possible. Although the exam-
ples given to illustrate this are theories of human cognition in certain
very particular situations, they are not supported with new experimental
or linguistic data, but instead, their properties are examined mathemat-
ically, and compared with common sense, or with experiments done by
others. This situation is analoguous to that in physics: to establish his
theory of gravitation, Newton needed not only experimental data, but
also the mathematical language of the calculus, to precisely express his
theories and derive their consequences for the solar system. Similarly, the
contributions of this paper are like the mathematical theory of differential
calculus rather than the physical theory of gravitation, though of course
no claim is made that it is equally significant!

A major feature of UCT is its use of “triads,” which can combine dis-
crete symbolic with continuous geometrical representations, and thus can
reap the benefits of both. Models are built for particular purposes, and
need only be adequate to those purposes; this view is ubiquitous in engi-
neering and applied science, and is opposed to the view that mathematical
models should in principle be able to capture every aspect relevant to ev-
ery possible situation, which is associated with philosophical realism, as
in the linguistic theories of Montague, Barwise & Perry, Chomsky, and
others (see [15] for further discussion of this topic).

2 Cognitive Science of Concepts

This section surveys some cognitive research on concepts. In a series
of papers that are a foundation for contemporary cognitive semantics,
Eleanor Rosch designed, performed, and carefully analyzed innovative

6 Although rather technical, institutions are needed because each of our main examples
uses a different logic.
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experiments, resulting in a theory of human concepts that differs greatly
from the Aristotelian tradition of giving necessary and sufficient condi-
tions, based on properties. Rosch showed that concepts exhibit prototype
effects, e.g., degrees of membership that correlate with similarity to a
central member. Moreover, she found that there are what she called basic
level concepts, which tend to occur in the middle of concept hierarchies,
to be perceived as gestalts, to have the most associated knowledge, the
shortest names, and to be the easiest to learn. Expositions in [27, 28, 24]
give a concise summary of research of Rosch and others on conceptual
categories. This work served as a foundation for later work on metaphor
by George Lakoff and others [27, 28, 30, 26]. One significant result from
this research is that many metaphors come in families, called basic im-
age schemas, that share a common sensory-motor pattern. For example,
more is up is grounded in our everyday experience that higher piles
contain more dirt, or more books, etc. Metaphors based on this image
schema are very common, e.g., “That raised his prestige.” or “This is a
high stakes game.”

Fauconnier’s mental spaces [5] (also called conceptual spaces [6]) do
not attempt to formalize concepts, but instead capture the important
idea that concepts are used in clusters of related concepts. This idea can
be formalized as a very simple logic, consisting of individual constants,
and assertions that certain relations (mostly binary) hold among certain
of those constants; it is remarkable how much natural language semantics
can be encoded with this framework (see [5, 6]).

livein on ride on

house
boat

resident land passenger water

Fig. 1. Two Simple Conceptual Spaces

Example 1. Figure 1 shows two simple conceptual spaces, the first for
“house” and the second for “boat.” These do not give all possible informa-
tion about these concepts, but only the minimal amount needed for a par-
ticular application, which is further discussed below. The “dots” represent
the individual constants, and the lines represent true instances of relations
among those individuals. Thus, the leftmost line asserts livein(resident,
house), which means that the relation livein holds between these two con-
stants. We will soon see good reasons for assigning “sorts” (also called

4



“types”) to constants and relations. For example, resident and passenger
can be given the sort Person, and house and boat the sort Object. 2

Peter Gärdenfors [9] proposes a notion of “conceptual space” that is
very different from that of Fauconnier, since it is based on geometry rather
than logic. An intriguing hypothesis in [9] is that all conceptual spaces are
convex7. Although [9] aims to reconcile its geometric conceptual spaces
with symbolic representations like those of Fauconnier, it does not in fact
provide a unified framework. However, such a unification can be done in
two relatively straightforward steps. The first step is to introduce models
in addition to many sorted logical theories, where a model provides a
set of instances for each sort, a function for each function symbol, and a
relation for each relation symbol; since we are interested in the models
that satisfy the axioms in the theory, an explicit notion of satisfaction is
also needed; special cases of such relations are called classifications in [1]
and formal contexts in [8]. This leads to the basic UCT notion of triad,
which is discussed in detail in Section 3.

The second step is to fix the interpretations in models of certain sorts
to be particular geometrical spaces (the term “standard model” is often
used in logic for such a fixed interpretation). For example, a sort color
might be interpreted as the set of points in a fixed 3D manifold represent-
ing human color space, coordinatized by hue, saturation and brightness
values, as in Figure 2, which is shaped like a “spindle,” i.e., two cones
with a common base, one upside down. This provides a precise frame-
work within which one can reason about properties that involve colors,
as in the following:

Fig. 2. Human Color Manifold
7 A subset of Euclidean space is convex if the straight line between any two points in-

side the subset also lies inside the subset; this generalizes to non-Euclidean manifolds
by using geodesics instead of straight lines.
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Example 2. A nice example in [9] concerns the (English) terms used to
describe human skin tones (red, black, white, yellow, etc.), which have
a very different meaning in that context than e.g., in a context of de-
scribing fabrics. Gärdenfors claims that this shift of meaning can be ex-
plained by embedding the space of human skin tones within the larger
color manifold8, and showing that in this space, the standard regions for
the given color names are the closest fits to the corresponding skin color
names. Technically, it is better to view the two geometrical spaces as
related by a canonical projection from the spindle to the subspace, be-
cause Gärdenfors’ convexity hypothesis plus the reasonable assumption
that each space has a “reference point” (a “zero color”) guarantees that
such a canonical projection exists9. Gärdenfors does not give a formal
treatment of the color terms themselves, but we can view them as unary
predicates in a theory (or “ontology”), and view the relationship between
skin color terms and colors in the color spindle as a satisfaction or classi-
fication relation; note that many colors will not have any corresponding
skin tone name. 2
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Fig. 3. Information Integration over a Shared Subobject

The most important recent development in the tradition of Rosch,
Lakoff, and Fauconnier is conceptual blending, claimed in [6] to be a fun-
damental cognitive operation, which combines different conceptual spaces
into a unified whole. The simplest case is illustrated in Figure 3, where
for example I1, I2 might be mental spaces for “house” and “boat” (as in
Figure 1), with G containing so-called “generic” elements such that the

8 Methodologically, it seems reasonble to take the standard color spindle as a neutral
ground from which deviations due to context, such as priming, can be viewed as
deviations by projection mappings.

9 Let M1 and M2 be convex 3-manifolds in � 3 that have reference points p1, p2,
respectively. Then π : M1 → M2 is defined as follows: Given m1 ∈ M1, let L1 be
the ray (half infinite line) starting at point p1 and passing through m1, let m′

1 be
the point where L1 intersects the surface of M1, and let L2 be the ray parallel to
L1 in M2 from p2, intersecting the surface of M2 at m′

2. Now define π(m1) = m2

where m2 is the point on L2 such that the ratios of line lengths p1m1/p1m
′

1 and
p2m2/p2m

′

2 are equal.
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maps G→ Ii indicate which individuals should be identified. Some “opti-
mality principles” are given in Chapter 16 of [6] for judging the quality of
blends, and hence determining which blends are most suitable, although
these distillations from numerous examples are far from formal.

Example 3. Blends are not determined uniquely, not even up to isomor-
phism. For example, if we blend the two spaces in Figure 1 (for the con-
cepts “house” and “boat”), thenB could be10 “houseboat,” or “boathouse,”
or some other combination of the two input spaces (see below). The blend
diagram for “houseboat” is shown in Figure 4. As in Figure 3, the bot-
tom space is the generic or base space, the top is the blend space, and
the other two are the input spaces, in this case for “house” and “boat.”
The arrows between circles indicate conceptual maps, which describe how
to map entities in the source space to entities in the target space; in gen-
eral, they are partial, not total. In this simple example, all four spaces
have graphs with the same “vee” shape, and the maps simply preserve
that shape, e.g., each maps the bottom node of the “vee” in its source
space to the bottom node in its target; this is not typical of more complex
examples.

Figure 5 shows the “boathouse” blend of the same two concepts. In
it, the boat ends up in the house. Notice that mapping resident to boat
does not type check (this presupposes the type assignments given in the
table on page 10 unless boat is “cast” to be of type Person; otherwise,
the boat could not live in the boathouse. This is the kind of metaphor
called personification in literary theory, in which an object is considered
a person. A third blend is similar to (in fact, symmetrical with) the above
“boathouse” blend; in it, a house/passenger ends up riding in the boat
(e.g., where a boat is used to transport prefabricated houses across a bay
for a housing development on a nearby island).

A fourth blend is less familiar than the first three, but has very good
preservation properties. This is an amphibious RV (recreational vehicle)
that you can live in, and can ride on land and on water. A fifth blend
has an even less familiar meaning: a livable boat for transporting livable
boats; this was found by the Alloy blending algorithm developed by Fox
Harrell and I, and perhaps only an algorithm could have discovered this
counter-intuitive blend [19]. A sixth blend gives a boat used on land for
a house; it omits axioms that a house/boat be on water and a passenger
ride a house/boat. Alloy also found 42 other, less obvious blends, most of
which are far from optimal.

10 It is unusual that there are such convenient names for two of these blends.
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Fig. 4. Houseboat Blend Diagram

The extent to which a mapping preserves source space features can
be used as a formal optimality criterion [11, 18], and for this example,
our intuitive sense of the relative purity of the blends, and the degree to
which they seem boat-like and house-like, corresponds to the degree to
which the appropriate morphisms preserve entities and axioms from the
input spaces. See [19] for a detailed discussion. 2

Blending theory [6] refines the metaphor theory of Lakoff, by explain-
ing the metaphorical map from I1 to I2 as a kind of “side effect” of a
blend B of I2 and I2. This theory notes that a metaphor really constructs
a new blend space in which only certain parts of I1 and I2 appear, and in
which some new structure found in neither I1 nor I2 may also appear; the
usual formulation of metaphor as a “cross space mapping” m : I1 → I2
is the reflection of the identifications that are made in B, i.e., if i1, i2 are
constants in I1, I2 respectively, that map to the same constant in B, then
we set m(i1) = i2. See Figure 6.

Example 4. In the metaphor “the sun is a king,” the more concrete input
space I1 is for “a king” while I2 is for “the sun;” the constants “sun” and
“king” from their respective input spaces are identified in the blend, so
“king” maps to “sun,” but the fact that kings may collect taxes is not
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Fig. 5. Boathouse Blend Space
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Fig. 6. Cross-Space Mapping

mapped up or across. However, if we add “the corona is his crown,” then
the element “crown” in I1 is identified with the element “corona” from
I2 in the blend space, and so “crown” is mapped to “corona”; the same
must be done for the “ownership” relations. 2

3 Theories and Triads

This section summarizes parts of unified concept theory, beginning with
a review of algebraic theories [11], which provide additional features over
conceptual spaces that are needed for applications to areas such as user in-
terface design [11], where many signs have parts, and these parts can only
be put together in certain ways. For example, consider icons, windows,
scrollbars, etc.; or consider words in a sentence, or the visual constituents
of diagrams, such as Figure 1. Algebraic theories may have constructor
functions, which build complex signs from simpler signs; for example, a
window constructor could have arguments for a scrollbar, label, and con-
tent. Then one can write W1 = window(SB1, L1, C1); there could also be
additional arguments for color, position, and other details of how these
parts constitute a particular window. This approach conveys information
about the relations between parts and wholes in a much more explicit and
useful way than just asserting has-a(window, scrollbar), and it also avoids
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many of the problems that plague the has-a relation and its axiomatiza-
tions in formal mereology11 ([36] explains some of these problems).

Sorts (or types) in algebraic theories serve to restrict the structure
of signs: each declared constant has a sort, and each relation and func-
tion has restrictions on the sorts that its arguments may take. In ex-
ample 1, the relation own can only take arguments of sorts Person and
Object (in that order). In algebraic theories, relations are represented
as Boolean valued functions. Allowing sorts to have subsorts provides a
more effective way to support inheritance than the traditional is-a re-
lation. For example, Person might have a subsort Adult. Order sorted
algebra [22] provides a mathematical foundation that integrates inheri-
tance with whole/part structure (using constructor functions instead of
the has-a relation) in an elegant and computationally tractable algebraic
formalism that also captures some subtle relations between inheritance
and whole/part relations12.

Example 5. Here we explain the notation of the algebraic theories that
we use to represent conceptual spaces. Algebraic theories may have con-
ditional equations as axioms to further constrain the space of possible
signs; for example, certain houses might restrict their residents to be
adults. Fauconnier’s mental spaces are the special case of order sorted
algebraic theories with no functions, no sorts or subsorts, and with only
atomic relation instances as axioms. The table below gives the theory
forms of the two conceptual spaces in Example 1:

resident : → Person passenger : → Person

house : → Object boat : → Object

land, water : →Medium land, water : →Medium

livein : Person Object→ Bool ride : Person Object→ Bool

on : Object Medium→ Bool on : Object Medium→ Bool

livein(resident, house) ride(passenger, boat)
on(house, land) on(boat, water)

This notation is similar to that of functional programming, or more pre-
cisely, an equational programming language like OBJ [21]. Each of the two
theories has two parts, one for declaring sorts, constants, and functions,
and one for asserting axioms to serve as constraints on interpretations.
The first three lines declare constants with their types13. The next two

11 Mereology is the study of whole/part relations.
12 E.g., the monotonicity condition on overloaded operations with respect to subsorts

of argument sorts described in [22].
13 The arrow appears because technically it is better to view constants as functions

with no arguments.
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lines declare relations as Boolean valued functions, in this case, each with
two arguments. The last two lines give axioms, which here assert that
certain relations hold on certain constant arguments; there is an implicit
“= true” after each relation instance. The set of declarations of types and
functions of a theory is called its signature. 2

There is much experience using algebraic theories to specify and ver-
ify computer-based systems (e.g., [21, 20, 4]), and various extensions have
been devised to facilitate this. One such extension allows certain sorts to
have fixed interpretations (such as Bool and Medium in the two theories
above, or the natural numbers), while other sorts are allowed arbitrary
interpretations. Hidden algebra [20] provides additional features to bet-
ter handle dynamic systems with states, which are a central feature of
computer-based systems. Semiotic spaces further extend algebraic theo-
ries by adding priority relations on sorts and constructors, information
that helps greatly with user interface design applications [11, 12]. Semi-
otic spaces are also called semiotic systems or semiotic theories, because
they define systems of signs, not just single signs, for example, all possible
displays on a particular digital clock, or a particular cell phone.

If T is a theory (e.g., that for “house”), then a model M for T provides
concrete instances for all declared functions (which we recall include the
constants) in T , in such a way that all the axioms in T are satisfied in M .
In this case, we write M |=C T , where C is a context that restricts the
theories and/or models that are allowed. For example, contexts might
consist of sets of declarations (so they are signatures), with M |=C T

restricted to those T with axioms that only use symbols from C, M
restricted to those models that instantiate the symbols in C, and with
M |=C T holding if and only if M satisfies all the axioms in T .

Unified concept theory [14] (abbreviated UCT ) uses the term triad (in
honor of Charles Sanders Peirce) for a combination of a symbolic space,
a context, a geometrical space (or set of spaces), and a relation among
them, denoted |=. We can illustrate this with two triads from Example 2.
Here contexts are sets of color names viewed as unary predicates. The first
triad consists of the color spindle C, a context C of color names, and an
ontology theory O for color names in C, such that each color name is true
(under |=C) on a certain convex submanifold of the color spindle14, while
the second triad consists of the skin color submanifold S, a set C ′ of skin
color names contained in C, an ontology O ′ for C ′, with elements of C ′

14 It makes sense for this to be a convex fuzzy submanifold, in conformance with
Rosch’s work on prototype effects; see [14] for details of this notion.
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again interpreted as convex submanifolds. The projection map π : C → S
defined in Example 2 can be seen as giving a triad morphism along with
a suitable inclusion map i : O′ → O, since we have

π(m) |=skin s iff m |=spindle i(s)

for all colors m in C and all skin color names s in O ′. (To allow |= to have
fuzzy values for color name predicates, e.g., in the unit interval [0, 1], the
“iff” in the above should be replaced by an equality relation on the fuzzy
values.) An equivalent form that better fits the general notion of triad
given below is

π(C) |=skin a
′ iff C |=spindle i(a

′)

for all axioms a′ in O′, noting that in this case, π(C) = S and the axioms
in O′ define the unary predicates s for skin colors. These formulae are
also similar to the nicely named “infomorphisms” of [1], which in fact are
a special case of triad morphisms.

More formally: contexts are sets C of color names; C-models are con-
vex 3-manifolds M in

� 3 with a given reference point and a given convex
submanifold for each c ∈ C; C-theories T are sets of axioms about the
unary predicates in C; and |=C tells whether a model M satisfies an ax-
iom, and by extension, whether it satisfies a theory T . Thus a triad is
a triple (M, C, T ) such that M |=C T , where M is a C-model and T

is a C-theory. A morphism from one such triad (M′, C ′, T ′) to another,
(M, C, T ) is a pair (Φ, Ψ) where Φ : T ′ → T and Ψ : M → M′ such that

Ψ(m) |=C a iff m |=C′ Φ(a)

for all m ∈ M,a ∈ T . Then (i, π) is a morphism (C, Σ,O ′) → (S, Σ,O)
in this sense, where Σ is the set of skin colors. A more general definition
of triad is given in Appendix A.

Triads and sorts with fixed interpretation help solve the symbol ground-
ing problem15 [25]. Our approach to this problem is consistent with Peirce
[35], who said that signs must be interpreted in order to refer, and that in-
terpretation only occurs in some pragmatic context of signs being actually
used. Sensors, effectors, and world models ground elements of conceptual
spaces in reality, where the world models are geometrical spaces. This
implies that the symbol grounding problem is artificial, created by a de-
sire for something that is not possible for purely symbolic systems, as in
classic logic-based AI, but which is natural for embodied systems.

15 This is the problem of how abstract computational symbols can be made to refer to
entities in the real world.
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4 A Buddhist Monk Meets Himself

One of the most striking examples in [6], called “the Buddhist monk,” is
not a metaphor, but a clever puzzle. It is posed as follows: A Buddhist
monk makes a pilgrimage to a sacred mountain, leaving at dawn, reach-
ing the summit at dusk, spending the night there in meditation, then
departing at dawn the next day, and arriving at the base at dusk. The
question then posed is: is there a time such that the ascending monk and
the descending monk are at the same place at that time? This question
calls forth a blend in which the two days are merged into one, but the
one monk is split into two! The reasoning needed to answer the question
cannot be done in a logic-based blend space, because some geometrical
structures are needed to model the path of the monk(s), in addition to the
individuals and relations that are given logically. The table below shows
the semiotic spaces for the first and second day in its first and second
columns, respectively; notice the explicitly given types, which are needed
to constrain possible interpretations of the declared elements.

T ime = [6, 18] T ime = [6, 18]
Loc = [0, 10] Loc = [0, 10]
m : T ime→ Loc m : T ime→ Loc

m(6) = 0 m(6) = 10
m(18) = 10 m(18) = 0
(∀ t, t′ : T ime) t > t′ ⇒ (∀ t, t′ : T ime) t > t′ ⇒

m(t) > m(t′) m(t) < m(t′)

The first two lines of each theory are type definitions, while the third
declares a function; here and hereafter, we assume such functions are
smooth (i.e., continuously differentiable of all orders); the two type dec-
larations mean that these types have fixed interpretations in all models.
After that, each theory has three axioms, the third of which uses the
notation (∀t, t′ : T ime) to introduce two variables, t, t′, with their type,
T ime, for use in that axiom.

A model for the theory of the first day will interpret T ime as the
fixed interval [6,18] (for dusk and dawn, in hours); it will also interpret
Loc as another fixed interval, [0,10] (for the base and summit locations, in
miles). Thenm is interpreted as some continuous function [6, 18] → [0, 10],
giving the monk’s distance along the path as a function of time. The key
axiom is the last one, a monotonicity condition, which asserts that the
monk always makes progress along the path, though without saying how
quickly or slowly. Each such function m corresponds to a different model
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of the theory. The theory for the second day is similar except the last three
axioms assert that the monk starts at the top and always descends until
reaching the bottom. The types T ime and Loc must be given exactly
the same interpretations on the two days, but the possible paths are
necessarily different. The blended theory is shown in the table below, in
which m indicates the monk’s locations on the first day and m′ on the
second day.

T ime = [6, 18] Loc = [0, 10]
m,m′, d : T ime→ Loc

t∗ : → T ime

m(6) = 0 m(18) = 10
m′(6) = 10 m′(18) = 0
(∀ t, t′ : T ime) t > t′ ⇒ m(t) > m(t′)
(∀ t, t′ : T ime) t > t′ ⇒ m′(t) < m′(t′)
(∀ t : T ime) d(t) = m′(t) −m(t)
d(t∗) = 0

To answer the puzzle, we have to solve the equation m(t) = m′(t). If
we let t∗ denote a solution and let d(t) = m′(t) − m(t), then the key
“emergent” structure added to the blend space is d(t∗) = 0, since this
allows us to apply the version of the Intermediate Value Theorem which
says that a strict monotone continuous function which takes values a and
b with a 6= b necessarily takes every value between a and b exactly once.
In this case, d is strict monotone decreasing, d(6) = 10 and d(18) = −10,
so there is a unique time t∗ such that d(t∗) = 0.

Blending theory [6] speaks of “recruiting” new spaces to the blend
in order to create emergent structure, but it does not explain how this
happens. We suggest that emergent structure arises by integrating new
triads that match important non-integrated concepts in the input spaces.
In this particular example, the locations of the monk on the two days
are clearly important, since they are mentioned in the formulation of the
puzzle, but they are not integrated by the generic space; the notion of
being in the same place at the same time is also mentioned in the puzzle.
We therefore suggest that the missing piece of the puzzle is the “meeting
space” shown below, and that it is “recruited” by searching for a triad
that matches key non-integrated key concepts in the blend:

a, b, d : T ime→ Loc

t∗ : → T ime

(∀ t : T ime) d(t) = a(t) − b(t)
d(t∗) = 0
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This just says that two individuals, a, b, meet if they are at the same
place at the same time, where t∗ is that time. To do the integration, let
us call the two theories in the first table of this section I and I ′, and
let the generic space G contain just the first two lines of these theories,
with the maps G → I and G → I ′ inclusions. Next, let M denote the
meeting space, let M → I map a to m, and let M → I ′ map b to m′.
Then identifying the elements that are mapped, and just copying the
others gives exactly the blend space of the second table in this section;
see Figure 7. A good hypothesis is that this provides a general explanation
for emergent structure in blends. (This example is also a good illustration
of blending with more than two input spaces.)
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Fig. 7. Buddhist Monk Blend Diagram

There are some surprises if we weaken the monotonicity axioms to
become non-strict, so that the monk may stop and enjoy the view for a
time, as formally expressed for the first day by the axiom

(∀ t, t′ : T ime) t > t′ ⇒ m(t) ≥ m(t′)

then (by another version of the Intermediate Value Theorem) the monk
can meet himself on the path for any fixed closed proper subinterval [a, b]
of [6,18] (i.e., with 6 ≤ a ≤ b ≤ 18 with either a 6= 6 or b 6= 18). More-
over, if we drop the monotonicity assumption completely but still assume
continuity, then (by the most familiar version of the Intermediate Value
Theorem) there still must exist values t∗ such that m(t∗) = m′(t∗), but
these t∗ are no longer confined to a single interval, and can even consist of
countably many isolated intervals. It seems safe to say that such observa-
tions would be difficult to make without a precise mathematical analysis
like that given above16; indeed Fauconnier and Turner had not realized

16 Of course, some aspects of this analysis are unrealistic, due to assuming that the
monk can move arbitrarily quickly; a velocity restriction could be added (e.g.,
|dm/dt| ≤ 4), but the extra complexity can only be justified if there is a specific
need for it. This is a good illustration of the pragmatic character of model making,
in particular, its sensitivity to how models are used, and the need for trade-offs.
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that the monk could meet himself at more than a single instant before
they saw this analysis. It is interesting and perhaps now even surprising
that human subjects invariably reach the conclusion that is supported
by the rather non-standard strict monotone version of the intermediate
value theorem.

The structures in this example, consisting of a many sorted logical
theory and a class of possible models for that theory (with some sorts
having fixed interpretations in the models), can be seen as classifications
in the sense of Barwise and Seligman [1]; but it is better to consider these
structures as triads, because the geometry of the models is important here,
and because the different theories have different contexts. Moreover, the
example blends not just theories, but also classes of models, and hence
triads, including their contexts; this is spelled out in the appendix.

5 Reasoning about Time as Space

There is enormous cross-cultural evidence that time is primarily concep-
tualized as space17: in all languages studied so far, the vocabulary for
time is primarily spatial [34]. Here are two simple examples in English:
“The end of the year is approaching” and “We are coming to the end
of the year.” Notice that in the first, time is moving, while in the sec-
ond the deictic18 reference point (conventionally called “ego”) is moving
while time is fixed. These are both dynamic metaphors, but space as time
metaphors can also be static, as in “The due dates of the reports are too
close together,” where neither time nor ego is moving. Times can also be
moving with respect to other times, as in “December follows November.”

These examples (and many many others that are similar) show that
there are three dualities:

1. Ego RP vs. Time RP (where “RP” abbreviates “Reference Point”);
2. Static vs. Dynamic; and
3. Landmark (the deictic reference point, which is fixed) vs. Trajector

(that which moves) [34].

Of course, there can also be metaphoric blends involving time, as in “Time
flies like an arrow.” So things can get very complex! They were recently
made even more complex by the discovery that Aymara, a language of the
Peruvian Andes, has a static metaphor of time as space, where the future

17 Kant might be surprised to learn that one of his analytic a priori categories is
significantly more fundamental than another.

18 The term “deictic” is used for words where meaning depends on the context where
they appear; the deictic reference point is the location of this appearance.
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is behind Ego RP, rather than ahead of it19, as in all other known lan-
guages; [34] gives conclusive evidence using gesture, with control groups
of Spanish speakers and even bilingual speakers. However, for all dynamic
cases, even in Aymara, the future is in front of Ego RP.

The question that motivated the material in this section was, under
what conditions does the sentence “The Wednesday meeting was moved
forward two days” have just two solutions (as days of the week)? We will
use many sorted equational logic, where declarations are for sorts and op-
erations, and theories consists of sets of equations over a given signature.
We also let contexts be theories, and let triads be theory extensions, i.e.,
inclusions of the corresponding sets of declarations and of axioms. We
also allow some sorts to have fixed interpretations. The following theory
defines the basic ingredients that are needed to formalize the problem
posed above:

T ime = �
Su,M, Tu,W, Th, F, Sa : → Day

day : T ime→ Day

E, T : → RP

f2 : T ime T ime RP → T ime

day(0) = Su day(1) = M day(2) = Tu

day(3) = W day(4) = Th day(5) = F

day(6) = Sa

(∀ t, t′ : T ime) day(t) = day(t′) if |t− t′| = 0 mod 7
(∀ t, t′ : T ime) f2(t, t

′, E) = t− 2 if t ≤ t′

(∀ t, t′ : T ime) f2(t, t
′, E) = t+ 2 if t > t′

(∀ t, t′ : T ime) f2(t, t
′, T ) = t+ 2

In the first line, the sort T ime is declared to represent the set � of all
integers, while the second line declares the days of the week, the third
declares a function that maps times to days, the fourth declares two con-
stants for the two different kinds of reference point, and the fifth declares
a function to give the result of moving a time “two days forward.” For
the axioms, the first eight define how days of the week are assigned to
integers, and the next three define how f2 works, following the discussion
at the beginning of this section. The notation |t − t′| in the eighth ax-
iom indicates the absolute difference of t, t′, and the axiom says that two
integers have the same day if they differ by some multiple of 7.

Perhaps the following extension of the above theory is the most obvi-
ous way to set up the problem posed above:

19 I.e., the experiencer faces the flow of events, as in “March is coming soon.”
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m,m′, e : → T ime

r : → RP

f2(m, e, r) = m′

day(m) = W

Models for this extended theory instantiate the constants m,m′, e, r with
values that are consistent with the axioms. One difficulty with this formu-
lation is that there will be an infinite number of solutions; to get around
this, we can just specify that m = 3. Under these assumptions, we can
indeed prove that there are just two solutions, namely m′ = 1 and m′ = 5.
However, this is still unsatisfactory in a way, because the initial assump-
tion m = 3 (i.e., that the locator is the originally scheduled time of the
meeting) precludes exploring other options, such as that the locator is
the rescheduled time of the meeting (m′ = 3).

The simplest way forward is to consider two theories, which will serve
as contexts, one for each choice of the locator:

m,m′, e : → T ime m,m′, e : → T ime

r : → RP r : → RP

f2(m, e, r) = m′ f2(m, e, r) = m′

m = 3 m′ = 3

These theories are the same except for their last lines; let us denote them
A and B, respectively. We now do another case split, on whether r = E

or r = T ; let the resulting four theories be denoted A.1, A.2, B.1 and B.2.
Finally, due to the form of the axioms for f2, it is convenient to do one
more case split, on whether m > e or m ≤ e; let the resulting 8 cases be
denoted A.1.1, A.1.2, ..., B.2.2. Each of them is a context within which we
can ask which days are possible solutions. In the B cases, we are asking
about the solutions for m, the original meeting time, rather than m′, the
rescheduled meeting time. The following table summarizes the results for
each case:

r e m′ m

A.1.1 E < m 5 3

A.1.2 E ≥ m 5 3

A.2.1 T < m 1 3

A.2.2 T ≥ m 5 3

B.1.1 E < m′ 3 1

B.1.2 E ≥ m′ 3 1

B.2.1 T < m′ 3 1

B.2.2 T ≥ m′ 3 5
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Thus we see that in the most general context, there are three possible
values for m′, but only two under that assumption that m = 3; similarly,
there are only two possible solutions for m under the assumption that
m′ = 3. If we use the notation A. ∗ .∗ for the context that includes the
first four cases (where m = 3), and B.2.∗ for the context where M ′ = 3
and r = T , ∗. ∗ .∗ for the most general context, etc., then we can also
describe the results of the above table in terms of contexts.

Further research should consider static metaphors including the un-
usual one in Aymara. Other topics include the case where the meeting is
normally scheduled for the same day of every week, and unusual models
of time, such as occur in science fiction20, e.g., parallel universes, and time
travel (as in the movie “Back to the Future”).

6 Conclusions

Humans are quite efficient at practical reasoning about space and time,
but such reasoning is largely unconscious, and is therefore difficult to
understand. This paper attempts to improve our understanding by intro-
ducing a formal language called unified concept theory, in which models of
cognitive space and time can be expressed, including metaphors of space
as time. We have studied four examples in some detail, each exhibiting an
interesting, but different, kind of ambiguity. In each case, humans quickly
reach a single conclusion. We have constructed models for each example,
such that the conclusions that can be deduced from the models are the
same as those reached by humans, and we have explored the assumptions
and deductions needed to reach those conclusions.

Although UCT is relatively simple, the formal models and deductions
may seem more complex than is warranted by the apparent simplicity of
the examples; but this is typical of common sense human processes that
are rapid but unconscious, including natural language understanding and
vision. It is also similar to what happens when relatively simple physical
theories are applied to real systems, such as aircraft wings, ecologies,
and proteins: the underlying physical theories are much simpler than the
practical models.

Our models of human concepts use triads, which can combine discrete
symbolic with continuous geometric representations, so that reasoning
can draw on the advantages of each, and the relation between them; this
has a precise and very general foundation in the theory of institutions

20 It is striking how easily readers accept such far from ordinary possibilities.

19



(see the appendix). Unified concept theory also extends conceptual inte-
gration (blending) to triad integration, with a precise notion of context
and a precise theory of its role in blending. The Buddhist monk exam-
ple demonstrates how “emergent structure” arises in blends: through
the integration of additional triads that match important non-integrated
concepts in the input spaces; this is a major new hypothesis of this pa-
per. Although much remains to be done, we consider the results so far
encouraging support for the promise of applying UCT to a wider range
of problems in cognitive science.
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23. Joseph Goguen and Grigore Roşu. Institution morphisms. Formal Aspects of

Computing, 13:274–307, 2002.
24. Rebecca Green. Internally-structured conceptual models in cognitive semantics.

In Rebecca Green, Carol Bean, and Sung Hyon Myaeng, editors, The Semantics

of Relationships, pages 73–90. Kluwer, 2002.
25. Stevan Harnad. The symbol grounding problem. Physica D, 42:335–346, 1990.
26. Masako Hiraga. Metaphor and Iconicity: A cognitive approach to analyzing texts.

Palgrave Macmillan, 2004.
27. George Lakoff. Women, Fire and Other Dangerous Things: What categories reveal

about the mind. Chicago, 1987.
28. George Lakoff and Mark Johnson. Philosophy in the Flesh: The Embodied Mind

and its Challenge to Western Thought. Basic, 1999.
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A More Mathematics of Unified Concept Theory

We begin with the notion of institution [17], which axiomatizes the pos-
sible kinds of theory and model that can be used for UCT. This is im-
portant because our examples used several different kinds of logic and
model, and other applications will no doubt require still other logics and
models. First, we assume there are contexts21, and context morphisms,
which have a (partially defined) composition operation (if ϕ : C → C ′

and ψ : C ′ → C ′′ then ϕ;ψ : C → C ′′ denotes their composition) that
is associative (i.e., (ϕ;ψ); ξ = ϕ; (ψ; ξ) whenever these compositions are
defined) and has identities (i.e., given a context C, there is a context mor-
phism 1C such that 1C ;ϕ = ϕ and ψ; 1C = ψ whenever these compositions
are defined)22.

Next, we describe how context changes affect theories and models;
this also is done axiomatically23 : We assume that for each context C,
there is a given set Sen(C) of axioms (or sentences) for that context,
and a given set Mod(C) of models24 for that context. If x is an axiom
for context C and if ϕ : C → C ′, then we let ϕ(x) denote the result
of moving a to the context C ′, and we assume that 1C′(a) = a and
ϕ;ψ(x) = ψ(ϕ(x)) for ψ : C ′ → C ′′. Similarly, given a modelM ′ for C ′, let
ϕ(M ′) denote the C ′-model that results from the change of context (notice
that this translation is “contravariant” rather than “covariant”), and we
assume that 1C(M ′) = M ′ and that ψ;ϕ(M ′) = ψ(ϕ(M ′)). Finally, given
ϕ : C → C ′, we assume the satisfaction condition, that

M ′ |=C′ ϕ(x) iff ϕ(M ′) |=C x

for all C ′-models M ′ and all C-axioms x. See Figure 8. It seems that
any logic (that has a notion of model) is an institution in this sense; a
detailed argument for this is given in [32], which also describes how a

21 Most institution literature uses the term “signature,” but “context” is more appro-
priate for the wider range of applications now being explored for institutions, many
of which exhibit similarity to Peirce’s triadic semiotics [35], in which the context of
a sign is important for its interpretation.

22 More technically, we are assuming a given category of contexts.
23 More technically, we assume two functors on the category of contexts.
24 More technically, a class, in the sense of Gödel-Bernays set theory.
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great deal of metamathematics can be done at the level of institutions.
(We mention that institutions can be generalized in various ways: one
is to let the satisfaction relation take values other than true and false,
e.g., in a lattice; another is to let model and sentence classes have more
structure, such as a category; see [23] for details.)
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Fig. 8. Structure of an Institution

A C-theory is a set of C-axioms. We now define a triad over an insti-
tution I to be a triple (M, C, T ) where M is a set25 of C-models and T is
a C-theory such that M |=C T . Then a triad morphism from (M, C, T )
to (M′, C ′, T ′) is a pair of maps Φ : T → T ′ and Ψ : M′ → M such that

M ′ |=C′ Φ(x) iff Ψ(M ′) |=C x

for all models M ′ ∈ M′ and all axioms x ∈ T ; this condition is similar to
the satisfaction condition. An equivalent form is

M ′ |=C′ Φ(T ) iff Ψ(M ′) |=C T

for all M ′ in M′, where Φ(T ) = {Φ(x) | x ∈ T}. It is easy to see that
every context morphism induces a triad morphism; but triad morphisms
are more general, as is shown by the skin color example. In the special
case where all functions are unary predicates and there is just one context,
triad morphisms degenerate to the infomorphisms of [1].

Categories represent structures, such as automata (with their homo-
morphisms), groups (with their homomorphisms), and vector spaces (with
linear transformation). The description of contexts and their morphisms
im the first paragraph actually constitutes a precise definiton of the cat-
egory notion. For example, Set denotes the category of sets, and Cat

25 This is more general than the definition in the body of the paper.
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denotes the the category of (small) categories. Similarly, functors repre-
sent constructions on structures, such as the formal language accepted
by an automaton, or the lattice of normal subgroups of a group; and the
description of how context changes sentences and models contains pre-
cise definitions for covariant and contravariant functors. Finally, natural
transformations represent relations between functors, such as that one
constructs less structured objects than another; the vertical arrows in
Figure 9 enforce the mutual consistency of the relationships. More intu-
itions and examples for categorical concepts can be found in [10], and in
many other places.
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Fig. 9. A Natural Transformation from F to G

Colimits abstractly capture the notion of “putting together” objects
to form larger objects, in an optimal way that takes account of shared
substructure26. Whereas colimits are determined uniquely up to isomor-
phism, blends are not, as shown by Example 3, where B could be “house-
boat,” or “boathouse,” or some other combination of the two input spaces.
Therefore colimits are not an adequate formalization of blending. This
raises the mathematical challenge of weakening colimits so that multiple,
non-isomorphic solutions are allowed. 3

2
-colimits are (somewhat tenta-

tively) suggested as a model of blending in [11], based on 3
2
-categories,

which have a partial ordering relation on morphisms; this relation can be
used to reflect the quality of morphisms, and thus can represent certain
values.

In the Buddhist monk example, the institution is equational logic,
contexts C for triads are theories, and C-theories are extensions of C
(i.e., they contain all the declarations and axioms of C), while C-models
have signatures that extend C, and M |=C T holds iff M satisfies T . Thus
triads here are (M, C, T ) where T extends C, and M is a set of models
of C plus the declarations of T .

To reconcile these triads with the definition of triad over an institution
I given above, we construct a new institution TX (EQ) from the institu-
tion EQ of many (or order) sorted equational logic. Actually, since it is

26 See [10] for an intuitive discussion of the mathematics, and [31, 7] for details.
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just as easy, we do the construction for an arbitrary institution I: The
contexts of TX (I) are theories of I, i.e., pairs C = (Σ,A) where Σ is an
I-context and A is a set of Σ-axioms of I; the C-axioms of TX (I) are
theory extensions (Σ ′, A′) of C (i.e., C ⊆ C ′ and A ⊆ A′); the C-models of
TX (I) are Σ ′-models (where Σ ⊆ Σ ′) that satisfy A; and M |=C (Σ′, A′)
holds for TX (I) iff M |=Σ′ A′ for I.

It is interesting to notice that the blend theory in the Buddhist monk
example is a colimit, and the set of models in the blend triad is a limit (the
dual notion to colimit) of the sets of models in the component triads; this
is a special case of a result that holds for any institution: colimits of triads
are computed by taking colimits of theories and limits of model sets. The
institution, contexts, and triads are the same for the example of Section
5, and it is interesting to notice that here the model set in the triad of the
blend for the most general context (denoted ∗. ∗ .∗) corresponds to the
final table in Section 4, viewed as a set of tuples. It may also be interesting
to know that it would be easy for a suitable automatic theorem prover to
automatically find the solutions for each context.

An important open problem is to formalize the optimality principles
of [6], and a promising approach is to use continuous mathematics, e.g.,
potential functions on phase space, as in our research on the qualitative
segmentation of music [2, 3, 13]; this connection suggests that complexity
functions might be able to measure the novelty of blends. In addition,
it seems likely that image schemas can be modeled using triads, with
geometrical spaces for the sensory-motor aspects, and semiotic spaces for
the conceptual aspects. So there are still many interesting issues for future
research.
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