Information Integration in Institutions

Joseph Goguen

University of California at San Diego, Dept. Computer Science & Engineering
9500 Gilman Drive, La Jolla CA 92093-0114 USA

Abstract. This paper unifies and/or generalizes several approaches to
information, including the information flow of Barwise and Seligman, the
formal conceptual analysis of Wille, the lattice of theories of Sowa, the
categorical general systems theory of Goguen, and the cognitive semantic
theories of Fauconnier, Turner, Gardenfors, and others. Its rigorous ap-
proach uses category theory to achieve independence from any particular
choice of representation, and institutions to achieve independence from
any particular choice of logic. Corelations and colimits provide a general
formalization of information integration, and Grothendieck constructions
extend this to several kinds of heterogeneity. Applications include mod-
ular programming, Curry-Howard isomorphism, database semantics, on-
tology alignment, cognitive semantics, and more.

1 Introduction

The world wide web has made unprecedented volumes of information
available, and despite the fact that this volume continues to grow, im-
provements in browser technology are gradually making it easier to find
what you want. On the other hand, the problem of finding several collec-
tions of relevant data and integrating them! has received relatively little
attention, except within the well-behaved realm of conventional database
systems. Ontologies have been suggested as an approach to such problems,
but there are many difficulties, including the connection of ontologies to
data, the creation and maintenance of ontologies, existence of multiple
ontologies for single domains, the use of multiple languages to express
ontologies, and of multiple logics on which those languages are based, as
well as some deep philosophical problems [32].

This paper unifies and generalizes several approaches to information?,
providing a rigorous foundation for integrating heterogeneous information
that uses category theory to achieve independence from any particular

1 Such as, find all computer science faculty in the European Union who teach a grad-
uate course on logic and have published in a major database conference.

2 Although we often use the terms “information” and “concept,” we do not claim or
believe that the various formal entities that we study are identical with, or are even
fully adequate representations of, information or concepts as actually experienced
and used by humans; a survey of some reasons for this appears in [30].

choice of representation, and institutions to achieve independence from
any particular choice of logic®. Corelations, cocones, and colimits over
arbitrary diagrams, provide a very general formalization of information
integration that includes many examples from databases, cognitive lin-
guistics, information flow, ontologies, and other areas. In addition, we
argue that “triads,” which are 3-ary relations of “satisfaction,” “deno-
tation,” or “classification,” connecting concepts and percepts, or logical
and geometrical entities, are particularly appropriate models for many
situations in cognitive science?.

Barwise and Seligman have developed a philosophical theory called in-
formation flow or channel theory [3], to describe how information about
one thing (or several things) can convey information about something else,
i.e., how information can “flow” through “channels” to convey new infor-
mation. Kent [51,53,52] uses this for integrating distributed ontologies.
This paper generalizes information flow to any logic by using institutions,
and following the lead of Kent [51], also combines it with the formal con-
cept analysis of Wille [75, 19] and the lattice of theories approach of Sowa
[70]. In addition, it draws on the categorical general systems theory of
Goguen [21, 22, 26] for further generalization.

We let “IF” abbreviate “information flow” and also use it as a prefix
designating concepts in the IF approach; similarly, we let “FCA” abbrevi-
ate “formal concept analysis” as in [19] (originating with Wille circa 1980
[75]), we let “IFF” abbreviate “Information Flow Framework” as in the
IEEE Standard Upper Ontology project of Kent [53,52], we let “LOT”
abbreviate the lattice of theories approach of Sowa, we let “CGST” ab-
breviate the categorical general systems theory of Goguen, and we let
“BT” abbreviate the blending theory of Fauconnier and Turner [16]. Ap-
plications to ontologies, as in [4, 50, 53], and to databases, as in [33], were
a major inspiration for much of this paper, and are discussed in Section
3.6 and Appendix C.

The greater generality of institutions over classifications, local logics,
concept lattices, etc. not only allows information integration over arbi-
trary logics, but also allows an elegant treatment of many interesting
examples in which part of a situation is fixed while another part is al-
lowed to vary, e.g., non-logical symbols can vary, while the logical symbols
and rules of deduction are fixed. Intuitively, institutions parameterize a

3 Readers who are not very familiar with category theory and institutions will find a
definition of institution that uses no category theory in Appendix A, followed by a
brief exposition of some basic notions on category theory.

4 This name was chosen to honor Charles Sanders Peirce.

basic judgement of satisfaction, and all the theory that rests upon it,
by this kind of variation. The paper takes a philosophical stance that is
unusual in computer science: inspired by Peirce’s pragmatics and semi-
otics, it rejects reductionist and realist views of information, claiming
that mathematical models are just models, useful to varying extents for
various applications. A philosophical motivation for parameterizing sat-
isfaction (i.e., for using triads) also follows arguments of Peirce against
dyadic theories of meaning, and in favor of meaning being triadic, where
the third ingredient between signs (such as formulae) and meanings is
an “interpretant” that supplies a context in which interpretation is done;
thus institutions formalize a key insight of Peirce’s semiotics, as discussed
further in Section 3.6 and Appendix C.

Unfortunately, no easy introduction to institutions as yet exists, but a
short summary is given in Appendix A, including institution morphisms
and comorphisms, triads, the category of theories, and some motivation.
Institutions not only have great generality and elegant theory, but they
also support a powerful framework for modularization and maintenance of
complex theories (such as ontologies), as shown in Example 1. Triads make
it easier to explain institutions, especially their variant and multivalued
generalizations, and also support integration in situations that involve
both syntactic and semantic information, such as Gurevich’s evolving
algebra [46] (Example 2 in Section 2), and the use of triad blending to
align populated ontologies in Unified Concept Theory (abbreviated UCT)
[30] (Example 7 in Section 3.7).

The use of categories in this paper goes well beyond the pervasive but
implicit use of category theoretic ideas in IF [3]; for those readers who
are less familiar with category theory, Appendix A provides a condensed
introduction, but of course there are many other sources, such as [18,
44]. We show not only that many important IF structures are the objects
of categories with the relevant morphisms, but also that they are the
models or theories of interesting institutions, and moreover that some
of the most important IF structures actually are very special kinds of
institutions. In addition, we prove many new results using known methods
and results from category, institution, or CGST theories; some are new
even for the special cases of traditional IF, including Propositions 3 and
5, and Theorems 5, 6 and 7. The Grothendieck flattening construction
supports heterogeneity at several different levels, including the lifting of
triads to form institutions.

IF, FCA, IFF, LOT, and BT are unified and generalized in Section
3; the Galois connections of institutions play a key role here. Section

3.1 introduces IF classifications, constraints and theories, showing that
these are special cases of institutional concepts, and then generalizing
them. Section 3.2 generalizes aspects of FCA to arbitrary institutions,
particularly the concept lattice construction, and Example 3 applies it
to the Curry-Howard isomorphism. Section 3.3 discusses IF channels and
distributed systems; corelations are used to formalize information inte-
gration, with IF channels, database local-as-view systems, cognitive lin-
guistic blends, and software architectures all as special cases. Section 3.4
discusses CGST, including the Interconnection Theorem, a result that
is both new to and relevant for IF and FCA. Local logics are discussed
in Section 3.5. Data, schema, and ontology integration are discussed in
Section 3.6, including a very general way to integrate ontologies with
databases in Example 4, several ways to view database systems as insti-
tutions, and a new approach to mereology® in Example 5, unifying in-
heritance (is-a) and constituency (part-of) relations in databases and
ontologies, based on order sorted algebra. Applications to cognitive se-
mantics are discussed in Section 3.7, especially the use of triads to unify
conceptual spaces in the senses of Fauconnier and Géardenfors, and to
generalize both (see Examples 6 and 7). Some conclusions are given in
Section 4. Appendix B explains the Grothendieck construction. Appendix
C illustrates the flexibility of institutions by formalizing databases so that
satisfaction says whether an answer satisfies a query in the context of a
given database, inspired by the triadic semiosis of Peirce [65].

Familiarity is assumed with basics of category theory, including cat-
egory, opposite category, functor, natural transformation, limit, colimit,
and the categories Set of sets and Cat of categories; places to learn this
material include [18, 66,24, 56]. We use ;" for the composition of mor-
phisms. Some mathematicians have expressed aversion to category theory,
presumably due to their professional orientation towards difficult proofs
of specific results in traditional areas, whereas category theory is oriented
towards easy proofs of very general results; but the latter is precisely
what is needed for the goals of this paper. There are no difficult new the-
orems here; instead, this paper integrates previously disconnected areas
by applying old results in new ways, to help solve important practical
problems. Although most proofs are omitted, they can be found in the
references and/or reconstructed as exercises to test understanding of the
material.

5 Sometimes also called “partology,” this refers to the formal study of the “part-of”
or “constituency” relation, also called the has-a relation.

This paper is dedicated to the memory of Jon Barwise, with whom
I had the pleasure of working for several years at the Center for
the Study of Language and Information at Stanford University.
Jon was exceptional in both the depth and breadth of his vision
of logic as far more than foundations for mathematics, and he is
much missed.

Thanks to Robert Kent, Till Mossakowski, and Marco Schorlemmer
for valuable comments on drafts, and to the participants in Dagstuhl Sem-
inar 04391, Semantic Interoperability and Integration, for their enthusi-
asm and comments; of course, any remaining bugs are my own fault. This
work is partially supported by the National Science Foundation under
Grant No. ITR 0225676, the Science Environment for Ecological Knowl-
edge (SEEK) project, the goal of which is to provide an integrated in-
formation infrastructure to support a distributed community of 24 sites
doing long term ecological research.

2 Institutions and their Morphisms

Institutions® arose at the end of the 1970s in response to the enormous
expansion of logical systems used in computer science, and the need for
a uniform way to structure theories in them. Early applications included
module systems for specification and knowledge representation languages;
the approach was later extended to programming languages (see [42]
for a general discussion), and is here further extended to ontologies and
databases. The basic reference for institutions is [35], and the latest ver-
sion of basic definitions appears in [40], which focuses on variants of the
institution morphism notion. Many logical systems have been shown to
be institutions, including first order logic (with first order structures as
models, denoted FOL), many sorted equational logic (with abstract alge-
bras as models, denoted EQL), Horn clause logic (denoted HCL), many
versions of higher order and modal logic, and much more; it seems that
essentially any logical system has a corresponding institution, as explored
in detail in [60]. There are now hundreds of papers that study and/or ap-
ply institutions. A recent contribution is Mossakowski’s Heterogeneous

5 The name “institution” was inspired by the solidly institutional status of first order
logic, and to a lesser extent, of other well established logics, such as modal, intuition-
istic, (higher order) type theory, and classical second order logic. Rod Burstall and
I thought of the Bank of England, or the US Treasury, as models of such stability,
and considered the name somewhat ironic, an implicit criticism of the tendency to
downplay the importance of developing and using specialized logics (e.g., in com-
puter science) for specialized tasks.

Tool Set [59], an extension of CASL [62] which supports verification over
multiple logics, based in part on the approach to heterogeneity described
in Appendix B.

Institutions abstract and generalize Tarski’s “semantic definition of
truth” [72], the most significant ingredient of which is a relation of sat-
isfaction between models and sentences, denoted |=. For example, Tarski
defined the semantics of conjunction with a formula like

M = (P and Q) iff (M |=P)& (M =Q)

where (just for the moment) “and” is syntactic conjunction, “&” is se-
mantic conjunction, M is a model, and P, are formulae. Institutions
generalize by parameterizing satisfaction by “context,” which in many
applications is a vocabulary, since many applications of logic require the
vocabulary from which sentences are constructed (such as predicate and
function symbols) to vary from one situation to another in such a way
that truth is invariant under the induced changes of notation. It may be
illuminating to think of this in terms of Peirce’s semiotics, which extended
meaning from dyadic to triadic relations [65].

Sen Set
Sign =
Mod CatoP
x Mod(X) sz Sen(Y)
® Mod (¢) Sen(¢)
> Mod(X') s Sen(X)

Fig. 1. Structure of an Institution

Institutions use category theory to formalize the notions of context
(e.g., vocabulary) and translation among contexts, as well as the effects
of such translations on sentences and on models, each of which is param-
eterized by abstract objects called signatures or contexts, and by ab-
stract mappings called signature (or context) morphisms, which form
a category denoted Sign. Parameterization of sentences is then given by
an assignment of a set Sen(X) of sentences to each signature X, and a

translation Sen(f) from Sen(X) to Sen(X’) for each signature morphism
f: X — X', while the parameterization of models by signatures is given
by an assignment of a class Mod(X') of models for each signature X, and

a translation Mod(X'") — Mod(X) for each f: ¥ — X’; both Sen and
Mod are functors, but notice that Mod is contravariant; see Figure 1.

Definition 1: An institution consists of an abstract category Sign, the
objects of which are called signatures, a functor Sen: Sign — Set, and
a functor Mod: Sign® — Set (technically, we might uses classes instead
of sets here). Satisfaction is then a parameterized relation =y between
Mod(X) and Sen(X), such that the following Satisfaction Condition
holds, for any signature morphism f: X — X', any X’-model M’, and
any J-sentence e

M' s fle) iff f(M')Exe

where f(e) abbreviates Sen(f)(e) and f(M’) abbreviates Mod(f)(M');
this expresses the invariance of truth under change of notation”. O

General concepts from model theory generalize, e.g., we can define, for T’
is a set of X-sentences, M =x Tiff M Expforallp e T, and T =x ¢
iff M =5 T implies M x5 ¢, for all ¥-models M. Similarly, if V' is a
class of models, let V |=x T'iff M =5 T for all M in V.

Some of the earliest and most useful results about institutions concern
a duality between theories and model classes. A Y-theory is a set of X-
sentences, and a Y-model class is a class of X-models. Every Y-theory
T determines a Y-model class T, consisting of all X-models that satisfy
all its sentences, and every X-model class V determines an X-theory V'*,
consisting of all Y'-sentences satisfied by all the models in V. These two
operations define the kind of duality between model classes and theories
known as a Galois connection [5] (for those who know the concept, it
is also an adjoint functor situation). Many simple results are known to
hold in such situations, some of which we now discuss.

A theory is closed iff it equals its closure; intuitively, a closed theory
already contains all the consequences of its sentences; the closure of
a theory T is the theory T**, while the closure of a model class V is
V**. The closure of a closed theory (or model class) equals itself (in fact,
T =T iff T is closed), and (71 UT3)* = Ty NT5; many more such results
for arbitrary institutions are given in Propositions 3 and 4, and Lemmas
6 and 7, of [35]. The following result is less trivial, but still well known for

" This includes adding new symbols and identifying old symbols, as well as just
renaming.

Galois connections; Section 3.1 shows how it helps to greatly generalize
some results in [19].

Proposition 1: For any institution I and signature X', the closed X-
theories, and the closed X-model classes, are complete lattices under in-
clusion. Moreover, there is a dual isomorphism between these complete
lattices.

Proof Sketch: Given a family T; for ¢ € I of closed theories, (|J; 7)™ is
clearly the least closed that contains all T;. Existence of arbitrary least
upper bounds implies a complete lattice. A similar argument works for the
closed model classes. The two isomorphisms are the two * maps, which are
dual because T' < T" iff T* < T"*. Functorial adjointness gives continuity
of the isomorphisms. O

The collections of all theories and of all model classes over a given
signature are also lattices, with T < T” iff T* C T"*. This is exactly the
“lattice of theories” of Sowa [70], when the institution is first order logic
(FOL, but Sowa uses an elegant Peircean syntax). Note that LOT and
also IFF, use the opposite ordering relation, which seems more intuitive
for many purposes; in addition, [70] also proposes a number of set theo-
retic operations for navigating the lattice of theories. However, I believe
it is more useful to consider all the theories over all the signatures of
an institution as a single category, as in the following from [35], because
this makes several more general operations available, such as renaming
operation symbols, and slicing theories.

Definition 2: Let the category Th(I) have as its objects pairs (X, T)
where X is a signature of I and T"is an X-theory of I, and as its morphisms
semantic consequence preserving signature morphisms, i.e., f: (X, 7) —
(X T") is f: X — X' such that if t is in T then 7" = f(t), in the sense
that M’ = T" implies M’ |= f(¢) for all M’, or equivalently, ¢ € T implies
ft)eT™. O

Such heteromorphisms between theories with different signatures are
needed, for example, for integrating data from domains that have different
ontologies (since ontologies are theories); see [49] for a useful survey of
ontology mappings. Category theory also supports many useful operations
on theories (see the discussion following Theorem 1 below).

Definition 2 is a special case of the Grothendieck construction de-
scribed in Appendix B, which the reader may consult for a general defini-
tion of the composition of heteromorphisms. Some results similar to the
above are proved for the special case of many sorted first order logic
in [52], using the fibration formulation of the Grothendieck construc-

tion, though without benefit of the unifying and generalizing notions and
results of institution theory; [35] also proves the following (actually, a
stronger result):

Theorem 1: Th(I) has whatever colimits and limits the signature cate-
gory of the institution I has. O

Colimits can be used to integrate theories over different signatures, and of
course such theories could in particular be ontologies®. As discussed in [35,
23], and other publications beginning with [6], colimits enable powerful
methods for structuring and combining theories, including inheritance,
sums over shared subtheories, renaming parts of theories, and (best of
all) parameterizing and instantiating theories. This goes far beyond the
(generalized) Boolean operations of FCA and LOT; moreover, it provided
the basis for the powerful module system of the ML programming lan-
guage, with its so called signatures, structures and functors [58], though
ML does not provide all the functionality defined in [23] and implemented
under the name “parameterized programming” in the OBJ language fam-
ily, which includes CafeOBJ [13], Maude [8, 7], BOBJ [38], OBJ3 [43], and
CASL [62]; these ideas also influenced the module systems of C++, Ada,
and LOTOS, and are the basis for new approaches to software architecture,
such as the CommUnity of Fiadeiro [18].

Example 1: Parameterized Programming: The category Th(I)
was invented to support flexible modularity for knowledge representation
and software specification for the Clear specification language [35]. The
most interesting constructions are for parameterized theories and their
instantiation. An example from numerical software is CPX[X :: RINGI],
which constructs the complex integers, CPX [INT], the ordinary complexes,
CPX[REAL], etc., where RING is the theory of rings, which serves as an in-
terface theory, in effect a “type” for modules?, declaring that any theory
with a ring structure can serve as an argument to CPX. For another ex-
ample, if TRIV is the trivial one sort theory, an interface that allows any
sort of any theory as an argument, then LIST[X :: TRIV] denotes a
parameterized theory of lists, which can be instantiated with a theory of
natural numbers, LIST[NAT], of Booleans, LIST[BOOL], etc. Instantiation
is given by the categorical pushout construction (a special case of colim-

8 According to [24], in many practical cases, colimits capture the notion of “putting
together” objects to form larger objects, in a way that takes proper account of shared
substructures.

% This idea is elaborated in [25].

its) in Th(I), where I is an institution suitable for specification theories,
such as order sorted algebra, or else for programs as in [42].

Other operations on theories include renaming (e.g., renaming sorts,
relations, functions) and sum; thus, compound “module expressions,”
such as NAT + LIST[LIST[CPX[INT]]] are also supported, and can be
used to describe, and when “executed,” to actually construct, complex
software systems [74,42]; this is the basis for the most important practi-
cal applications of parameterized programming. Colimits give the seman-
tics of module expressions such as F = REAL + LIST[CPX[INT]]. Figure
2 illustrates this, with B the module expression E above, I1 = REAL,
I, = LIST[CPX[INT]], and G = INT as a common subobject, noting that
INT is a subtheory of REAL. This approach also applies to programming
languages, viewed as providing programs as models for institutions with
specifications as sentences [42]. O

Fig. 2. Information Integration over a Shared Subobject

If we restrict to a fixed signature X' and also restrict to theory mor-
phisms where f is the identity on X, then there is at most one morphism
from any X-theory to any other, and the resulting category becomes a
quasi-ordered set of X-theories, in which theories T, 7" are equivalent iff
T < T and T' < T. If we identify equivalent theories, we again get the
complete lattice of closed X-theories. The set of (not necessarily closed)
X -theories is also a complete lattice under inclusion, but this is less inter-
esting. Entirely similar constructions apply to model classes. However, as
shown by ML and the other languages mentioned above, it is more useful
to work with T'h(I).

A related construction is given in the following:
Definition 3: The derived institution Der(I) of an institution I has
as its signatures and its models, those of I, but its X-sentences are X-

theories, with satisfaction as just after Definition 1. In essence, the X-
sentences of Der(I) are arbitrary conjunctions of Y-sentences of I. O

10

While the material above provides a good foundation!? for integrating
theories (such as ontologies) over a fixed logic, it is not adequate for in-
tegrating theories over different logics, which is often needed in practice.
For this, we need to be able to translate between logics, i.e., institutions.
As discussed in [40], there are actually many different kinds of logic trans-
lation, useful for different purposes. The following (from [35]) is perhaps
the most basic of these:

Sen'(F(X)) el Sen(%)
Sen' (F(6)) l l Sen(g)
Sen'(F(X")) - Sen(X")

Fig. 3. The Sentence Natural Transformation

Mod(X") b Mod'(F(X"))
Mod(¢) l Mod' (F(¢))
Mod(X) Mod' (F (X))
bx

Fig. 4. The Model Natural Transformation

Definition 4: An institution morphism from an institution I to an-
other institution I’ consists of a functor F': Sign — Sign’ and two nat-
ural transformations'® a: F;Sen’ — Sen and b: Mod — F; Mod', such
that, for any X-model M and F(X)-sentence e’

M =y ax(€) iff bs(M) Eps) € -
Let INS denote the category with institutions as objects, and with these
as morphisms. O

Intuitively, institution morphisms are truth preserving translations from
one logical system to another. More technically, for any signature X,
then ay maps F'(X)-sentences to Y-sentences, and by maps X-models to
F(X)-models, in a way that is consistent with respect to the satisfaction
relation. This consistency is enforced by the vertical maps in Figures 3
and 4 induced by ¢: X — X', which prevent arbitrary mappings.

For example, there is an institution morphism from first order logic
with equality to equational logic, where F' forgets predicates in signatures,

10 Although ignoring many practical issues, some of which are discussed, for example,

in [1,63,32].
1 This notion is briefly explained in Appendix A.

11

where each ay represents equations using the new equality predicate, and
where each by forgets predicates in models. Among other variants of the
institution morphism notion, perhaps the most natural is the following:

Definition 5: An institution comorphism from an institution I to an-
other I’ consists of a functor F': Sign — Sign’, a natural transformation
a: Sen — F;Sen’, and a natural transformation b: F;Mod — Mod,
such that, for any F(X)-model M" and Y-sentence e

bE(M,)):2 e iff M/):/F(E) CLE(G) .
Let coINS denote the category with institutions as objects, and with
institution comorphisms as morphisms. O

One class of examples arises from subinstitutions, for which F' and ax
are inclusions, and by is forgetful. For example, there is such a morphism
from HCL to FOL. A more general notion allows F' and the ayx to be
injective. An example is the translation from (many sorted) EQL into
(unsorted) FOL, in which equality is treated as a special relation. Of
course, there are many other examples of subinstitutions, some of which
are given below; and there are also many institution morphisms that are
not subinstitution morphisms, some of which we will also see below.

It can be helpful to think of an institution comorphism as an institu-
tion morphism between the source and target co-institutions, where the
co-institution of an institution replaces its signature category by its op-
posite, and then swaps its sentence and model functors. This transforma-
tion gives two functors that define an isomorphism between the categories
of institutions with morphisms and institutions with comorphisms, thus
formalizing this important duality, and giving many theorems for free.

Institution (co-)morphisms formalize logic translations, and can be
used to provide a very general notion of what integration means in many
different contexts; they also provide many useful results, such as that logic
translations preserve the modular structure of an ontology under certain
mild assumptions [35]. Many results from logic have been generalized
to institutions, including the Craig interpolation, Robinson consistency,
Beth definability, ultrafilter, and Herbrand universe theorems; the insti-
tutional versions apply to logics where the results were already known,
and yield new results for many other logics [14, 10, 11].

An alternative definition of institution in [35] supports useful gen-
eralizations and easier proofs, based on the intuition that institutions
provide particular ways to interpret things in particular contexts. For-
mally, a triad is a relation between expressions (sentences) and entities
(models), and is therefore similar to the IF notion of classification and

12

the FCA notion of formal context, except for allowing internal structure
for sentences and models'?, and allowing variation over a “signature” pa-
rameter that represents context. These generalizations are made explicit
in the category of triads and the definition of institution as a functor
into that category. The first step is the category Rel of relations, which
has sets as objects and relations as morphisms, seen as triples (A4, R, B)
where R C A x B, with the usual composition and with identity functions
(i.e., diagonal relations) as identities. Next, the category of triads is the
category Trel of “twisted relations,” having triads (A, R, B) as objects,
and having as morphisms (A4, R, B) — (A’, R', B') pairs (f, g) of functions
where f: A’ — A and g: B — B’ such that the following commutes in
Rel,
A—"-p

1

! !
ATB

i.e., such that f; R = R’; g™, where ¢~ denotes the converse of g. Then
an institution is a functor I: Sign — Trel.

The above covers the basic case where additional structure on models
and sentences is not made explicit. It is generalized by allowing the sets
and functions (but not relations) in Trel to be the images under forgetful
functors, e.g., from Cat to Set. Let A and B be categories for model
classes and sentences, respectively, with forgetful functors U: A — Set
and V: B — Set, and let (U | /V 1) denote the category!'? with objects
(A, R, B) where A is an object in A, B is an object in B, and R C
U(A) x V(B), and with morphisms (A, R, B) — (A’, R, B') pairs (f,g)
of functions where f: A’ — A in A and g: B — B’ in B such that
U(f);R=R';V(g)~ in Rel. Then
Definition 6: A variant institution is a functor I: Sign — (U | /V 1),
and is a close variant if A, B are either Set or Cat. We may also use
the term (U, V)-triad for the objects in (U | /V 7). O

The construction in [35] is more general, because relations are in a third
category C, which allows e.g., the “generalized institutions” of [34] where
satisfaction is “multi-valued,” using V-valued relations where V' is a struc-
ture such as a complete lattice.

2 Some interesting models have a geometrical structure, such as that of a sheaf [26]
or of a manifold [30] (see Example 6).

13 The notation indicates that it is a comma category, but the details of this are not
necessary here, though general properties of comma categories are what eases proofs,
e.g., of limits and colimits for institution categories [35].

13

Example 2: Evolving Algebras: The abstract state machines of Gure-
vich [46] (formerly called evolving algebras) can be seen as functors from
N, the natural numbers with the usual order viewed as a category, to a
category of triads consisting of algebras and their specifications, both co-
variant rather than contravariant; hence an evolving algebra is a variant
institution. (We omit many details.) O

This view of institutions as functors also gives rise to institution mor-
phisms in a very natural way: for a fixed signature category, the insti-
tutions over that category form a functor category, [Sign, (U | /V 1)]
and allowing signatures to vary gives a functor Cat — Cat, which we
can view as an indexed category and then flatten with the Grothendieck
construction of Appendix B; this gives rise to the morphisms in Defini-
tion 4 and a category that we denote INS(U, V). General results (e.g.,
Proposition E.4 of [40]) about comma categories and the Grothendieck
construction now give the following:

Theorem 2: If A, B have (co-)limits and if U,V preserve (co-)limits,
then (U | / V1) and INS(U, V) also have (co-)limits. O

It is perhaps surprising that institutions with the simplest possible
(non-void) signatures play an important role:

Definition 7: A 1-institution is an institution where Sign = 1, the
category having just one object o, and just one morphism. O

The morphism e — e in Sign is necessarily the identity on e, so the
transformations Sen(1,) and Mod(1s) are both necessarily identity mor-
phisms on a set, and so can be identified with that set. Thus 1-institutions
are just triads, which therefore form the category Trel, with morphisms
the same as their morphisms as institutions.

3 Information Flow in Institutions

“Information” is central to contemporary computer science, cognitive sci-
ence and philosophy, but no definition is widely accepted, and no existing
definition is adequate for all the intended applications. Both IF and FCA
capture key aspects of information in their formalizations, though nei-
ther provides an explicit definition of information as such'*. This section
shows that many basic IF and FCA concepts are 1-institution concepts,
and also shows that they generalize to arbitrary institutions.

4 My definition of information in [27] is broadly consistent with the Peircean pragma-
tism espoused by [70], though considerably more social.

14

3.1 Basic Information Flow

Barwise and Seligman [3] give an account of what it means for one sign
(they use the word “token”) to “carry information” about another, or in
a different metaphor, of how “information flows.” The rigorous mathe-
matical theory in [3] builds on the intuition that information flow is only
possible in a stable distributed system, consisting of “channels” through
which “information flows.” This subsection gives a brief self-contained
exposition of some basics of this theory.

A classification in the sense of [3] consists of a set K of tokens, a
set P of types, and a relation = between K and P, that tells whether
a given token has a given type; we may call this an IF-classification
for clarity. Classifications have often appeared in various literatures, e.g.,
[5] calls them “polarities,” and [19] calls them “contexts;” they can be
considered a primitive kind of ontology. According to [3], tokens carry
information, and types represent the information that is carried. Given
classifications (K, P, =) and (K', P, '), an infomorphism (K, P,) —
(K', P', ') consists of functions f¥: K’ — K and f": P — P’ such that
fY(k) Etiff k E f7(t), for all k € K’ and ¢ € P. Infomorphisms are
the constituents of channels, which express the structure of distributed
systems in IF theory. It is now easy to check the following, noting that the
condition on f¥ and f” is just the institutional Satisfaction Condition:

Proposition 2: A classification is a 1-institution where Mod(e) is the
set of tokens and Sen(e) is the set of types. Moreover, infomorphisms are
comorphisms of these institutions. Let IFC denote the resulting category
of IF-classifications, which is the subcategory of coINS having the 1-
institutions as its objects. O

Alternatively, if we consider tokens as sentences and types as models (i.e.,
take the co-institution), then we can also view IFC as a subcategory of
INS; though this may seem rather counter-intuitive, it immediately gives
the following as a corollary of Theorem 2:

Theorem 3: IFC has limits and colimits of all (small) diagrams. O

A more detailed discussion of this result is given in paragraphs just above
Section 3.4 below. Note that IF-descriptions are also triads, and that IFC
is a category of triads. The following gives still another formulation, along
with some important additional IF concepts:

Definition 8: Given a set P of type symbols, a P-classification C is
a set K of tokens plus a unary relation C'(p) on K for each p € P, i.e.,
a function C: P — 2% to subsets of K. By convention we write p for

15

C(p), and k = p instead of p(k) or (C(p))(k). A P-sequent is a pair
of lists from P, written in the form I" - A. A P-theory is a set FE of
P-sequents, called P-constraints in this context; an IF-constraint is a
P-constraint for some P, an IF-theory is a P-theory for some P, and a
P-classification C' satisfies a P-constraint 1" - A iff for all tokens k£ of
C, k |= q for every g € I' implies k |= p for some p € A. O

Thus, P-classifications are IF-classifications with type set P; they are also
models of P in the usual sense of first order logic. From here on, we feel
free to omit prefixes IF- and P- if they are clear from the context. A pretty
little institution lurks in the above definitions: its signature category is
Set, the objects of which are considered sets P of predicate symbols; its
P-models are P-classifications; its P-sentences are P-sequents; and its
satisfaction is as above. We let the reader define the translations of mod-
els and sentences under signature translations, and check the satisfaction
condition. Let us denote this institution by IFS; it is easy to see that this
“institution of 1-institutions” is a subinstitution of FOL. Moreover, by
adding infomorphisms, the model classes become categories (of classifica-
tions), yielding an institution in the original sense of [35], which extends
Definition 1 by allowing Mod: Sign®” — Cat, i.e., we get a close vari-
ant institution with informorphisms as model homomorphisms. Here is a
formal statement of the simpler form:

Definition 9: The institution IFS has Set as its category of signatures,
with Mod(P) consisting of functions P — 2% from P to subsets of some
set K, with Sen(P) = 2F x 2F (the set of all pairs of subsets of P),
written as sequents, and with =p the usual satisfaction relation. O

The above suggests generalizing IF to allow tokens that are terms
built using arbitrary constructors!®, and to allow first order sentences with
non-unary predicates, instead of just sequents with unary predicates. The
result is actually the familiar institution of first order logic with terms.
But we can go further, and consider information flow theory over an
arbitrary institution; also we can obtain a deeper understanding of the
relation between classifications and theories by viewing it as a special case
of the Galois connection between model classes and theories that holds
in any institution. For this, we first review more material from [3]:

Definition 10: The theory of an IF-classification C, denoted Th(C),

has as its constraints all sequents that satisfy C. An IF-theory is regular

15 Although [3] says “... any suggestion that tokens must have something like ‘syntax’
is quite unwelcome,” we claim that such structuring is precisely what is needed for
many applications, including mereology for ontologies, as discussed in Section 3.6.

16

iff it satisfies the identity, weakening, and global cut axioms given in [3],
page 119. The classification of a regular theory 7" = (P, E), denoted
Cla(T), is (P, K, =), where K is the set of all partitions (I, A) of P that
are not in F, and where (I A) =piff pe I'. O

The following is proved in [3]:
Theorem 4: Th(Cla(T)) =T for any regular IF-theory T'. O

The above result is extended to a categorical equivalence in [51]. Using
Theorem 4 and definitions in Section 2 gives a nice (and apparently new)
result, for which we first extend Cla to non-regular theories by replacing
FE by E** in Definition 10:

Proposition 3: Th(C) = C* for any P-classification C', and an IF-theory
is closed iff it is regular. Moreover, Cla(T') € T* for any P-theory T. O

Although this formulation is particular to IF'S, the Galois connection
and its many consequences hold for every institution. In particular, we
can now see that Theorem 4 is a special case of the general institutional
result that T** = T iff T is closed; what then becomes interesting is how
the particular constructions Th and Cla relate to the Galois duality in
this special case.

3.2 Formal Concept Analysis

A formal context in FCA [19] is the same as an IF classification!®,
except that instances are called objects, types are called attributes,
and classification relations are called incidence relations; thus formal
contexts are also 1-institutions, as well as triads. It follows from Theorem
3 that, with the natural morphisms, formal contexts form a category FCA
that has all limits and colimits.

The main notion of FCA is that of a formal concept in a formal
context, defined to be a pair (T,V) such that T'= V* and V = T*, for
which FCA uses the terms intent and extent, respectively; note that T is
a set of attributes, and V' is a set of objects. Given a formal concept (', V')
of a formal context (K, P, =), it follows that both 7" and V' are closed,
and that they correspond under the dual isomorphism of Proposition 1.
Thus the collection of all formal contexts forms a concrete complete lattice

16 Although for consistency we mainly use IF terminology, it should be noted that FCA
originated around 1980 [75], and thus predates IF. Moreover, institutions go back to
the late 1970s, and the notions of polarity (which is the same as FCA formal context
and IF classification) can be found in the 1948 first edition of Birkhofl’s classic book
on lattice theory [5].

17

under inclusion, of pairs of subsets; it is called the concept lattice, and
we denote it CL(K, P, |=). Conversely, given a lattice of formal concepts
over sets K, P, we can define a classification by k = p iff k£ € {p}*. It is
now straightforward to verify the following version of the Basic Theorem
of Concept Lattices [19]:

Proposition 4: Given sets P, K, there is a bijection between classifica-
tions over P, K and their concept lattices. O

Intuitively, a concept lattice identifies tokens and types that cannot be
distinguished by how they are used in a formal context. One appeal of
FCA is the nice pictures that can be drawn of (sufficiently small) concept
lattices; these pictures are called Hasse diagrams in lattice theory. It is
natural to define concept lattice morphisms to be complete lattice homo-
morphisms, and then show that the above bijection is an equivalence of
categories, as in [51]; many other nice categorical extensions of FCA can
also be found in [51].

Formal concepts are easily defined for an arbitrary institution I, as
pairs (T,V) such that T = V* is a set of Y-axioms (i.e., a X-theory),
and V = T* is a a set (or class) of Y-models; as before, these form a
complete lattice under inclusion, which we may again call a concept lat-
tice, although for the logical systems usually considered in the literature
on institutions, their Hasse diagrams are not finite. Intuitively, the closed
theories (or model classes) of an institution at a given signature identify
those theories (and model classes) that are indistinguishable with respect
to satisfaction, and thus extract the meaningful “concepts” for that that
signature over that institution.

Proposition 4 also extends to arbitrary institutions. Given an insti-
tution I, define a functor C'L(I) on the signature category of I, with
CL(I)(X) the complete lattice of X-concepts (T',V), and with CL(I)(f)
the map that sends (7, V) to (Sen(f)(T'), Sen(f)(T)*). Let CLA denote
the category of complete lattices. Then

Proposition 5: C'L is an injective functor from INS to the comma cat-
egory (Cat/CLA), and hence it induces an equivalence of its source and
image categories. O

Definition 11: Given an institution I, its concept lattice institution!”

CL(I) has signatures those of I, Y-sentences the closed X-theories, Y-
models the closed Y-model classes, and X -satisfaction the bijection rela-

17 133] calls CL(I) the Galoisification of I; this notion was stimulated by persistent
questions in conversations with Erick and Linda von Schweber, and Liane Gabora.

18

tion between these given in Proposition 5. O

Proposition 5 also implies that CL can be seen as an endofunctor on
INS, which we may call the concept lattice functor.

In many cases, formal concepts can be considered the “natural con-
cepts” for a context; for example, given sentences over an ontology and
models that populate that ontology, the formal concepts help understand
the meaning of these objects in this context; this can be useful, e.g., in
constructing ontologies, as illustrated in [50, 30]. Unfortunately, real data
is often too dirty for this to work well, which suggests that new ideas are
needed to deal with the complex uncertainties of real world data.

A number of extensions of FCA have been proposed to improve its ex-
pressive power, several of which are discussed in [19]; these include power
contexts, which support n-ary relations for a fixed n, and multi-valued
contexts, which allow non-binary truth values for the incidence relation.
Various “logic contexts” have also been proposed to extend attributes
with syntax, e.g., [17]. In my view, none of these extensions are neces-
sary, because institutions allow concept lattices over arbitrary logics (e.g.,
modal logics, description logics, higher order logics), generalized institu-
tions allow arbitrary truth values, and the usual FCA results can all be
obtained using the categorical machinery of variant institutions. In my
opinion, the major advantage of the IF formalism over that of FCA is its
emphasis on informorphisms and information “flow” via (co)limits.

Example 3: Curry-Howard Isomorphism: A perhaps surprising ap-
plication of the concept lattice construction is an institutional formulation
of the Curry-Howard isomorphism, one of the most beautiful results in
logic that is connected to computer science (e.g., see [73]). Its basic form
asserts an isomorphism between types “inhabited” by A-terms (which can
be thought of as programs) and intuitionistically valid Boolean formu-
lae. We outline the simplest non-trivial case, which uses only the binary
function type constructor —, but the approach extends to more complex
types; no proofs are given, the goal is just to get an elegant formulation
that makes the semantic aspects of this result more explicit than usual.

The signature categories of all institutions we build are the full subcat-
egory of finite subsets of some fixed countable set of propositional variable
symbols (though any full subcategory of Set would do as well); we will
use Greek letters for these variable symbols. Given a variable set V, let
T (V) be the free type algebra on V, with elements propositions (built
from just — in this case) such as (o« =) — (6 — 7)) — (o — 7), let
B(V) be the free term algebra on V' with elements (built from just = in

19

this case) such as ((« =) = (8= 7)) = (a =), let A(X) be the free
algebra of lambda terms over X with elements such as Az y z. z(y z), and
let A®(X) denote the closed A-terms over X; whereas types use variables
from V', A-terms use some other fixed countable set X of variable symbols.
Next, for b € B(V) let b° be the corresponding type in T'(V'), obtained
by replacing = by —, and for t € T'(V') let t® be the corresponding term
in B(V); note that ° is an isomorphism.

The first institution, for a signature V' has T'(V') for its V-sentences,
and has typed closed A-terms as its V-models, i.e., pairs (f, a: X — T(V))
with f € A®(X). Satisfaction (f,a) =y t holds iff f inhabits t with assign-
ment a, i.e., iff a(f) =t where a: A®*(X) — T(V) is the free extension
of a. Signature morphisms do nothing to A-terms, but transform types by
variable renaming. To obtain an institution, we take the opposite of the
category of models, so that they transform contravariantly. Let A denote
this institution.

The second institution, denoted B, for a signature V has B(V') for its
V-sentences, and for its V-models has assignments h: V — H where H
is an arbitrary Heyting algebra!®. Satisfaction h =y b holds iff h(b) =
T where h: B(V) — H is the free extension of h to H, i.e., iff the
formula b is intuitionistically valid. Signature morphisms transform terms
covariantly and models contravariantly in the obvious way.

These two institutions are not isomorphic or even equivalent, nor are
their concept lattice institutions, but their concept lattices provide key
structures for the Curry-Howard result. Concepts in CL(A) for a fixed
V collect all A-terms that inhabit a given type, since the extension {t¢}*
of a type t is {(f,a) | a(f) = t}, which we denote A(t), and {(f,a)}* =
{a(f)}, sothat {t}™ = {t} and {{f,a)}*" = {(f",d') | a/(f') = a(f)}; this
includes A-terms that differ by only a bijective renaming ¢: X — X of
their variables. The concept generated by a type t € T' (V') is ({t}*,{t}),
which is (@, {t}) if ¢ is uninhabited.

Concepts in CL(B) are terms with all the assignments into Heyting
algebras that make them true, because {b}** = {b}, and {h}* = {b |
h(b) = T}. Let tt(b) denote the assignments h: V — H that makes b
true; these can be thought of as generalized truth tables. We now express
the Curry-Howard isomorphism for a fixed V' as a bijection between the
inhabited concepts (A(t),{t}) in CL(A) and the elements of the concept
(tt(T),{T}) in CL(B) where T is any tautology, i.e., the intuitionistically

18 Heyting algebras are needed instead of Boolean algebras in order to capture intu-
itionistic validity; Peirce’s formula is a well known example b involving only = that
is not intuitionistically valid.

20

valid formulae, i.e., those b where tt(b) includes all assignments to all
Heyting algebras.

This institutional formulation makes the semantic aspects of the Curry-
Howard isomorphism explicit, whereas the usual formulations are purely
syntactic. The approach extends to richer types and more complex A-
expressions. Some recent work in this direction appears in [61]; one rela-
tively straightforward approach takes a syntactic view of models as proofs
of habitability and validity in appropriate formal systems. O

3.3 Channel Theory and Information Integration

There is a very general notion of a relation in a category C, as three
objects, say A, B, R, and two morphisms, say p;: R — Aandps: R — B.
If C is Set, then relations can be considered to consist of pairs (a,b) with
a € Aand b € B, and with pq, ps the projection maps. Most of the usual
theory of relations can be done in this very general setting (see below).
There is also a dual notion of corelation, consisting of three objects
A, B,C and two injection morphisms, fi: A — C and fo: B — C.
These binary relations (and corelations) generalize to families p;: R — A;
(or fi: A; — C), which are n-ary relations (and corelations). We now give
the categorical form of another basic concept of IF:

Definition 12: A channel is a corelation f;: A; — C for i € I, in the
category IFC; (' is called the core of the channel. O

Looking at only the tokens, a channel yields a relation that “connects”
each token c in its core to the tokens f,’(c) in its components A;. A cover
of a diagram is defined in [3] to be a channel over that diagram such that
every triangle formed by an infomorphism in the diagram and the two
injections, from the source and target of that infomorphism, commutes.
This is just the general categorical notion of a cocone of a diagram, for
the special case of a diagram in IFC; similarly, the “minimal covers”
of [3] are the colimits in IFC, although [3] uses the term “limit” for
this concept, perhaps because the tokens are more concrete than types
(more technically, we might attribute it to the duality between morphisms
and comorphisms). Extending the geometrical analogy, category theorists
often use the term apex instead of “core” for both cones and cocones.
It is encouraging that corelations arise in many interesting exam-
ples, not just channel theory, but also local-as-view ! data integration in

19 The dual global-as-view approach corresponds to relations in a category, but can
also be formulated using corelations.

21

database theory, blending in cognitive linguistics [16], module intercon-
nection [42] and concurrent process interconnection [26, 18] in software
engineering, and (following algebraic semiotics [29, 28]) the composition
of subsigns to form interfaces in user interface design. It is therefore rea-
sonable to suggest that corelations, cocones, and colimits provide one very
reasonable notion for integration of the constituent objects [21, 24]. Note
that in the case of channels, the integrated objects are classifications, or
more generally, triads, not just theories.

Many information integration problems involve a subtheory of shared
material. Diagrams with morphisms can describe complex sharing among
objects, and colimits of such diagrams combine those objects in a way
that optimally respects that sharing, in the usual universal sense. Given
input theories I, Is with a shared subobject G (as in Figure 2), the col-
imit (which is a pushout) gives such an optimal corelation B. However, in
some practical situations, it is not realistic to expect this kind of optimal-
ity, because there are multiple feasible solutions, among which trade-offs
must be negotiated; in such cases, one should consider pragmatic opti-
mality criteria like those used in the cognitive linguistics notion of blend-
ing [16] discussed in Section 3.7 below. In [28], it is suggested that so
called %-colimits in %-categories, which have an ordering relation on
the morphisms between any two objects, have the necessary flexibility for
applications to areas like cognitive linguistics and user interface design.

Relations in a category with pullbacks satisfy the usual calculus of set
theoretic relations, i.e., composition, converse, union, intersection, etc.,
have their usual properties, e.g., composition is associative. The compo-
sition R; R’ of binary relations R, R’ is given by letting R; R’ with its
projection arrows be the pushout of the lower “M” shaped subdiagram

of the following;: RR
R/ \R’
SN N
A B ¢

The dual calculus of corelations is less well known but is just as rich, and
everything generalizes to m-ary relations and corelations. For example,
the join of relations in database theory is a special case of composing two
n-ary relations over projections to a common subrelation.

Theorem 3 implies that every IF-distributed system has a channel
that best describes its flow of information. For the special case of IFC,
the “core” of the colimit has as its types the colimit of the corresponding

22

diagram of type sets, and as its tokens the limit of the corresponding dia-
gram of token sets, just as one might expect (e.g., from principles of [24]
and of CGST described in Section 3.4). What IF calls the sum of a set
of classifications is the special case where the system diagram is discrete,
i.e., has no infomorphisms; here the token set is the product of the token
sets of the components. Theorem 3 can be considered a generalization of
the “Dretske Xerox Principle” discussed in [3], which asserts the “transi-
tivity of information flow”2°. In addition, it makes available the powerful
structuring and integration mechanisms of parameterized programming
that are discussed in Example 1 of Section 2.

The assertion in Theorem 3 that IFC has limits is not in [3]. The
construction is dual to that for colimits: the type set of the limit object
is the limit of the corresponding diagram of type sets, and its token set
is the colimit of the corresponding diagram of token sets. In the special
case where the diagram is discrete, its type set is the product of the type
sets of its components, and its token set is the disjoint union of the token
sets of its components.

Barwise and Seligman [3] cite Chu spaces (introduced in the appendix
of [2]) for their proof that IFC has colimits; this is consistent with our
approach, because Chu spaces with Z = {0,1} are institutions with
Sign = 1; moreover, general Chu spaces are subsumed (still using the
trivial signature category) by the generalized institutions?! of [34], in
which satisfaction takes values in a suitable structure V; the so called
Chu transformations are of course the comorphisms of such institutions.

3.4 Categorical General Systems Theory

In 1971, the categorical general system theory (CGST) of [21] proposed
several of the same ideas as [3], including representing distributed systems
as diagrams in a category, using relations to describe connections among
components, and using limits to compute behavior; the latter can be
considered an even further generalization of the Dretske Xerox Principle.
CGST amounts to doing information flow and logical architecture in an
arbitrary category. An important idea from [21] not in [3] is that the
colimit of a diagram of systems computes the system that results from the

20 This can be seen from the construction of limits (for tokens) in concrete categories
such as Set, or more abstractly, from their construction using equalizers of products
(e.g., see [22,56]).

21 This can be accomplished by allowing V-valued relations in the category of twisted
relations; thus Chu spaces are variant institutions. See also the end of Section 2 of
[71], which gives a better exposition of this than that in [34].

23

interconnection. A main result, called the Interconnection Theorem
[22], says that the behavior of an interconnection of systems is the limit
of the diagram of behaviors of the component systems (but Theorem 3.11
of [26] provides a better exposition than that in [22]):

Theorem 5: For D a diagram of diagrams over a category C with limits,
and Lim the limit computing functor on the category of diagrams of C,

Lim(colimD) = lim(D; Lim) .
O

Specialized to IFC, this result is a useful addition to IF theory: it tells
how to compute the core of an interconnection of distributed systems
from the cores of its component systems. The CGST formalism of [21]
is applied to various distributed systems in [26], which also treats object
oriented concepts like inheritance, concurrency concepts like deadlock,
and security concepts like non-interference. The use of sheaves in this
work to capture the time varying behavior of components could also be
useful for IF, FCA, and LOT, since their approaches to dynamics seem
rather weak, and in particular seem unable to handle continuous time; it
is also worth noting the logic for sheaves given by the internal logic of a
topos in [26].

3.5 Local Logics

We begin with an extension of classifications from [3]:

Definition 13: A local classification is a classification (P, K,) to-
gether with a subset N of K, called its normal tokens. O

Local classifications are not quite 1l-institutions, but they are variant
1-institutions, (1get | /p11) where p;: SubSet — Set is the subset ex-
tracting functor, where SubSet is the category of subset inclusions with
commutative squares as morphisms. Let us denote the category of local
classifications by IFCL. The new result below again follows from Propo-
sition E.4 of [40]; as before, it enables the structuring and integration
mechanisms of parameterized programming.

Theorem 6: IFCL has both limits and colimits. O

We now construct a category the objects of which are the local logics
of [3], consisting of pairs (7', M) of a regular P-theory T and a local clas-
sification M that satisfies T' when restricted to N; this construction will
also yield the so called logic infomorphisms of [3]. Given an institution
I, we first define the functor Modth: Th(I)°? — Cat to map each theory

24

to the category of all models that satisfy that theory, where T'h(I) is the
category of all theories of I, as in Definition 2. Next, we define a category
Gr(Modth) the objects of which are pairs (T, M) where T is a theory of I
and M is a model of I that satisfies T', with morphisms (T, M) — (1", M")
pairs (h, f) where h: T — T" is a theory morphism and f: M — h(M’)
is a T-model morphism; this is a Grothendieck construction, as described
in Appendix B, which the reader may wish to consult at this time. Fi-
nally, if we let I = IF'S, then we get exactly the category of local logics in
the sense of [3], which we denote by IFL. The Galois connection, concept
lattice bijection, Interconnection Theorem, and many other results now
follow automatically, including the following, which also seems new:

Theorem 7: IFL has both limits and colimits. O

The proof applies general completeness results for the Grothendieck con-
struction, e.g., in [40]. And again, it makes available the structuring and
integration mechanisms of parameterized programming. Restricting to
the closed theories and model classes of IFL for a fixed signature, we
can construct concept lattices for local classifications just as above for
IFCL; we conjecture that the resulting category of local concept lattices
is equivalent to the category of local classifications.

It is natural to consider further examples in the style of IFC, IF'S, etc.,
such as institutions with non-trivial term constructors and constants (so
that terms serve as descriptors for complex tokens), and with non-unary
predicates, including a binary equality predicate that is interpreted as
identity in models; these form an institution, IFE, for which the same
results follow in the same uniform way; we can even add subsets of normal
tokens. Horn clause logic is an alternative for which inference is easier,
and description logics go even further in this direction.

3.6 Data, Schema, and Ontology Integration

Information integration over distributed databases, such as the world wide
web, is a significant application for ideas discussed in this paper, but it
is very challenging, requiring integration of both schemas and ontologies
with data. General categorical principles [24] say that because schemas
and ontologies are theories, they should be combined using colimits. But
because different signatures are involved, the category of theories over a
fixed signature is inadequate; therefore we extend it using the Grothen-
dieck construction of Appendix B. (Of course, this only addresses a few
of the many practical problems involved.)

25

We first note that the construction of Th(I) in Definition 2 extends
to a functor Th: INS — Cat, sending each institution to its category
of theories with heteromorphisms. Next, applying the Grothendieck flat-
tening construction to this functor yields a category GTh with objects
(I, X, FE) where I is an institution, and (X, E) is a theory of I, and with
morphisms (I, X, E) — (I', X, E’) consisting of an institution morphism
(F,a,b): T — I plus a signature morphism f: X’ — F(X) such that
E C ag(f(E")**. However, GTh is an enormous beast, nearly all of
which is useless for any particular application. This motivates consider-
ing a (small) category O of institutions, on which as before we define a
functor Th: O — Cat, and then flatten it, just as for GTh, but re-
stricted to institutions and morphisms in O; let the result be denoted
GTh(O). (GTh and GTh(O) can also be obtained from the Grothen-
dieck institution construction of [9].) It is not difficult to show that limits
and colimits exist in these categories under reasonable conditions; see [33]
for details.

An ontology is a different kind of theory for databases than a schema,
because its purpose is to give language for describing entities represented
by elements that can appear in databases, rather than to describe the
structure of the database. Practical ontologies are often restricted to con-
stants that denote individuals, unary predicates that classify individuals,
and binary predicates that relate individuals, while sentences are often re-
stricted to special kinds of Horn clause. However, such restrictions are by
no means necessary, and are imposed mainly to ensure efficient decidabil-
ity. The illustrative examples below use Horn clause logic with equality
over order sorted algebra, but in general, an ontology O consists of an
arbitrary theory extending a theory D of a model {2, over an arbitrary in-
stitution I such that its model category is concrete; O is the ontology and
{2 is the “population” of values that can be used to fill slots in databases.
It is convenient to assume that all elements of {2 are also constants in D.

A schema is a theory T over I that contains D, but in general only
initial models of T are of interest??. A database state over the schema
T is an element of an initial model B of T such that B|p = (2, and a
query over T is an existential sentence over the signature of 7. When
both a schema and an ontology are available, existential sentences over
the pushout of 7" and O over D (which we denote T'O) can also be used as
queries. More concrete definitions of schema, as well as of schema species,
schema morphism, database, query, etc. are given in [33].

22 A model is initial if there is a unique homomorphism from it to any other model.

26

Now we have everything needed for our database institution. Its sig-
natures are schemas over I as defined above, with theory morphisms as
signature morphisms; the models of a schema T are the database states
for a fixed database B for T'; the sentences for a schema T are queries
over T'; and satisfaction of a query ¢ by a model B over T holds iff there
is a valid instantiation of ¢ in B, i.e., an assignment # of values in B to
the existential variables in ¢ such that 6(f) |= B in I. It is not difficult to
check that this setup forms an institution, denoted DB(I, O, 2).

It is natural to have logic for queries, e.g., a conjunction of queries
should satisfy f&f' = B iff f = B and f’ = B, in which case conjunction
is associative, commutative, and idempotent. Similar tricks work for other
logical operations, including existential quantification in case it is missing
from I, although this requires further assumptions on I (see Definition
5.17 of [60]). The following gives another way to institutionalize databases:

Example 4: A Course Database: Let I be Horn clause logic with
order sorted equality; let D be an order sorted theory having 4 sorts, for
naturals, reals, booleans, and strings of characters, abbreviated respec-
tively N, R, B,C, where N is a subsort of R; and let D also have all the
usual operations on these sorts. Let {2 be the D-algebra where all sorts
and operations are interpreted in the usual way.

We define next the theory O. Let CS Course, Math Course, ReqCourse,
Opt Course be unary predicates in O, and let

ReqCourse(X) implies CSCourse(X)
MathCourse(X) implies Opt Course(X)

be sentences in O, where X has sort N. Now let O classify items with
axioms such as

MathCourse(329)
ReqCourse(130)
OptCourse(171)

Next, define a relational schema T having three relations, R1, R2, R3 as
Boolean-valued functions, with respectively 3, 2, 3 fields, with arities (i.e.,
argument sorts) (N, C, R), (N, C), (N, N, R), respectively. Intuitively, the
fields of R1 might be for student Id, student name, and GPA; the fields
of R2 for course Id and course name; and the fields of R3 for course Id,
student Id, and grade. Then a database state over this schema can be
represented as three sets of tuples, where each tuple is a ground instance
of the corresponding relation; e.g., R2 might be true of the following
2-tuples:

27

(329, Category Theory),

(171, User Inter face Design),

(130, Programming Language Concepts),
and no others.

It is common for databases to include constraints in their schemas.
These may be key constraints, which assert that distinct tuples in a rela-
tion must have distinct values in certain of their fields, and data integrity
constraints, which assert that the values in certain fields must have cer-
tain properties. A convenient way to present such assertions is to use
names assigned to the fields of relations as “selectors,” or projection op-
erations from tuples to data values; more formally, these are inverses to
the corresponding constructor operations. For example, R2 might have
selectors Courseld: R2 — (2yx and CourseName: R2 — (2¢. Then the
following is a key constraint

Courseld(ry) = Courseld(r}) implies 71 = r}
where r1, 7] range over the rows (i.e., tuples) of R1; however, this should
be considered an abbreviation for the conditional equational form

Y =Y'"if RI(X,Y) =true & RI(X",Y') =true & X = X’
where X, X’ range over N, and Y,Y’ range over C. The following is a
data integrity constraint

0 < Courseld(R1(X,Y)) < 400
which is again an abbreviation, for

0 < X =true if R1(X,Y) = true

X <400 = true if R1(X,Y) = true

Key constraints support a weak form of unique identity for entities, a
topic much discussed under various names.

A query (i.e., sentence) for this institution is an expression of the
form (3X1, ..., X;,)p, where ¢ is a Boolean combination of Boolean-valued
terms over T and {2, and such a query is satisfied by a database B iff
there are values z1, ..., 2, for Xi,..., X, such that (X7 «— z1,..., X, «
xn) = true. For example,

(3X1, X9, X3, X4) R1(X1, X2, X3) & R3(329, X1,X4) & X3 > 3.6
asks whether there is a student taking course 329 who has a GPA greater
than 3.6 (strictly speaking, we should give sorts for X, ..., X;,). Tool sup-
port for inference over a combined database and ontology could convert
database entries to Horn clauses. O

Schema heteromorphisms can be defined (as in the Grothendieck
construction) as pairs (@, f): (S,T) — (S’,T") where &: Sign — Sign’

28

is a functor and f: @;(f) — S’ is a schema morphism. These compose in
the natural way, and we get a category of schemas with heteromorphisms
over an arbitrary institution I. With a little more work, this can be made
the category of signatures of an institution with heterogeneous databases
as models and queries as sentences, over 1.

The above treatment of queries is not fully satisfactory because we
can only know whether or not a query has an answer, but not what that
answer is. A more sophisticated approach indexes queries by the type of
their answer, i.e., by the string of sorts of their existential quantifiers,
and then allows the “truth values” of satisfaction to be the answers to
the queries; such an application of institutions to databases was first sug-
gested by Mayoh [57], and requires the generalized V-institutions of [34].
However generalized institutions can be avoided by defining an institu-
tion DB/(I, O, 2) like DB(I, O, {2) except that sentences have the form
q F 0, and are satisfied by B iff 6(q) satisfies B in DB(I, O, 2) with
the substitution 6, which serves as the answer. It is natural to define
&0+ B iff 6 - B and 0’ - B, to extend this to finite sets of substi-
tutions, perhaps even using set notation; similar things can be done for
other logical connectives. A still more sophisticated institutionalization
of database systems is given in Appendix C.

On the other hand, a less sophisticated approach ignores queries, as in
[1], which applies institutions to databases, using the term “schema trans-
lation framework” for “institution,” “database” for “model,” “constraint”
for “sentence” and “schema” for “theory”; neither queries nor heteromor-
phisms are considered, but integration is conceptualized as a corelation
over a shared part arising from an initial signature, with colimit as the
ideal result if it is defined.

Although Horn clauses are the most common sentences for ontolo-
gies and schemas in the literature, it is also interesting to consider the
alternative of order sorted algebra for I, since it handles the hierarchi-
cal classification of elements in a quite different way from Horn clause
logic, where class subsumptions may be encoded as implications between
unary predicates that represent classes, and may also be encoded using
a binary is-a relation. In order sorted algebra, signatures have a set
of types, called sorts, on which a partial subsort order is defined, and
models {2 are required to respect that ordering, in that if s < s’ then
{2; C (24 so that classification and class subsumption are in signatures
rather than theories, an approach which has been found more convenient
for many purposes (e.g., see [43]). In addition, order sorted algebra allows

29

overloaded operation symbols, and handles their subtle interactions with
subsorting. See [39] for the formal details of order sorted algebra.

It is even more interesting to consider the has-a or part-of relation,
because it is so often problematic in real ontologies, for reasons nicely
discussed in [45]. Formal mereology is a branch of philosophy that tries
to axiomatize this relation; it is a controversial area, with little agreement
on what the axioms should be, or even what intuitions should be axiom-
atized; this is symptomatic of the difficulties involved. In order sorted
algebra, as in algebra generally, elements are represented as terms, which
are built from constants and other terms, using operations called con-
structors. For example, if ¢ is a binary constructor and if a = ¢(b1,b2),
then we can say that b1 and b2 are “parts of” a, but the formula is actu-
ally a more precise and informative statement that avoids the problems of
the part-of relation, by explicitly saying how the parts are put together
to form the whole. (Although not all real world constituent hierarchies
can be formalized using constructors, it seems those that typically arise in
ontologies can be.) Moreover, order sorted algebra also nicely axiomatizes
the somewhat subtle relations between subsumption and constituency. To
me, this approach seems more useful than those based on formal mereol-
ogy. We now illustrate the order sorted algebra approach on the example
given earlier.

Example 5: Course Database Revisited: Let D have sorts Coursel D,
Studentld, CourseName, StudentName, CourseGrade, GPA, repre-
sented in {2 as integers for the first two, strings for the second two, and
reals for the final two, each with the usual operations. Let D also have
complex data sorts Course, Student, Grade, with the constructors:

course: Courseld CourseName — Course
student : Studentld StudentName GPA — Student
grade: Courseld Studentld CourseGrade — Grade

Let O add the following subsorts to D

ReqCourse < CSCourse < Courseld
MathCourse < Opt Course < Courseld

plus some “population” classifications, such as

329: MathCourse
130: ReqCourse
171: CSCourse

and finally, let T" declare further sorts DataBase, R1, R2, R3, and further
constructors:

30

database: R1 R2 R3 — Database
Rladd: R1 Course — R1
R2add: R2 Student — R2
R3add: R3 Grade — R3

with equations such that R1, R2, R3 are sets (or bags) of elements of
sorts Course, Student, Grade respectively, with also an empty set (or
bag) for each. Then under initial algebra semantics [41], elements of sort
DataBase will consists of three relations, and the initial algebra itself
will contain all such possible states of this database. Queries can be posed
over the combined theory T'O, such as, find all students with an average
grade more than 3.5 in their required courses. See [33] for a more detailed
exposition of ideas related to this algebraic style of database semantics.

We can now see how the subsort relation express an is-a relation, e.g.,
ReqCourse < CSCourse says that all required courses are CS courses.
Also, the subterm relation expresses a part-of relation, e.g., that the
course constructor has arguments of sort Courseld and Course Name
implies that course Ids and course names are the parts of the individual
“records” in the Course relation. As in Example 4, it is interesting to
consider tools that answer queries over such systems. For queries involving
part-of, unique identifiers for basic parts and contexts of superordinate
terms will be important. O

3.7 Cognitive Semantics

Fauconnier’s conceptual spaces [16], originally called mental spaces [15],
formalize the important idea that concepts are used in clusters of re-
lated concepts, represented in a very simple logic consisting of individ-
ual constants and assertions that certain relations (mostly binary) hold
among certain of those constants?3; it is remarkable how much natural
language semantics can be encoded in this framework [15, 16]. Figure 5
shows two simple conceptual spaces, the first for “house” and the second
for “boat.” These do not give all possible information about these con-
cepts, but only the minimal amount needed for a particular application.
The “dots” represent the individual constants, and the lines represent
true instances of relations among those individuals. Thus, the leftmost
line asserts own (owner, house), which means that the relation own holds
between these two constants.

23 Thus the word “space” is used metaphorically in these phrases “conceptual space”
and “mental space.” Our later discussion of triads will make it clearer why it is an
appropriate metaphor.

31

owner resident

owner passenger

live-in

Fig. 5. Two Simple Conceptual Spaces

Algebraic semiotics [28] uses algebraic theories to provide features
beyond those of conceptual spaces, that are important for user interface
design. These extensions are needed because many signs are complex, i.e.,
they have parts, and these parts can only be put together in certain ways,
e.g., the icons and windows of a PC interface, the words in a sentence,
or the visual constituents of the diagram in Figure 5. Semiotic spaces
further extend algebraic theories by adding priority relations on sorts
and constructors, which express the relative importance of (sub)signs; this
information is vital for optimization in user interface design applications
[28,29]. The intended denotation of a semiotic space is not a single sign,
but (in the spirit of Saussure [68]) a family of signs, such as all possible
displays on a particular digital clock, or on a particular cell phone.

White

@

gaturation g

=

=

=

Hue | [is]
Black

Fig. 6. The Human Color Manifold

Gérdenfors [20] proposes a notion of conceptual space very different
from that of Fauconnier, since it is based on geometry rather than logic.
For example, a sort color might be interpreted as the set of points in a
fixed 3D manifold representing human color space, coordinatized by hue,
saturation and brightness values, as shown in Figure 6; this is a precise
model that can serve as a basis for reasoning about color properties.

Although [20] says it aims to reconcile its geometric conceptual spaces
with symbolic representations like those of Fauconnier, it does not in fact

32

provide a unified framework. The Unified Concept Theory (UCT) of [30]
uses triads to combine a symbolic space (or theory), a geometrical space
(or model), and a relation of satisfaction between them for the given
context. The model provides a set of instances for each sort, a function
for each function symbol, and a relation for each relation symbol. Tri-
ads give a solution to the symbol grounding problem?*, because symbols
in conceptual spaces can refer to entities in geometrical spaces, which in
turn can be identified with real world entities. This way of combining
formal models with concrete interpretations works over any concrete in-
stitution, where symbols have sorts and models are many-sorted sets (see
e.g. [60] for details of this notion). We should also require that geometri-
cal space morphisms preserve the relevant geometrical structure. One of
the most intriguing ideas in [20] is that all geometrical conceptual spaces

are convex?’; it is nicely used in the following:

Example 6: Human Color Manifold: A suggestive example in [20]
concerns the (English) terms used to describe human skin tones (red,
black, white, yellow, etc.), which have very different meanings in that
context than e.g., in a context for describing fabrics. Gardenfors explains
this shift of meaning by embedding the space of human skin tones within
the larger color manifold (see Figure 6), and showing that the standard
regions for the given color names are the closest fits to the corresponding
skin tone names. Gardenfors does not give a formal treatment of the color
terms themselves, but we can view them as belonging to a (logic) theory
of color, and view their semantics as a triad between a color theory and
a color model [30].

It is technically convenient to view the color manifold and its skin tone
submanifold as related by a canonical projection from the color manifold
to the submanifold; in fact, the convexity assumption guarantees that
such a canonical projection exists. Then the embedding and projection
morphisms of the color manifolds give rise to triad morphisms. A suitable
variant institution for this example has convex smooth manifolds2® as
models, has sentences built from constants and binary relations, and has
satisfaction defined by interpretions of constants and relations as smooth

24 This is the problem in classic logic-based Al of how abstract computational symbols
can be made to refer to entities in the real world [47]. Our approach is also related
to the “material anchors” of Hutchins [48].

25 A subset of Euclidean space is convex if the straight line between any two points in-
side the subset also lies inside the subset; this generalizes to non-Euclidean manifolds
by using geodesics instead of straight lines.

26 Smooth is usually taken to mean that the space has continuous derivatives of all
orders at every point.

33

convex submanifolds and relations; satisfaction even can be multi-valued
if desired. O

An important recent development in current cognitive semantics is
conceptual blending, claimed in [16] to be a (previously unrecognized, and
unconsiously operating) fundamental cognitive operation, which combines
different conceptual spaces into a unified whole. The simplest case is as in
Figure 2, where I7, Is might be mental spaces for “house” and “boat” (as
in Figure 5), with G containing so-called “generic” elements such that the
maps G — I; indicate which individuals should be identified. In contrast
to the categorical notion of colimit, blends are not determined uniquely up
to isomorphism; for example, B could be “houseboat,” or “boathouse,” or
some other combination of the two input spaces I; (see [37] for a detailed
discussion of this example?”). The %-categories discussed in Section 3.3
address this problem.

Several “optimality principles” are given in Chapter 16 of [16] for
judging the quality of blends, and hence determining which blends are
most suitable, although these distillations of common sense are far from
being formal. Unfortunately, it does not seem, as suggested in [16], that
any single set of optimality criteria can be appropriate for all situations,
but rather that different criteria are needed for different situations. For
example, [36] examined metaphors in the poetry of Neruda and Rilke,
and found that especially creative blends often used criteria opposite to
the common sense criteria of [16]; one such blend is the phrase “water of
beginnings and ashes” in the first stanza of Neruda’s “Walking Around”
[64]. Thus, much recent poetry requires what we call “disoptimality prin-
ciples” to explain such metaphors; one such principle is casting a type to
another very distant type [36].

Blending theory [16] refines the metaphor theory of Lakoff, by propos-
ing that a metaphorical mapping from I; to I is a kind of “side effect”
of a blend B of I» and I, because a metaphor really constructs a new
space in which only certain parts of I; and I, appear, and in which some
“emergent” structure found in neither I; nor Iy may also appear; the
usual formulation of metaphor as a “cross space mapping” m: I; — I
reflects the identifications made in B, i.e., if i1, 79 are constants in I, I
respectively, that map to the same constant in B, then we set m(i1) = is.
For example, in the metaphor “the sun is a king,” the constants “sun”
and “king” from the input spaces are identified in the blend, so “sun”

27 The discussion in [37] can be extended to triads and truad blending by providing

prototypes and examplars for the concepts and relations in the logical theories shown
in Figure 5.

34

maps to “king,” but the hydrogen in the sun is (probably) not mapped
up or across; similarly, the fact that kings may collect taxes is probably
not mapped up to B. But if we add the clause “the corona is his crown,”
then another element is added to the cross space map.

Our formalization of blending theory is tested against some simple ex-
amples in [28], and has been implemented in a blending algorithm called
Alloy [37,36], which generates novel metaphors on the fly as part of a po-
etry generation system (called Griot) implemented by Fox Harrell. The
optimality principles used are purely formal (since they could not oth-
erwise be implemented); they measure the degree to which the injection
morphisms I; — B in Figure 2 preserve structure, including constants,
relation instances, and types. We are currently extending the system to
blend and display multimedia objects.

Example 7: Ontology Alignment: A new idea from [30] is to integrate
triads instead of just theories. We illustrate this using a simple example
from Sowa [70], elaborated in [69] to illustrate “ontology alignment” and
“ontology merging,” where the former refers to how concepts relate, and
the latter refers to creating a joint ontology. The present exposition ex-
tends [30] by explicitly using a pushout of triads to integrate populated
ontologies; these triads have models on one side, and theories with their
signatures on the other. Besides its clarity and rigor, the approach has the
advantage of making it clear how to generalize to examples that use less
trivial models and logics. The informal semantics behind this example is
explained in the following from [70]:

In English, size is the feature that distinguishes “river” from “stream”;
in French, a “fleuve” is a river that flows into the sea, and a
“riviére” is a river or a stream that runs into another river.

This example has 2 triads, each with 3 objects and 2 attributes:

English river|stream| |French |fleuvelriviére
Mississippi | 1 0 Rhone 1 0
Ohio 1 0 Saone 0 1
Captina 0 1 Roubion | 0 1

This information is not enough to recover the informal relations between
concepts in the quotation above, but if we can align the objects, a surpris-
ing amount of insight can be obtained. So we further suppose it is known
that the corresponding rows of the two tables have the same conceptual
properties, e.g., that the Mississippi is a fleuve but not a riviére, that the
Saodne is a river but not a stream, etc.

35

The underlying logic for this example is very simple: Its signatures are
sets of unary predicates. Its sentences over a signature) are the nullary
predicate false, and the unary predicates in Y. Signature morphisms are
maps of unary predicate names. A model for X' is a one point set, with
some subset of predicates in X designated as being satisfied; the satisfac-
tion relation for model is then given by this designation. The resulting
institution is really IFC in disguise, for which Th(X') has as its objects
the set of all sets of Y-sentences. But since this example uses triads where
satisfaction relates models to theories instead of just sentences, we use the
derived institution Der(IFC), where the X-sentence for triads are sets
of predicates, interpreted as their conjunction.

The English signature X¥ in this example is {river, stream} and the
French signature is X = {fleuve, riviére}. The tables above define two
triads, one over each signature. We will use a pushout to blend them, as
in Figure 2. Since the entities corresponding to the three rows of the two
tables have the same properties, we can merge them in the blend; on the
other hand, none of the attributes should be merged. Therefore the base
triad for the blend has three generic objects that map to the models to
be identified in the blend, and the logic component is the empty theory.
Denoting the merged entities by MR, OS and CR, the pushout triad is
given by the following;:

river|stream |fleuve|riviére
MR | 1 0 1 0
OS |1 0 0 1
CR |0 1 0 1

Note that triad pushouts compute the limit (pullback) of models and the
colimit of theories with their signatures. In particular, the signature for
the blend theory is £F = XF U 2T,

Figure 7 shows the formal concept lattice of this merged triad over
the merged signature ¥, with its nodes labeled by the model sets and
theories to which they correspond. A minimal set of generators for this
lattice gives a canonical formal vocabulary for classifying the given mod-
els. Although in this case there are 23 = 8 possible sets of models, only
7 appear in the concept lattice and a subset of 3 is sufficient to generate
the lattice, namely fleuve, stream, and river&riviére. (The reason there
are only 7 elements is that there is no model that both is small and flows
into the sea.) O

The Buddhist monk example in [30], which formalizes and analyzes the
version in [16], can also be seen as a blend of triads.

36

Fig. 7. A formal concept lattice

Most schema and ontology mapping tools seek to construct a corre-
spondence between two input spaces?®; see [50,67]. The above example
shows that this process can be non-trivial, and it also suggests a way,
extending prior work of Shorlemmer and Kalfoglou [49,69], to achieve
partial automation, based on our very general theory of information in-

tegration using colimits of triads over arbitrary institutions.

4 Conclusions

The main contribution of this paper is to unify and greatly generalize IF,
FCA, IFF, LOT and BT to arbitrary logical systems, including the use
of heterogeneous triads for integration in situations that involve multi-
ple logical systems, such as populated ontologies in different description
logics, with no restriction to unary predicates. Triads also unify and gen-
eralize conceptual spaces in the senses of Fauconnier and of Géardenfors.
The Grothendieck construction uses heteromorphisms to support hetero-
geneity at multiple levels, including the integration of multiple ontologies,
and even multiple ontologies over multiple logics; it also supports the in-
tegration of databases over multiple schemas. Triads also make it easier
to explain institutions, especially their variant and multivalued general-
izations, and triads. The flexability of using abstract categories allows
exotic models that can handle change of types and tokens over time.
These are all issues that standard IF has left open. Some novel formal-
izations of databases as institutions provide very general ways to connect
databases and ontologies. Other new ideas include using order sorted al-
gebra to unify inheritance (is-a) and constituency (part-of) relations
in databases and ontologies, generalizing FCA to the concept lattice in-
stitution, and using this construction in an institutional version of the
Curry-Howard isomorphism.

Rising above details, some interesting patterns emerge. Each classi-
fication logic (IFC, IFS, IFCL, IFL) gives rise to institutions at two

28 Among the many terms used for this are alignment, articulation, fusion, coordina-
tion, merge, and reconciliation.

37

levels: (1) classifications are institutions of the simplest non-trivial kind,
1-institutions, i.e., triads; and (2) these simple institutions form the model
categories of other institutions with non-trivial sentences. The institu-
tional formulations yield very general results in a uniform way using es-
tablished methods, and many are new for at least one of IF, FCA and
LOT, including the Galois connection between models and theories, sev-
eral (co-)completeness results, the Interconnection Theorem, and the con-
cept lattice institution.

In addition, over any of these institutions, channels are corelations
(or cocones), distributed systems are diagrams, and behaviors are col-
imits, and the same applies for many other formalisms for information
integration, including databases, conceptual blending, and areas of user
interface design and software engineering. Therefore ideas from IF, FCA,
IFF, LOT and BT can be applied in these aspects, supported by a precise
and very general theoretical framework.

There are many other directions that seem worth exploring, including
parts of [3], [19] and [70] that are not yet institutionalized; the categor-
ical formulations of Kent [51] are very relevant here. It would be useful
to extend the Galois connection between theories and model classes to
an indexed family of adjunctions for variant institutions, e.g., where the
sentence and model functors yield categories (with sentence morphisms
for deduction in the style of categorical logic [55] as in [60]). It would
also be interesting to further explore the use of sheafs as space- and time-
varying tokens and types in classification systems, following [26]. Tools
based on methods in this paper to support query answering, inference,
and ontology alignment over a combined ontology and database would
be useful; triads should be important here. Finally, it seems necessary for
theory and tools to cope with the multiple forms of uncertainty inherent
in the real world (e.g., see [27] for a discussion of some sources of such
uncertainty). Further development of %—categories seems promising in this
respect, and perhaps some ideas from fuzzy logic could help.

Our generalization and unification of IF, FCA, LOT, IFF, and BT
does not detract from the practical and philosophical achievements of
these works, nor does it detract from the expository simplicity of the
originals, part of which is due to avoiding category theory. In particular,
it is fascinating to consider material systems from the viewpoint of in-
formation flow, e.g., what events in one component tell about events in
another. Similarly, even though many ideas about systems may be more
general and elegant in CGST, this does not detract from the particular

38

application of [3] to information flow; in particular, [21,22] do not treat
inference.

But my admiration for these works does not mean that I always agree
with their philosophical views. In particular, I do not accept the implicit
philosophical realism of [3] and [19], which seems to me to take too little
account of the social and cognitive aspects of information, and of the many
practical difficulties that can be traced to these aspects. There also seems
to be an implicit Aristotelean view that concepts are given as conjunctions
of attribute, although this is inconsistent with the experimental results
of Rosch and others in cognitive semantics (e.g., see [54, 30]).

My own views on the nature of information [27] are consistent with
the Peircean pragmatism advocated by Sowa [70], but are more explicitly
social (though not essentially more social) than Pierce. But philosophical
debates often have little effect on applicability, and I have no doubt that
ideas of IF, FCA, LOT, IFF and BT can have significant applications in
many areas of information technology and cognitive science. Nevertheless,
the enormous variety of data formats in use on the web, and the range of
different logics used for ontologies, suggest that institutional formulations
have advantages over less general approaches.

Finally, I wish to express my hope that some day, computer scientists
(and philosophers) will be sufficiently familiar with concepts like cate-
gory, colimit, and even institution, that these can be freely used without
alienating large parts of the potential audience, and that authors will
no longer feel it necessary to camouflage their use of such concepts with
idiosyncratic “user friendly” terminology.

References

1. Suad Alagic and Philip Bernstein. A model theory for generic schema management.
In Giorgio Ghelli and Gosta Grahne, editors, Proc. Database Programming Lan-
guages 2001, pages 228-246. Springer, 2002. Lecture Notes in Computer Science,
volume 2397.

2. Michael Barr. x-autonomous categories and linear logic. Mathematical Structures
in Computer Science, 1:159-178, 1991.

3. Jon Barwise and Jerry Seligman. Information Flow: Logic of Distributed Systems.
Cambridge, 1997. Tracts in Theoretical Computer Science, vol. 44.

4. Trevor Bench-Capon and Grant Malcolm. Formalising ontologies and their rela-
tions. In Proceedings of the 16th International Conference on Database and Expert
Systems Applications (DEXA 99), pages 250-259. Springer, 1999. Lecture Notes
in Computer Science, volume 1677.

5. Garrett Birkhoff. Lattice Theory. American Mathematical Society, 1948. Collo-
quium Publications, Volume XXV (revised edition, 1960).

39

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Rod Burstall and Joseph Goguen. The semantics of Clear, a specification language.
In Dines Bjorner, editor, Proceedings, 1979 Copenhagen Winter School on Abstract
Software Specification, pages 292-332. Springer, 1980. Lecture Notes in Computer
Science, Volume 86; based on unpublished notes handed out at the Symposium on
Algebra and Applications, Stefan Banach Center, Warsaw, Poland, 1978.

Manuel Clavel, Francisco Duran, Steven Eker, Patrick Lincoln, Narciso Marti-
Oliet, José Meseguer, and José F. Quesada. Maude: Specification and programming
in rewriting logic. Theoretical Computer Science, 2001.

Manuel Clavel, Steven Eker, Patrick Lincoln, and José Meseguer. Principles of
Maude. In José Meseguer, editor, Proceedings, First International Workshop on
Rewriting Logic and its Applications. Elsevier Science, 1996. Volume 4, Electronic
Notes in Theoretical Computer Science.

. Razvan Diaconescu. Grothendieck institutions. Applied Categorical Structures,

10:383-402, 2002.

Razvan Diaconescu. Institution-independent ultraproducts. Fundamenta Infor-
maticae, 55(3-4):321-348, 2003.

Razvan Diaconescu. Herbrand theorems in arbitrary institutions. Information
Processing Letters, 90:29-37, 2004.

Razvan Diaconescu. Interpolation in Grothendieck institutions. Theoretical Com-
puter Science, 311:439-461, 2004.

Razvan Diaconescu and Kokichi Futatsugi. CafeOBJ Report: The Language, Proof
Techniques, and Methodologies for Object-Oriented Algebraic Specification. World
Scientific, 1998. AMAST Series in Computing, Volume 6.

Réazvan Diaconescu. An institution-independent proof of Craig interpolation the-
orem. Studia Logica, 77:59-79, 2002.

Gilles Fauconnier. Mental Spaces: Aspects of Meaning Construction in Natural
Language. Bradford: MIT, 1985.

Gilles Fauconnier and Mark Turner. The Way We Think. Basic, 2002.

Sebastien Ferré and Olivier Ridoux. A logical generalization of formal concept
analysis. In Guy Mineau and Bernhard Ganter, editors, Proceedings, Int. Conf.
Conceptual Structures, pages 371-384. Springer, 2000. LNCS 1867.

José Luiz Fiadeiro. Categories for Software Engineering. Springer, 2004.
Bernhard Ganter and Rudolf Wille. Formal Concept Analysis: Mathematical Foun-
dations. Springer, 1997.

Peter Gardenfors. Conceptual Spaces: The Geometry of Thought. Bradford, 2000.
Joseph Goguen. Mathematical representation of hierarchically organized systems.
In E. Attinger, editor, Global Systems Dynamics, pages 112-128. S. Karger, 1971.
Joseph Goguen. Categorical foundations for general systems theory. In Franz
Pichler and Robert Trappl, editors, Advances in Cybernetics and Systems Research,
pages 121-130. Transcripta Books, 1973.

Joseph Goguen. Principles of parameterized programming. In Ted Biggerstaff and
Alan Perlis, editors, Software Reusability, Volume I: Concepts and Models, pages
159-225. Addison Wesley, 1989.

Joseph Goguen. A categorical manifesto. Mathematical Structures in Computer
Science, 1(1):49-67, March 1991.

Joseph Goguen. Types as theories. In George Michael Reed, Andrew William
Roscoe, and Ralph Wachter, editors, Topology and Category Theory in Computer
Science, pages 357-390. Oxford, 1991.

Joseph Goguen. Sheaf semantics for concurrent interacting objects. Mathematical
Structures in Computer Science, 11:159-191, 1992.

40

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

Joseph Goguen. Towards a social, ethical theory of information. In Geoffrey
Bowker, Leigh Star, William Turner, and Les Gasser, editors, Social Science, Tech-
nical Systems and Cooperative Work: Beyond the Great Divide, pages 27-56. Erl-
baum, 1997.

Joseph Goguen. An introduction to algebraic semiotics, with applications to user
interface design. In Chrystopher Nehaniv, editor, Computation for Metaphors,
Analogy and Agents, pages 242-291. Springer, 1999. Lecture Notes in Artificial
Intelligence, Volume 1562.

Joseph Goguen. Semiotic morphisms, representations, and blending for interface
design. In Proceedings, AMAST Workshop on Algebraic Methods in Language
Processing, pages 1-15. AMAST Press, 2003.

Joseph Goguen. What is a concept? In Frithjof Dau and Marie-Laure Mungier,
editors, Proceedings, 13th Conference on Conceptual Structures, volume 3596 of
Lecture Notes in Artificial Intelligence, pages 52-77. Springer, 2005. Kassel, Ger-
many.

Joseph Goguen. Mathematical models of cognitive space and time. In Mitsu Okada
and Daniel Andler, editors, Reasoning and Cognition. To appear, 2006.

Joseph Goguen. Ontotheology, ontology, and society. Int. J. Human Computer
Studies, page to appear, 2006. Special issue on ontology, ed. by Christopher Brew-
ster and Kieron O’Hara.

Joseph Goguen. Data, schema, ontology and logic integration. In Paulo Mateus
and Walter Carnielli, editors, Combinination of Logics. Kluwer, to appear 2006.
Joseph Goguen and Rod Burstall. A study in the foundations of programming
methodology: Specifications, institutions, charters and parchments. In David Pitt,
Samson Abramsky, Axel Poigné, and David Rydeheard, editors, Proceedings, Con-
ference on Category Theory and Computer Programming, pages 313-333. Springer,
1986. Lecture Notes in Computer Science, Volume 240.

Joseph Goguen and Rod Burstall. Institutions: Abstract model theory for speci-
fication and programming. Journal of the Association for Computing Machinery,
39(1):95-146, January 1992.

Joseph Goguen and Fox Harrell. Style as a choice of blending principles. In
Shlomo Argamon, Shlomo Dubnov, and Julie Jupp, editors, Style and Meaning in
Language, Art Music and Design, pages 49-56. AAAT Press, 2004.

Joseph Goguen and Fox Harrell. Foundations for active multimedia narrative:
Semiotic spaces and structural blending, to appear. Interaction Studies: Social
Behaviour and Communication in Biological and Artificial Systems.

Joseph Goguen and Kai Lin. Behavioral verification of distributed concurrent
systems with BOBJ. In Hans-Dieter Ehrich and T.H. Tse, editors, Proceedings,
Conference on Quality Software, pages 216-235. IEEE Press, 2003.

Joseph Goguen and José Meseguer. Order-sorted algebra I: Equational deduction
for multiple inheritance, overloading, exceptions and partial operations. Theoretical
Computer Science, 105(2):217-273, 1992. Drafts exist from as early as 1985.
Joseph Goguen and Grigore Rogu. Institution morphisms. Formal Aspects of
Computing, 13:274-307, 2002.

Joseph Goguen, James Thatcher, Eric Wagner, and Jesse Wright. Initial algebra
semantics and continuous algebras. Journal of the Association for Computing
Machinery, 24(1):68-95, January 1977.

Joseph Goguen and William Tracz. An implementation-oriented semantics for
module composition. In Gary Leavens and Murali Sitaraman, editors, Foundations
of Component-based Systems, pages 231-263. Cambridge, 2000.

41

43.

44.

45.

46.

47.

48.
49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

Joseph Goguen, Timothy Winkler, José Meseguer, Kokichi Futatsugi, and Jean-
Pierre Jouannaud. Introducing OBJ. In Joseph Goguen and Grant Malcolm,
editors, Software Engineering with OBJ: Algebraic Specification in Action, pages
3-167. Kluwer, 2000.

Robert Goldblatt. Topoi, the Categorial Analysis of Logic. North-Holland, 1979.
Nicolo Guarino and Christopher Welty. An overview of OntoClean. In Steffan
Staab and Rudi Studer, editors, Handbook on Ontologies, pages 151-159. Springer,
2004.

Yuri Gurevich. Evolving algebra 1993: Lipari guide. In Egon Borger, editor,
Specification and Validation Methods, pages 9-36. Oxford, 1995.

Stevan Harnad. The symbol grounding problem. Physica D, 42:335-346, 1990.
Edwin Hutchins. Cognition in the Wild. MIT, 1995.

Yannis Kalfoglou and Marco Schorlemmer. Information-flow-based ontology map-
ping. In Robert Meersman and Zahir Tari, editors, Proc. Intl. Conf. on Ontologies,
DataBases, and Applications of Semantics for Large Scale Information Systems,
volume 2519 of Lecture Notes in Computer Science, pages 1132-1151. Springer,
2002.

Yannis Kalfoglou and Marco Schorlemmer. Ontology mapping: the state of the
art. Knowledge Engineering Review, 18(1):1-31, 2003.

Robert Kent. Distributed conceptual structures. In Harre de Swart, editor, Sixzth
International Workshop on Relational Methods in Computer Science, pages 104—
123. Springer, 2002. Lecture Notes in Computer Science, volume 2561.

Robert Kent. Formal or axiomatic semantics in the IFF, 2003. Available at
suo.ieee.org/IFF/work-in-progress/.

Robert Kent. The IFF foundation for ontological knowledge organization. In Gior-
gio Ghelli and Gosta Grahne, editors, Knowledge Organization and Classification
in International Information Retrieval. Haworth, 2003.

George Lakoff and Mark Johnson. Philosophy in the Flesh: The Embodied Mind
and its Challenge to Western Thought. Basic, 1999.

Joachim Lambek and Phil Scott. Introduction to Higher Order Categorical Logic.
Cambridge, 1986. Cambridge Studies in Advanced Mathematics, Volume 7.
Saunders Mac Lane. Categories for the Working Mathematician. Springer, 1998.
Second Edition.

Brian Mayoh. Galleries and institutions. Technical Report DAIMI PB-191, Aarhus
University, 1985.

Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The Definition
of Standard ML (Revised). MIT, 1997.

Till Mossakowski. Heterogeneous specification and the heterogeneous tool set,
2005. Habilitation thesis, University of Bremen.

Till Mossakowski, Joseph Goguen, Razvan Diaconescu, and Andrzej Tarlecki.
What is a logic? In Jean-Yves Beziau, editor, Logica Universalis, pages 113—133.
Birkhauser, 2005. Selected papers from the First World Conference on Universal
Logic.

Till Mossakowski, Florian Rabe, Valeria De Paiva, Lutz Schroder, and Joseph
Goguen. An institutional view on categorical logic and the Curry-Howard-Tait
isomorphism, 2005. Submitted for publication.

Peter Mosses, editor. CASL Reference Manual. Springer, 2004. Lecture Notes in
Computer Science, Volume 2960.

Young-Kwang Nam, Joseph Goguen, and Guilian Wang. A metadata tool for
retrieval from heterogeneous distributed XML documents. In P.M.A. Sloot et al.,

42

editors, Proceedings, International Conference on Computational Science, pages
1020-1029. Springer, 2003. Lecture Notes in Computer Science, volume 2660.

64. Pablo Neruda. Windows that Open Inward (Images of Chile). White Pine, 1999.
With photographs by Milton Rogovin.

65. Charles Saunders Peirce. Collected Papers. Harvard, 1965. In 6 volumes; see
especially Volume 2: Elements of Logic.

66. Benjamin C. Pierce. Basic Category Theory for Computer Scientists. MIT, 1991.

67. Erhard Rahm and Philip Bernstein. A survey of approaches to automatic schema
matching. VLDB Journal, 10(4):334-350, 2001.

68. Ferdinand de Saussure. Course in General Linguistics. Duckworth, 1976. Trans-
lated by Roy Harris.

69. Marco Schorlemmer and Yannis Kalfoglou. A channel-theoretic foundation for
ontology coordination. In Second Eruopean Workshop on Multi-Agent Systems.
2004. Barcelona, Spain.

70. John Sowa. Knowledge Representation: Logical, Philosophical and Computational
Foundations. Brooks/Coles, 2000.

71. Andrzej Tarlecki, Rod Burstall, and Joseph Goguen. Some fundamental algebraic
tools for the semantics of computation, part 3: Indexed categories. Theoretical
Computer Science, 91:239-264, 1991.

72. Alfred Tarski. The semantic conception of truth. Philos. Phenomenological Re-
search, 4:13-47, 1944.

73. Simon Thompson. Type Theory and Functional Programming. Addison-Wesley,
1991. Available online in postscript.

74. William Tracz. Formal Specification of Parameterized Programs in LILLEANNA.
PhD thesis, Stanford University, 1997.

75. Rudolf Wille. Restructuring lattice theory: an approach based on hierarchies of
concepts. In Ivan Rival, editor, Ordered Sets, pages 445-470. Reidel, 1982.

A Institutions and Categories

For those who are less than fully comfortable with category theory, we
first explicate the notion of institution [35], without any explicit use cate-
gory theory; this is followed by a brief exposition of some basic categorical
concepts. Institutions axiomatize the possible kinds of theory and model
that can be used for UCT. This is important because the examples we
have worked out (e.g., here and in [31]) use several different kinds of logic
and model, and other applications will no doubt require still other logics
and models. First, we assume there are contexts®”, and context morphisms,
which have a (partially defined) composition operation (if ¢: C' — C’ and
: C"— C" then ¢;¢: C — C" denotes their composition) that is asso-
ciative (i.e., (¢;1);€ = ¢; (1; &) whenever these compositions are defined)

29 Most institution literature uses the term “signature,” but “context” is more appro-
priate for the wider range of applications now being explored for institutions, many
of which exhibit similarity to Peirce’s triadic semiotics [65], in which the context of
a sign is important for its interpretation.

43

and has identities (i.e., given a context C, there is a context morphism
1o such that 1¢;¢ = ¢ and ; 1¢c = ¥ whenever these compositions are
defined)?3°.

Next, we describe how context changes affect theories and models; this
also is done axiomatically®': We assume that for each context C, there is
a given set Sen(C) of axioms (or sentences) for that context, and a given
set32 Mod(C) of models for that context. If a is an axiom for
context C and if ¢: C — C’, then we let ¢(z) or Sen(¢)(x) denote
the result of translating z to the context C’, and we assume
that 1o(z) = = and ¢;¢(z) = ¢Y(é(z)) for ¢: C' — C”. Similarly,
given a model M’ for C’, let ¢(M') or Mod(¢)(M') denote the C-
model that results from the change of context (notice that this
translation is “contravariant” rather than “covariant”), and we
assume that 1¢(M’') = M’ and that ¢;¢p(M’) = ¥(¢(M')). Finally,
given ¢: C — C’, we assume the satisfaction condition, that

M o o(x) iff ¢(M') o @

for all C’-models M’ and all C-axioms z. It seems that any logic
(that has a notion of model) is an institution in this sense; a de-
tailed argument for this is given in [60], which also shows that
a great deal of metamathematics can be done at the level of
institutions. (We mention that institutions can be generalized
in various ways: one is to let the satisfaction relation take val-
ues other than true and false, e.g., in a lattice; another is to
let model and sentence classes have more structure, such as a
category; see [40] for details.)

A C-theory is a set of (C-axioms. We now define a triad over
an institution Z to be a triple (M,C,T) where M is a set? of
C-models and T is a C-theory such that M ¢ T. Then a triad
morphism from (M, C,T) to (M’',C’,T') is a pair of maps &: T — T’
and ¥: M’ — M such that

M ko &(x) iff (M) ¢ x
for all models M’ € M’ and all axioms x € T this condition is
similar to the satisfaction condition. An equivalent form is

M' o o(T) iff ¥(M')EcT
for all M" in M', where &(T) = {&(z) | x € T}. It is easy to see
that every context morphism induces a triad morphism; but
30 More technically, we are assuming a given category of contexts.
31 More technically, we assume two functors on the category of contexts.

32 More technically, a class, in the sense of Gédel-Bernays set theory.
33 This is more general than the definition in the body of the paper.

44

triad morphisms are more general, as is shown by the skin color
example. In the special of just unary predicates and just one
context, triad morphisms degenerate to the infomorphisms of [3].

Categories represent structures, such as automata (with their
homomorphisms), groups (with their homomorphisms), and vec-
tor spaces (with linear transformation). The description of con-
texts and their morphisms im the first paragraph actually con-
stitutes a precise definiton of the category notion. For example,
in Definition 1, Set denotes the category of set, and Cat denotes
the the category of (small) categories. Similarly, functors rep-
resent constructions on structures, such as the formal language
accepted by an automaton, or the lattice of normal subgroups of
a group; and the description of how context changes sentences
and models constitutes precise definitions for covariant and con-
travariant functors. Finally, natural transformations represent
relations between functors, such as that one constructs less
structured objects than another. The natural transformation
a in Definition 4, express the relation between Sen/(F (X)) and
Sen(X), and similarly the natural transformation b expresses the
relation between the two model functors; the vertical arrows in
the diagram enforce the mutual consistency of the relationships
ay and the relationship by. Many other intuitions and examples
can be found in [24], and many other places.

B Grothendieck Constructions

Situations in which one kind of structure is indexed by another
are rather common in mathematics, computer science, and their
applications, and are the essence of many information integra-
tion problems. Alexander Grothendieck developed a very gen-
eral way of dealing with this kind of structural heterogeneity, as
part of his brilliant reformulation of algebraic geometry into the
language of category theory, in order to solve a number of then
outstanding problems. The word “structure” in the first sen-
tence of this paragraph is formalized as the mathematical con-
cept of category, in which the structure-preserving morphisms
play a central role, and the indexing is then given by a functor
F: I°? — Cat (the original formulation of Grothendieck assumes
a weaker coherence than that given by functoriality, but this
complex extra generality is not needed for our applications).

45

The Grothendieck construction “flattens” this indexed family
of categories into a single category. This is important because
it supports combining objects from different categories in the
single flattened category using colimits, in which morphisms de-
scribe sharing and translations among objects. Typical objects
of practical interest are ontologies and schemas (see [33] for
some detail), both of which are special cases of the Grothen-
dieck construction on theories given in Definition 2.

Now some details: The Grothendieck category Gr(F') of an
indexed family? F: I’ — Cat has as its objects pairs (i, A)
where i is an object in I and A is an object in F(i), and has
as its morphisms (i, A) — (i’, A’) pairs (f,h) where f: i — ¢ in
I (ie., f: i — i in I°?), and h: A — F(f)(A’) in the category
F(i), noting that F(f): F(i') — F(i); such morphisms have also
been called “heteromorphisms,” “cryptomorphisms” and sev-
eral other things. Given also (f',h'): (i, A") — (i, A”), define the
composition (f,h); (f',h'): (i, A) — (", A”) to be (f; f', h; F(f)(Rh)).
It is easy to check that this gives a category.

Several useful results about colimits and limits in Groth-
endieck categories are given in [71], but a better exposition ap-
pears in Section 2.1 of [40]. It is worth mentioning an alternative
approach to the same phenomena based on fibered categories,
though in our opinion, its greater technical complexity does not
yield corresponding benefit for our applications.

The Grothendieck institution construction of [9] applies the
same idea to indexed families of institutions. The result is not
just a single category, but a single institution, the signature
category of which is the Grothendieck flattening of the indexed
family of signature categories, and similarly for the sentences
and the models. Moreover, logical properties of the individual
institutions tend to lift to the whole flattened Grothendieck
institution under suitable assumptions, e.g., Craig interpolation
[12].

C A Novel Database Institution

This section illustrates the power of the triadic satisfaction re-
lation of institutions with a novel database formalization. As

34 Here, I°? is the opposite category of I, obtained by reversing the direction of all
arrows in I.

46

in Section 3.6, we let I be many sorted Horn clause logic, so
that relation symbols really denote relations, which are repre-
sented in models by appropriate sets of tuples, rather than by
Boolean-valued binary functions. The novel twist is to take these
database states as the objects of the category of signatures; it
may seem strange to call them “signatures,” but it makes good
sense if we think of them as contexts that relate queries and
answers. Although the term “context” is less suggestive of the
original examples from logic, it has the advantage of better re-
flecting Peirce’s semiotics. Let morphisms of database states be
3-tuples of inclusions of the three sets of tuples.

Example 8: Fix a set X1, X», ..., X, of variable symbols, each hav-
ing a fixed sort from among those of (2, and let the queries in
Sen(X) be formulae of the form P, &...& P, where each P; is of the
form R(ti,...,t,,) for some relation R in the schema, where each
t; is either some X; or else some constant from (2, and where
(t1,...,tm) has the arity required by R. Since Sen(Y) does not ac-
tually depend on Y, we may as well write just Sen for this set of
formulae, and given i : ¥ — Y, we can let Sen(i) be the identity
on Sen. These queries should be thought of as implicitly existen-
tially quantified by the variables Xi,..., X,,. We could certainly
consider more complex queries, but these are sufficient for our
present illustrative purpose.

The models in Mod(X) are possible answers to queries over
Y, by which we mean sets of tuples (dy, ..., d,,) where each d; is an
element of (2 having the same sort as X;, where each tuple has
an associated “witness” (ry,...,7,), where each r; is a tuple in the
set of instances belonging to ¥. Given an inclusion i: ¥ — X',
let Mod(i): Mod(X'") — Mod(X) be the map that sends M’ to the
set of pairs ((d1, ...,dy), (71, ...,7p)) in M’ such that each r; is among
the instances belonging to Y. It is not hard to check that this
is a functor, which restricts M’ to X. Finally, given a query Q
and an answer A over a state Y, let A Ey @ hold iff for each
((dy,...,dpn),(r1,...,7p)) € A, substituting d; for X; in P; yields the
tuple r;, for each j. We can now check the satisfaction condition.
O

Of course, it is also desirable to allow different sets of vari-
ables, but this can be accomplished with a Grothendieck con-
struction; and another Grothendieck construction gives a database

47

institution that allows queries over arbitrary relational schemas
as well as over arbitrary finite variable sets. These flattenings
are like those done previously for signatures, but they provide
suggestive illustrations of the potential of institutions for situat-
ing judgements (such as satisfaction) within the contexts where
they are made, in a way that is quite different from that of the
usual examples of logics as institutions.

A somewhat more sophisticated version packages the schema
with the database to form signatures, in which case the Sen func-
tor will vary with the schema component. Another extension is
to enrich the query language with predicates and functions form
O. Ideally this gives users a familiar and convenient vocabulary
that abstracts away from details of database structure, with
which users may not be familiar. The query language could even
be GUI-based, e.g., as an extension of our SCIA tool [33], which
provides a GUI to help users construct schema mappings, and
which is currently being extended to ontology mappings.

48

