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Abstract. The lattice of theories of Sowa and the formal concept anal-
ysis of Wille each address certain formal aspects of concepts, though for
different purposes and with different technical apparatus. Each is suc-
cessful in part because it abstracts away from many difficulties of living
human concepts. Among these difficulties are vagueness, ambiguity, flex-
ibility, context dependence, and evolution. The purpose of this paper
is first, to explore the nature of these difficulties, by drawing on ideas
from contemporary cognitive science, sociology, computer science, and
logic. Secondly, the paper suggests approaches for dealing with these dif-
ficulties, again drawing on diverse literatures, particularly ideas of Peirce
and Latour. The main technical contribution is a unification of several
formal theories of concepts, including the geometrical conceptual spaces
of Gérdenfors, the symbolic conceptual spaces of Fauconnier, the infor-
mation flow of Barwise and Seligman, the formal concept analysis of
Wille, the lattice of theories of Sowa, and the conceptual integration of
Fauconnier and Turner; this unification works over any formal logic at
all, or even multiple logics. A number of examples are given illustrat-
ing the main new ideas. A final section draws implications for future
research. One motivation is that better ways for computers to integrate
and process concepts under various forms of heterogeneity, would help
with many important applications, including database systems, search
engines, ontologies, and making the web more semantic.

1 Introduction

This paper develops a theory of concepts, called the Unified Concept The-
ory (UCT), that integrates several approaches, including John Sowa’s
lattice of theories [61] (abbreviated LOT), the formal concept analysis
(FCA) of Rudolf Wille [15], the information flow (IF) of Jon Barwise
and Jerry Seligman [3], Gilles Fauconnier’s logic-based mental spaces [13],
Peter Gardenfors geometry-based conceptual spaces [16], the conceptual
integration (CI, also called blending) of Fauconnier and Turner, and some
database and ontology approaches, in a way that respects their cognitive
and social aspects, as well as their formal aspects. UCT does not claim to
be an empirical theory of concepts, but rather a mathematical formalism
that has applications to formalizing, generalizing, and unifying theories



in cognitive linguistics, psychology, and other areas, as well as to vari-
ous kinds of engineering and art; it has implementations and is sound
engineering as well as sound mathematics.

Although the question in the title does not get a final answer, I hope
that readers will enjoy the trip through some perhaps exotic seeming
countries that lie on the borders between the sciences and the humanities,
and return to their home disciplines with useful insights, such as a sense
of the limitations of disciplinary boundaries, as well as with some new
formal tools.

Section 2 illustrates several of the difficulties with concepts mentioned
above, through a case study of the concept “category” in the sense of
contemporary mathematics; Section 2.1 outlines some sociology of this
concept, and Section 2.2 discusses some methodological issues, drawing
particularly on theories of Bruno Latour. Section 3 reviews research on
concepts from several areas of cognitive semantics, especially cognitive
psychology and cognitive linguistics. This section provides a technical
reconciliation of two different notions of “conceptual space” in cognitive
semantics, Fauconnier’s symbolic notion and Gardenfors’ geometric no-
tion; it also gives an extended illustration of the use of this new theory,
and an example using fuzzy convex sets to represent concepts. In addi-
tion, it suggests an approach to the symbol grounding problem, which
asks how abstract symbols can refer to real entities. Section 4 reviews
research from sociology, concerning how concepts are used in conversa-
tion and other forms of interaction; values are also discussed. Section
5 explains the UCT approach to semantic integration, using tools from
category theory to unify LOT, FCA, IF and CI, and generalize them to
arbitrary logics, based on the theory of institutions; an ontology align-
ment example is given using these methods. Finally, Section 6 considers
ways to reconcile the cognitive, social and technical, and draws some con-
clusions for research on formal aspects of concepts and their computer
implementations. Unfortunately, each section is rather condensed, but
examples illustrate several main ideas, and a substantial bibliography is
provided.
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tion, constructive suggestions, references, and/or helpful remarks, though
of course any remaining errors are my own. This paper is based on work
supported by the National Science Foundation under Grant No. 9901002,
SEEK, Science Environment for Ecological Knowledge.



2 A Case Study: “Category”

Category theory has become important in many areas of modern mathe-
matics and computer science. This section presents a case study, exploring
the mathematicians’ concept of category and its applications, in order to
help us understand how concepts work in practice, and in particular, how
they can evolve, and how they can interact with other concepts within
their broader contexts. This socio-historical situation is made more com-
plex and interesting by the fact that the mathematical notion of category
formalizes a certain kind of mathematical concept; Section 5 makes con-
siderable use of categories in this sense.

The word “category” has a complex history, in which it manifested
as many different concepts, several of which are of interest for this pa-
per. Aristotle introduced the term into philosophy, for the highest level
kinds of being, based on basic grammatical categories of classical Greek.
The idea was later taken up and modified by others, including the me-
dieval scholastics, and perhaps most famously, by Immanual Kant. Later
Friedrich Hegel and Charles Sanders Peirce criticized Kant, and put forth
their own well known triads, the three elements of which are commonly
called “categories.”

In the early 1940s, Samuel Eilenberg and Saunders Mac Lane devel-
oped their theory of categories [12] to solve certain then urgent problems
in algebraic topology'. They borrowed the word from Kant, but their
concept is very different from anything in Kant’s philosophy. They gave
a semantic formalization of the notion of a mathematical structure: the
category for a structure contains all mathematical objects having that
structure; but the real innovation of category theory is that the cate-
gory also contains all structure preserving “morphisms” between its ob-
jects, along with an operation of composition for these morphisms. This
concept, which is made explicit in Definition 1 below, allows an amaz-
ing amount of mathematics to be done in a very abstract way, e.g., see
[61, 57]. For example, one can define notions of “isomorphism,” “prod-
uct,” “quotient,” and “subobject,” at the abstract categorical level, and
then see what form they take (if they exist) in particular categories; many
general theorems can also be proved about such notions, which then ap-
ply to an enormous range of concrete situations. Even more can be done

! There were several different homology theories, some of which seemed equivalent to
others, but it was very unclear how to define an appropriate notion of equivalence.
Eilenberg and Mac Lane characterized homology theories as functors from the cat-
egory of topological spaces to the category of groups, and defined two such theories
to be equivalent if there was a natural equivalence between their functors.



once functors are introduced, and that is not the end of the story by any
means. Thus “category” is not an isolated concept, but part of a large
network of inter-related concepts, called “category theory.”

The phrase “all mathematical objects having that structure” raises
foundational issues, because Zermelo-Fraenkel (ZF) set theory, the most
commonly used foundation for mathematics, does not allow such huge
collections. However, Godel-Bernays set theory does allow them under its
notion of “classes,” which it distinguishes from the small “sets.” Further
foundational issues arise when one considers the category Cat of all cate-
gories. This has also been solved, by so-called universes of sets, along lines
developed by either Alexander Grothendieck or Solomon Feferman. Some
of these issues are discussed in [51]. This illustrates how a concept can
generate difficulties when pushed to its limits, and then stimulate further
research to resolve those difficulties?.

Such seemingly esoteric issues can have significant social consequences.
For example, in the 1970s, I had several perfectly good papers rejected,
due to referee reports claiming that the mathematics used, namely cate-
gory theory, lacked adequate foundations! Such incidents no longer occur,
but there is lingering disquiet due to the fact that foundations more so-
phisticated than standard ZF set theory are required.

Definition 1: A category C consists of: a class, denoted |C|, of ob-
jects; for each pair A, B of objects a set C(4, B) of morphisms from A
to B; for each object A, a morphism 14 in C(A4, A), called the identity at
A; and for each three objects A, B, C, an operation called composition,
C(A,B) x C(B,C) — C(A,C), denoted “;” such that f;(g;h) = (f;9);h
and f;14 = f and 14;9 = g whenever these compositions are defined.
Write f: A — B when f € C(4, B) and call A the source and B the
target of f. O

Example 2: Perhaps the easiest example to explain is the category Set
of sets. Its objects are sets, its morphisms f: A — B are functions, 14
is the identity function on the set A, and composition is as usual for
functions. Another familiar example is the category of Euclidean spaces,
with R™ for each natural number n as objects, with morphisms f: R™ —
R™ the n x m real matrices, with identity morphisms the n x n diagonal
matrices with all 1s on the diagonal, and with matrix multiplication as
composition. O
2 An example that followed a somewhat different trajectory is Gottlob Frege’s formal-
ization of Cantor’s informal set theory, which was shown inconsistent by Russell’s

paradox and then supplanted by theories with a more restricted notion of set; see
[39] for details.



There are also other ways of defining the category concept. For exam-
ple, one of these involves only morphisms, in such a way that objects can
be recovered from the identity morphisms. The precise senses in which
the various definitions are equivalent can be a bit subtle. Moreover, a
number of weakenings of the category concept are sometimes useful, such
as semi-categories and sesqui-categories.

A powerful approach to understanding the category concept is to look
at how it is used in practice. It turns out that different communities use
it in different ways. Following the pioneering work of Grothendieck, cate-
gory theory has become the language of modern algebraic geometry, and
it is also much used in modern algebraic topology and differential ge-
ometry, as well as other areas, including abstract algebra. Professional
category theorists generally do rather esoteric research within category
theory itself, not all of which is likely to be useful elsewhere in the short
term. Many mathematicians look down on category theory, seeing it more
as a language or a tool for doing mathematics, rather than an established
area of mathematics. Within theoretical computer science, category the-
ory has been used to construct and study models of the lambda calculus
and of type theories, to unify the study of various abstract machines,
and in theories of concurrency, among many other places. It is also often
used heuristically, to help find good definitions, theorems, and research
directions, and to test the adequacy of existing definitions, theorems and
directions; such uses have an aesthetic character. I tried to formulate
general principles for using category theory this way in “A Categorical
Manifesto” [21].

Let us consider two results of this approach in my own experience: ini-
tial algebra semantics [34] and the theory of institutions [28]. As discussed
in [21], initial algebras, and more generally initial models, formalize, gen-
eralize and simplify the classical Herbrand Universe construction, and
special cases include abstract syntax, induction, abstract data types, do-
main equations, and model theoretic semantics for functional, logic and
constraint programming, as well as all of their combinations. The first
application was an algebraic theory of abstract data types; it spawned a
large literature, including several textbooks. But its applications to logic
programming and other areas attracted much less attention, probably
because these areas already had well established semantic frameworks,
whereas abstract data types did not; moreover, resistance to high levels
of abstraction is rather common in computer science.

Institutions [28, 53] are an abstraction of the notion of “a logic,” orig-
inally developed to support powerful modularization facilities over any



logic; see Section 5 for more detail. The modularization ideas were de-
veloped for the Clear specification language [7] before institutions, but
institutions allow an elegant and very general semantics to be given for
them [28, 35]; these facilities include parameterized modules that can be
instantiated with other modules. This work influenced the module sys-
tems of the programming languages Ada, C++, ML, LOTOS, and a large
number of lesser known specification languages®. Among the program-
ming languages, the Standard ML (or SML) variant of ML comes closest
to implementing the full power of these modularization facilities, while
the specification languages mentioned in footnote 3 all fully implement
it. ML is a functional programming language with powerful imperative

features (including assignment and procedures)*.

2.1 Sociology of Concepts

The evolution of concepts called “category” from Aristotle’s ontological
interpretation of syntax, through a multitude of later philosophies, into
mathematics and then computer science, has been long and complex,
with many surprising twists, and it is clear that the mathematical con-
cept differs from Aristotle’s original, as well as from the intermediate
philosophical concepts. This evolution has been shaped by the particular
goals and values of the communities involved, and views of what might be
important gaps in then current philosophical, mathematical, or technical
systems, have been especially important; despite the differences, there is
a common conceptual theme of capturing essential similarities at a very
abstract level.

The heuristic use of the category theoretic concepts for guiding re-
search in computer science suggested in [21] is not so different from that
of Aristotle and later ordinary language philosophers, who sought to im-
prove how we think by clarifying how we use language, and in particular
by preventing “category errors,” in which an item is used in an inap-
propriate context. However, the approach of [21] is much more pragmatic
than the essentially normative approach of Aristotle and the ordinary lan-
guage philosophers. Many theoretical computer scientists have reported
finding [21] helpful, and it has a fairly high citation index.

3 These include CafeOBJ [11], Maude [8], OBJ3 [36], BOBJ [31], and CASL [54].

4 Rod Burstall reports that much of the design work for the module system of the
SML version of ML was done in discussions he had with David MacQueen. Perhaps
the most potentially useful ideas still not in SML are the renamings of Clear [28]
and the default views of OBJ3 [36].



On the other hand, beyond its initial success with abstract data types,
the initial model approach, despite its elegance and generality, has not
been taken up to any great extent. In particular, the programming lan-
guages community continues to use more concrete approaches, such as
fixed points and abstract operational semantics, presumably because they
are closer to implementation issues.

The extent to which a concept fits the current paradigm (in the gen-
eral sense of [44]) of a community is crucial to its success. For example,
Rod Burstall and I expected to see applications of institutions and pa-
rameterized theories to knowledge representation (KR), but that did not
happen. Perhaps the KR community was not prepared to deal with the
abstractness of category theory, due to the difficulty of learning the con-
cepts and how to apply them effectively. Although we still believe this is
a promising area, we were much more successful with the specification of
software systems, and the most notable impact of our work has been on
programming languages.

Let us now summarize some of what we have seen. Concepts can evolve
over very long periods of time, but can also change rather quickly, and
the results can be surprising, e.g., the “categories” of Aristotle, Kant,
Hegel, and Peirce. Multiple inconsistent versions of a concept can flourish
at the same time, and controversies can rage about which is correct.
Concepts can become problematic when pushed further than originally
intended, requiring the invention of further concepts to maintain their
life, as when category theory required new foundations for mathematics.
Otherwise, the extended concept may be modified or even abandoned, as
with Frege’s logic. New concepts can also fail to be taken up, e.g., initial
model semantics and the security model mentioned in footnote 5.

The same concept can be used very differently in different communi-
ties: the uses of categories by working mathematicians, category theorists,
and computer scientists are very different, so much so that, despite the
mathematical definitions being identical, one might question whether the
concepts should be regarded as identical. These differences include being
embedded in different networks of other concepts, other values, and other
patterns of use; to a large extent, the values of the communities determine
the rest. Moreover, these differences can lead to serious mutual misun-
derstandings between communities. For example, mathematicians value
“deep results,” which in practice means hard proofs of theorems that fit
well within established areas, whereas computer scientists must be con-
cerned with practical issues such as efficiency, cost, and user satisfaction.



These differences make it difficult for category theorists and computer
scientists to communicate, as I have often found in my own experience.

In retrospect, it should not be so surprising that our research using
category theory had its biggest impact in programming languages rather
than formal logic or mathematics, because of the great practical demand
for powerful modularization in contemporary programming practice. To
a great extent, science today is “industrial science” or “entrepreneurial
science,” driven by the goals of large organizations and the pressures of
economics, rather than a desire for simple general abstract concepts that

unify diverse areas.

It seems likely that the above observations about the “category” con-

cept also hold for many other concepts used in scientific and technical
research, but further case studies and comparative work would be needed
to establish the scope and limitations of these observations. There is also
much more in the category theory literature that could be considered,
such as the theory of topoi [4].

2.2 Methodology

Because much of the intended audience for this paper is unlikely to be
very interested in social science methodology, this subsection is delib-
erately quite brief. Science Studies is an eclectic new field that studies
science and technology in its social context, drawing on history, philos-
ophy and anthropology, as well as sociology; its emphasis is qualitative
understanding rather than quantitative reduction, although quantitative
methods are not excluded. The “strong program” of David Bloor and
others [5] calls for a “symmetric” approach, which disallows explaining
“true” facts rationally and “false” facts socially; it is constructionist but
not anti-realist. Donald McKenzie has a fascinating study of the sociol-
ogy of mechanized proof [52]°. The actor network theory of Bruno Latour
[49, 48] and others, emphasizing the interconnections of human and non-
human “actants” required to produce scientific knowledge and technology,
grew out of the strong program. Symbolic interactionism (e.g., [6]) is con-
cerned with how meaning arises out of interaction through interpretation;

® While reading this book, I was startled to encounter a sociology of the concept
“security” which (along with many other things) explained that the early 1980s
Goguen-Meseguer security model was largely ignored at the time, due to pressure
from the National Security Agency, which was promoting a different (and inferior)
model. This illustrates how social issues can interact with formal concepts.



it was strongly influenced by the pragmatism of Peirce®. Ethnomethod-
ology [17], a more radical outgrowth of symbolic interactionism, provides
useful guidelines when the analyst is a member of the group being studied;
Eric Livingston has done an important study of mathematics in this tra-
dition [50]. Among more conventional approaches are the well known his-
torical theories of Thomas Kuhn [44] and the grounded theory of Anselm
Strauss and others [19]. Some related issues are discussed in Section 4.

3 Cognitive Science

This section is a short survey of work in cognitive semantics, focused on
the notion of “concept.” In a series of papers that are a foundation for con-
temporary cognitive semantics, Eleanor Rosch designed, performed, and
carefully analyzed innovative experiments, resulting in a theory of human
concepts that differs greatly from the Aristotelian tradition of giving nec-
essary and sufficient conditions, based on properties. Rosch showed that
concepts exhibit prototype effects, e.g., degrees of membership that corre-
late with similarity to a central member. Moreover, she found that there
are what she called basic level concepts, which tend to occur in the mid-
dle of concept hierarchies, to be perceived as gestalts, to have the most
associated knowledge, the shortest names, and to be the easiest to learn.
Expositions in [46, 47, 37] give a concise summary of research of Rosch
and others on conceptual categories. This work served as a foundation for
later work on metaphor by George Lakoff and others. One significant find-
ing is that many metaphors come in families, called basic image schemas,
that share a common sensory-motor pattern. For example, MORE IS UP
is grounded in our everyday experience that higher piles contain more
dirt, or more books, etc. Metaphors based on this image schema are very
common, e.g., “That raised his prestige.” or “This is a high stakes game.”

resident

owner

live-in

Fig. 1. Two Simple Conceptual Spaces

5 Interpretation in this tradition is understood in essentially the sense of Peirce’s
thirdness [56].



Fauconnier’s mental spaces [13] (called conceptual spaces in [14]) do
not attempt to formalize concepts, but instead formalize the important
idea that concepts are used in clusters of related concepts. This formaliza-
tion uses a very simple special case of logic, consisting of individual con-
stants, and assertions that certain relations (mostly binary) hold among
certain of those individuals; it is remarkable how much natural language
semantics can be encoded with this framework (see [13, 14]). Figure 1
shows two simple conceptual spaces, the first for “house” and the sec-
ond for “boat.” These do not give all possible information about these
concepts, but only the minimal amount needed for a particular applica-
tion, which is discussed in Section 5. The “dots” represent the individual
constants, and the lines represent true instances of relations among those
individuals. Thus, the leftmost line asserts own(owner, house), which
means that the relation own holds between these two constants.

Goguen [23] proposed algebraic theories to handle additional features
that are important for user interface design. In particular, many signs are
complex, i.e., they have parts, and these parts can only be put together
in certain ways, e.g., consider the words in a sentence, or the visual con-
stituents of the diagram in Figure 1. Algebraic theories have constructor
functions build complex signs from simpler signs; for example, a window
constructor could have arguments for a scrollbar, label, and content. Then
one can write W1 = window(SB1, L1, C1); there could also be additional
arguments for color, position, and other details of how these parts are put
together to constitute a particular window. This approach conveys infor-
mation about the relations between parts and wholes in a much more
explicit and useful way than just saying has-a(window, scrollbar),
and it also seems to avoid many problems that plague the has-a relation
and its axiomatizations in formal mereology” (see [58] for some discussion
of these problems).

Algebraic theories also have sorts (often called “types”), which serve
to restrict the structure of signs: each individual has a sort, and each
relation and function has restrictions on the sorts that its arguments may
take. For example, owner and resident might have sort Person while
house has sort Object and own takes arguments only of sorts Person,
Object. Allowing sorts to have subsorts provides a more effective way
to support inheritance than the traditional is-a relation. For example,
Person might have a subsort Adult. Order sorted algebra [32] provides a
mathematical foundation for this approach, integrating inheritance with
whole/part structure (using constructor functions instead of the has-a

" Mereology is the study of whole/part relations.

10



relation) in an elegant and computationally tractable algebraic formalism
that also captures some subtle relations between the two®.

Algebraic theories may have conditional equations as axioms (though
arbitrary first order sentences could be used if needed) to further constrain
the space of possible signs; for example, certain houses might restrict their
residents to be adults. Fauconnier’s mental spaces are the special case of
order sorted algebraic theories with no functions, no sorts or subsorts,
and with only atomic relation instances as axioms. There is extensive ex-
perience applying algebraic theories to the specification and verification
of computer-based systems (e.g., [36, 31, 11]). Hidden algebra [31] pro-
vides additional features that handle dynamic systems with states, which
are central to computer-based systems. Semiotic spaces extend algebraic
theories by adding priority relations on sorts and constructors, which ex-
press semiotic information that is vital for applications to user interface
design [23, 24]. Semiotic spaces are also called sign systems, because they
define systems of signs, not just single signs, e.g., all possible displays on
a particular digital clock, or a particular cell phone.

White

saturation

Brightness

Black

Fig. 2. Human Color Manifold

Gérdenfors [16] proposes a notion of “conceptual space” that is very
different from that of Fauconnier, since it is based on geometry rather
than logic. One of the most intriguing ideas in [16] is that all conceptual
spaces are convez’; there is also a nice application of Voronoi tessellation

8 E.g., the monotonicity condition on overloaded operations with respect to subsorts
of argument sorts [32].

9 A subset of Euclidean space is convez if the straight line between any two points
inside the subset also lies inside the subset; this generalizes to non-Euclidean man-

11



to a family of concepts defined by multiple prototypes'®. Although [16]
aims to reconcile its geometric conceptual spaces with symbolic represen-
tations like those of Fauconnier, it does not provide a unified framework.
However, such a unification can be done in two relatively straightforward
steps. The first step is to introduce models in addition to logical theo-
ries, where a model provides a set of instances for each sort, a function
for each function symbol, and a relation for each relation symbol; since
we are interested in the models that satisfy the axioms in the theory, an
explicit notion of satisfaction is also needed!!. The second step is to fix
the interpretations in models of certain sorts to be particular geometrical
spaces (the term “standard model” is often used in logic for such a fixed
interpretation). Sorts with fixed interpretation give a partial solution to
the symbol grounding problem'? [38], while those without fixed interpre-
tation are open to arbitrary interpretations. This way of combining logic
with concrete models can be applied to nearly any logic'3.

For example, a sort color might be interpreted as the set of points
in a fixed 3D manifold representing human color space, coordinatized by
hue, saturation and brightness values, as in Figure 2, which is shaped
like a “spindle,” i.e., two cones with a common base, one upside down.
This provides a precise framework within which one can reason about
properties that involve colors, as in the following:

Example 3: A suggestive example in [16] concerns the (English) terms
used to describe human skin tones (red, black, white, yellow, etc.), which
have a very different meaning in that context than e.g., in a context of
describing fabrics. Géardenfors explains this shift of meaning by embed-
ding the space of human skin tones within the larger color manifold, and
showing that in this space, the standard regions for the given color names

ifolds by using geodesics instead of straight lines, but it is unclear what convexity
means for arbitrary topological spaces.
Given a set of n “prototypical points” in a convex space, the Voronoi tessellation
divides the space into n convex regions, each consisting of all those points that are
closest to one of the prototypes.
These items are the usual ingredients of a logic, but Section 5 argues that the extra
ingredients provided by institutions, e.g., variable context and context morphisms,
are also needed.
This is the problem in classic logic-based Al, of how abstract computational symbols
can be made to refer to entities in the real world. The approach in this paragraph is
partial because it only shows how abstract symbols can refer to geometrical models
of real world entities.
More precisely, to any concrete institution, which is a specialization of the notion
of institution described in Section 5, in which symbols have sorts and models are
many-sorted sets; see e.g. [63] for details.
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are the closest fits to the corresponding skin tone names. Technically, it
is actually better to view the spaces as related by a canonical projection
from the spindle to the subspace, because Girdenfors’ assumption that
all such spaces are convex guarantees that such a canonical projection
exists. Gardenfors does not give a formal treatment of the color terms
themselves, but we can view them as belonging to a mental space in the
sense of Fauconnier, and view their relationship as a classification between
the space of skin color terms and the space of all colors; note that many
colors will not have any corresponding skin tone name. O

Unified Concept Theory (see Section 5) uses the term frame for
a combination of a context, a symbolic space, a geometrical space (or
spaces), and a relation between them for the given context. Thus, there
are two frames in the above example, and the embedding and projection
of color spaces mentioned above can be seen as frame morphisms.

B

RN

h\g/b

Fig. 3. Information Integration over a Shared Subobject

The most important recent development of ideas in the tradition of
Rosch, Lakoff, and Fauconnier is conceptual blending, claimed in [14] to be
a (previously unrecognized) fundamental cognitive operation, which com-
bines different conceptual spaces into a unified whole. The simplest case
is illustrated in Figure 3, where for example I1, I> might be mental spaces
for “house” and “boat” (as in Figure 1), with G containing so-called
“generic” elements such that the maps G — I; indicate which individuals
should be identified. Some “optimality principles” are given in Chapter
16 of [14] for judging the quality of blends, and hence determining which
blends are most suitable, although these distillations of common sense are
far from being formal. In contrast to the categorical notion of colimit!4,
blends are not determined uniquely up to isomorphism; for example, B
could be “houseboat,” or “boathouse,” or some other combination of the
two input spaces I; (see [30] for a detailed discussion of this example).

1 Colimits abstractly capture the notion of “putting together” objects to form larger

objects, in a way that takes account of shared substructures; see [21] for an intuitive
discussion.
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Blending theory as in [14] also refines the metaphor theory of Lakoff,

by proposing that a metaphorical mapping from I to I is really a kind of
“side effect” of a blend B of I and I5, since a metaphor really constructs
a new space in which only certain parts of Iy and I, appear, and in
which some new structure found in neither I; nor Is may also appear; the
usual formulation of metaphor as a “cross space mapping” m: I — Io
is the reflection of the identifications that are made in B, i.e., if i1,19 are
constants in Iy, Is respectively, that map to the same constant in B, then
we set m(i1) = ia.
Example 4: In the metaphor “the sun is a king,” the constants “sun”
and “king” from the input spaces are identified in the blend, so “sun”
maps to “king,” but the hydrogen in the sun is (probably) not mapped
up or across, nor is that fact that kings may collect taxes. But if we add
the clause “the corona is his crown,” then another element is added to
the cross space map. O

Example 5: One of the most striking examples in [14], called “the Bud-
dhist monk,” is not a metaphor. It can be set up as follows: A Buddhist
monk makes a pilgrimage to a sacred mountain, leaving at dawn, reach-
ing the summit at dusk, spending the night there in meditation, then
departing at dawn the next day, and arriving at the base at dusk. A
question is then posed: is there a time such that the ascending monk and
the descending monk are at the same place at that time? This question
calls forth a blend in which the two days are merged into one, but the
one monk is split into two! The reasoning needed to answer the question
cannot be done in a logic-based blend space, because some geometrical
structures are needed to model the path of the monk(s), in addition to the
individuals and relations that are given logically. The table below shows
the semiotic spaces for the first and second day in its first and second
columns, respectively; notice the explicitly given types, which are needed
to constrain possible interpretations of the declared elements.

Time = [6, 18] Time = [6,18]

Loc = [0,10] Loc = [0,10]

m: Time — Loc m: Time = Loc

m(6) =0 m(6) = 10

m(18) = 10 m(18) = 0

(Vt,t': Time) t >t' = | (Vi,t': Time) t >t =
m(t) > m(t') m(t) < m(t')

The first two lines of each theory are type definitions. A model for the first
day will interpret Time as the fixed interval [6,18] (for dusk and dawn,
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in hours); it will also interpret Loc as another fixed interval, [0,10] (for
the base and summit locations, in miles). Then m is interpreted as some
continuous function [6, 18] — [0, 10], giving the monk’s distance along the
path as a function of time. The key axiom is the last one, a monotonicity
condition, which asserts that the monk always makes progress along the
path, though without saying how quickly or slowly. Each such function m
corresponds to a different model of the theory. The theory for the second
day is the same except for the last three axioms, which assert that the
monk starts at the top and always descends until reaching the bottom.
Notice that the types Time and Loc must be given exactly the same
interpretations on the two days, but the possible paths are necessarily
different. The blended theory is shown in the array below, in which m
indicates the monk’s locations on the first day and m’ on the second day.

Time = [6, 18] Loc = [0,10]
m,m’,m*: Time — Loc

t*: Time
m(6) =0 m(18) = 10
m'(6) = 10 m'(18) =0

(V t,t': Time) t > t' = m(t) > m(t')
(Vt,t': Time) t >t = m/(t) < m/(¥')
m*(t) = m/(t) — m(t)

m*(t*) =0

To answer the question, we have to solve the equation m(t) = m/(¢). If
we let t* denote a solution and let m* = m' —m, then the key “emergent”
structure added to the blend space is m*(t*) = 0, since this allows us to
apply (the strict monotone version of) the Intermediate Value Theorem,
which says that a strict monotone continuous function which takes values
a and b with a # b necessarily takes every value between a and b exactly
once. In this case, m* is strict monotone decreasing, m*(6) = 10 and
m*(18) = —10, so there is a unique time ¢* such that m*(t*) = 0.

It is interesting to notice that if we weaken the monotonicity axioms
to become non-strict, so that the monk may stop and enjoy the view for
a time, as formally expressed for the first day by the axiom

(V t,t': Time) t > t' = m(t) > m(t')
then (by another version of the Intermediate Value Theorem) the monk
can meet himself on the path for any fixed closed proper subinterval [a, b]
of [6,18] (i.e., with 6 < a < b < 18 with either a # 6 or b # 18). More-
over, if we drop the monotonicity assumption completely but still assume
continuity, then (by the most familiar version of the Intermediate Value
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Theorem) there must still exist values ¢t* such that m(t*) = m’'(t*), but
these t* are no longer confined to a single interval, and can even consist
of countably many isolated intervals. It seems safe to say that such obser-
vations would be very difficult to make without a precise mathematical
analysis like that given above!S; in fact, Fauconnier and Turner had not
previously relized that the monk could meet himself more than once.

Finally, it is important to notice that the structures used in this ex-
ample, consisting of a many-sorted logical theory and a class of models
that satisfy that theory, such that some sorts have fixed interpretations
in the models, can be seen as a classification in the sense of Barwise and
Seligman [3]; however, it is better to consider these structures as frames
in the sense of the theory of institutions (in Section 5), because in this
example the geometrical structure of the models is important, and the
different theories involve different vocabularies. Notice that it is not just
the theories that are blended, but the frames, including the vocabularies
over which they are defined. O

Concepts with prototype effects have a fuzzy logic, in that similarity
to a prototype determines a grade of membership. A formal development
of first order many sorted fuzzy logic is given in [20], where membership
can be measured by values in the unit interval, or in more general ordered
structures; it is not difficult to generalize semiotic spaces to allow fuzzy
predicates, and it is also possible to develop a comprehensive theory of
convex fuzzy sets'®. The example below demonstrates how these ideas are
useful in extending Girdenfors’ approach.

Example 6: The “pet fish” problem from cognitive semantics is, in
brief, how can a guppy be a bad exemplar for “pet” and for “fish,” but a
very good exemplar for “pet fish”? Let A be a space for animals, coordi-
natized by k measurable (real valued) quantities, such as average weight
at maturity, average length at maturity, number of limbs, etc. For each
point @ in A that represents an animal, let p(a) denote the extent to
which a is judged to be a “pet” (in some set of experiments), and simi-
larly f(a) for “fish”; for convenience, we can interpolate other values for
p and f between those with given experimental values, so that they are
continuous functions on A, which can be assumed to be a rectilinear sub-
set of R¥. In fuzzy logic, “pet fish” is the intersection of p and f, which
5 Of course, some results of this analysis are unrealistic, due to assuming that the
monk can move arbitrarily quickly; a velocity restriction be added, but at some
extra cost in complexity.
6 The author has done so in an unpublished manuscript from 1967. A fuzzy set

f: X — L is convez iff for each £ € L, the level set f¢ = {z | f(z) > £} is
convex, where L is any partially ordered set (usually at least a complete lattice).
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we an write as pf(a) = p(a) A f(a), where A gives the minimum of two
real values; see Figure 4. Then “guppy” can be have a maximal value
for pf even though it is far from maximal for either p or f. (It makes
sense that the maximum value of pf is smaller than those for p or f,
because “pet fish” is a somewhat rare concept, but if desired, pf can be
renormalized to have maximum 1.) Moreover, if Girdenfors is right, then
the level sets pp = {a € A | p(a) > ¢} are convex for each 0 < £ < 1,
and similarly for f,. It follows from this that pf is also convex, because
pfy ={a € A|p(a) > £ and f(a) > £} = pe N fr and the intersection of
convex subsets of R is convex. O

Fig. 4. A fuzzy intersection

As a final remark, our answer to the symbol grounding problem (in
the sense of footnote 12) follows Peirce, who very clearly said that signs
must be interpreted in order to refer, and interpretation only occurs in
some pragmatic context of signs being actually used; this means that the
symbol grounding problem is artificial, created by a desire for something
that is not possible for purely symbolic systems, as in classic logic-based
Al but which is easy for interpreted systems'’.

4 Social Science

There is relatively little work in the social sciences addressing concepts
in the sense of this paper. However, there are some bright spots. Eth-
nomethodology emphasizes the situatedness of social data, and closely
examines how competent members of a group actually organize their in-
teractions. A basic principle of accountability says that members may be
required to account for certain actions by their social groups, and that
exactly those actions are socially significant to those groups. From this
follows a principle of orderliness, which says that social interaction can
be understood, because the participants understand it due to account-
ability; therefore analysts can also understand it, once they discover how
members make sense of their interactions.
17 From an engineering perspective, one can say that sensors, effectors, and a world
model are needed to ground the constants in conceptual spaces; this is of course what

robots have, and our previously discussed partial solution can provide intermediate
non-symbolic (geometric) representations for systems with such capabilities.
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To understand interaction, ethnomethodology looks at the categories
(i.e., concepts) and the methods that members use to render their actions
intelligible to each other; this contrasts with presupposing that the cat-
egories and methods of the analyst are necessarily superior to those of
members. Harvey Sacks’ category systems [59] are collections of concepts
that members distinguish and treat as naturally co-occurring. Some rules
that govern the use of such systems are given in [59], which also demon-
strates how category systems provide a rich resource for interpreting or-
dinary conversation. A similar approach is used in a study reported in
[22] which aimed to understand the workflow and value systems of a cor-
porate recruitment agency. Ethnomethodology has many commonalities
with Peirce’s pragmatism and semiotics that would be well worth further
exploration.

The activity theory of Lev Vygotsky [64, 65] and others is an approach
to psychology emphasizing human activity, its material mediation (taken
to include language), and the cultural and historical aspects of commu-
nication and learning; Michael Cole’s cultural psychology [9] builds on
this, and is particular concerned with social aspects of learning. The dis-
tributed cognition of Edwin Hutchins [40] and others claims that cognition
should be understood as distributed rather than purely individual, and
studies “the propagation of representational states across media.” Leigh
Star’s boundary objects [62], in the tradition of science studies, provide
interesting examples in which different subgroups use the same material
artifact in quite different ways. It might be objected that this discussion
concerns how concepts are used in social groups, rather than what they
“are.” But the authors cited in this section would argue that concepts
cannot be separated from the social groups that use them.

An important ingredient that seems to me under-represented in all
these theories is the role of values, i.e., the motivations that people have
for what they do. It is argued in [22] that these can be recovered using the
principle of accountability, as well as through discourse analysis, in the
socio-linguistic tradition of William Labov [45] and others; some examples
are also given in [22].

5 Logical and Semantic Heterogeneity and Integration

This section explains Unified Concept Theory; although mainly mathe-
matical, it is motivated by non-mathematical ideas from previous sections,
as the final section makes more explicit.
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We have already shown how frames unify the symbolic concept spaces
of Fauconnier [13] with the geometrical conceptual spaces of Gardenfors
[16] (see Example 3). This section shows how LOT, FCA, IF and CI can be
included, and also shows how these theories can make sense over any logic,
although they are usually done over first order, or some closely related
logic (such as conceptual graphs [61]). For example, Section 3 argued
that order sorted algebra is an interesting alternative for applications to
ontologies, databases and so on. One might think a lot of work would
be required to transport these theories to such a different logic. But the
theory of institutions [28, 53] actually makes this quite easy [26].

Institutions formalize the notion of “a logic”, based on a triadic sat-
isfaction relation, which like Peirce’s signs, includes a context for inter-
pretation. Intuitively, institutions capture the two main ingredients of a
logic, its sentences and its models, as well as the important relation of
satisfaction between them, with the novel ingredient of parameterization
by the vocabulary used; this is important because different applications of
the same logic in general use different symbols. The formalization is very
general, allowing vocabularies to be objects in a category; these objects
are called “signatures,” and they serve as “contexts,” or “interpretants”
in the sense of Peirce. The possible sentences (which serve as “descrip-
tions,” or “representamen” in Peirce-speak) are given by a functor from
signatures. The possible models (“tokens,” or “objects” for Peirce) are
given by a (contravariant) functor from the signature category. Finally,
given a signature X, satisfaction is a binary relation between sentences
and models, denoted =5, required to satisfy a condition asserting invari-
ance of satisfaction (or “truth”) under context morphisms. The following
makes this precise:

Definition 7: An institution consists of an abstract category Sign,
the objects of which are signatures, a functor Sen: Sign — Set, and a
functor Mod: Sign? — Set (technically, we might uses classes instead
of sets here). Satisfaction is then a parameterized relation =5 between
Mod(X') and Sen(X), such that the following Satisfaction Condition
holds, for any signature morphism ¢: ¥ — X', any X’-model M’, and
any J'-sentence e,

My ple) il (M) e

where ¢(e) abbreviates Sen(y)(e) and p(M') abbreviates Mod(p)(e). O
Much usual notation of model theory generalizes, e.g., we say M =5 T
where T is a set of X-sentences, if M =5 ¢ for all ¢ € T, and we say
T =5 o if for all ¥-models M, M =5 T implies M =5 . Moreover, if
V is a class of models, let V =5 T if M =5 T for all models M in V. We
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call the structure that results when a signature is a fixed frame'8. It is
now very interesting to notice that the Buddhist monk example is really
a blending of two frames, not just of two conceptual spaces.

Example 8: First order logic is a typical example: its signatures are
sets of relation names with their arities; its signature morphisms are arity
preserving functions that change names; its sentences are the usual first
order formulae; its models are first order structures; and satisfaction is
the usual Tarskian relation. See [28] for details. It is straightforward to
add function symbols and sorts. O

Other logics follow a similar pattern, including modal logics, temporal
logics, many sorted logics, equational logics, order sorted logics, descrip-
tion logics, higher order logics, etc. Database systems of various kinds
are also institutions, where database states are contexts, queries are sen-
tences, and answers are models [25]. The theory of institutions allows
one to explore formal consequences of Peirce’s triadic semiotic relation,
which are elided in the dyadic formalisms of IF and FCA; for example,
one insight with significant consequences is that Peirce’s “objects” (i.e.,
an institution’s models) are contravariant with respect to “interpretants”
(i.e., signatures).

In the special case where the signature category has just one object
and one morphism (the identity on that object), institutions degenerate
to the classifications of [3], which are the same as the formal contexts of
[15] (as well as the frames of institutions). The translation is as follows
(where we use the prefix “I-” to indicate institutions): I-models, IF-tokens,
and FCA-objects correspond; I-sentences, IF-types, and FCA-attributes
correspond; and I-satisfaction, I[F-classification, and FCA formal concept
correspond. Chu spaces (see the appendix in [2]), in the usual case where
Z ={0,1}, are also a notational variant of one signature institutions, and
general Chu spaces (and their categories) are the one signature case of
the “generalized institutions” of [27], where satisfaction takes values in
an arbitrary category V' (but [63] gives a better exposition).

Institution morphisms can be defined in various ways [33], each yield-
ing a category, in which many important relations among institutions can
be expressed, such as inclusion, quotient, product, and sum. This gives a
rich language for comparing logics and for doing constructions on logics.

8 In [27], the word “room” is used, and the more precise mathematical concept is

called a “twisted relation” in [28]); in fact, institutions can be seen as functors from
signatures to frames.
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In the special case of institutions with just one signature, institution mor-
phisms (actually “comorphisms”) degenerate to the “infomorphisms” of
[3], and the formal context morphisms of [15]. Categories of institutions
support logical heterogeneity, i.e., working in several logics at the same
time, as developed in some detail in [11, 26] and many other papers.

Given an institution [, a theory is a pair (X,T'), where T is a set of X-
sentences. The collection of all X-theories can be given a lattice structure,
under inclusion'®: (X, T) < (X',T') iff ¥ C X' and T C T'; this is the
lattice of theories (LOT) of Sowa [61]. However, a richer structure is
also available for this collection of theories, and it has some advantages:
Let Th(l) be the category with theories as objects, and with morphisms
(X,T) — (X', T") all those signature morphisms f: X — X' such that
T =5 f(p), for all p € T.

The category Th(l) was invented to support flexible modularity for
knowledge representation, software specification, etc., as part of the se-
mantics of the Clear specification language [28]. The most interesting
constructions are for parameterized theories and their instantiation. An
example from numerical software is CPX[X :: RING], which constructs
the complex integers, CPX[INT], the ordinary complexes, CPX [REAL], etc.,
where RING is the theory of rings, which serves as an interface theory, in
effect a “type” for modules, declaring that any theory with a ring struc-
ture can serve as an argument to CPX. For another example, if TRIV is the
trivial one sort theory, an interface that allows any sort of any theory as an
argument, then LIST[X :: TRIV] denotes a parameterized theory of lists,
which can be instantiated with a theory of natural numbers, LIST [NAT],
of Booleans, LIST[BOOL], etc. Instantiation is given by the categorical
pushout construction (a special case of colimits) in T'h(l), where [ is an
institution suitable for specifying theories, such as order sorted algebra.

Other operations on theories include renaming (e.g., renaming sorts,
relations, functions) and sum; thus, compound “module expressions,”
such as NAT + LIST[LIST[CPX[INT]]] are also supported. This mod-
ule system inspired those of C++, Ada, ML, and numerous specification
languages (e.g., those in footnote 3). Colimits are suggested in [28] for
evaluating module expressions such as F = REAL + LIST[CPX[INT]]. For
example, we may instantiate Figure 3 with B the module expression F
above, Iy = REAL, Iy = LIST[CPX[INT]], and G = INT as a common sub-
object, noting that INT is a subtheory of REAL.

19 The converse ordering is used by Sowa, and seems to have more intuitive appeal,
because a larger theory has a smaller collection of models.
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For any signature X' of an institution [, there is a Galois connection be-
tween its X-theories and its sets of ¥-models: (¥,T)* ={M | M x5 T},
and if M is a collection of X-models, let M* = {p | M Ex ¢}. A theory
T is closed if T** =T, and it is natural to think of the closed theories as
the “concepts” of I, or following FCA [15], to define formal concepts to be
pairs (T, M) such that T* = M and M* = T'. Much of FCA carries over
to arbitrary institutions. For example, the closed theories form a complete
lattice under inclusion which is (anti-) isomorphic to the lattice of closed
model sets; this lattice is called the formal concept lattice in [15]. The
Galois connection also gives many identities connecting the various set
theoretic operations with closure, such as (T'UT")* = T* NT'*. Example
9 below applies these ideas to an ontology problem, and a more elegant,
categorical version of these ideas is given just after that example.

Ontologies are a promising application area for ideas in this section.
First, numerous logics are being proposed and used for expressing on-
tologies, among which description logics, such as OWL, are the most
prominent, but by no means the only, examples. Second, a given seman-
tic domain will often have a number of different ontologies. Thus both
logical and semantic heterogeneity are quite common, and integration at
both levels is an important challenge. Fortunately, category theory pro-
vides appropriate tools for this. The “IFF” approach of Robert Kent has
pioneered work in this area, integrating FCA and IF in [42], and more
recently, using institutions to unify the IEEE Standard Upper Ontology
[43], which defines a set of very high level concepts for use in defining and
structuring specific domain ontologies.

Example 9: A simple but suggestive example, originally from [61], but
elaborated in [60] and further elaborated here, illustrates applications to
the problems of “ontology alignment” and “ontology merging,” where
the former refers to how concepts relate, and the latter refers to creating
a joint ontology. The informal semantics that underlies this example is
explained in the following quote from [61]:

In English, size is the feature that distinguishes “river” from “stream”;
in French, a “fleuve” is a river that flows into the sea, and a
“riviére” is a river or a stream that runs into another river.

We can now set up the problem as follows: there are two (linguistic)
contexts, French and English, each of which has two concepts; let us also
suppose that each context has three instances, as summarized in the two
classification relations shown in the following tables.
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English river|stream| |French |fleuve(riviére
Mississippi (1 0 Rhoéne |1 0
Ohio 1 10 Saone |0 1
Captina |0 1 Roubion |0 1

Although these tables are insufficient to recover the informal relations
between concepts given in the quotation above, if we first align the in-
stances, a surprising amount of insight can be obtained. So let us further
suppose it is known that the corresponding rows of the two tables have
the same conceptual properties, e.g., that the Mississippi is a fleuve but
not a riviére, that the Sadne is a river but not a stream, etc.

One might expect that this correspondence of rows should induce
some kind of a blend, and indeed, we will formalize the example in such
a way that a blend is obtained in our formal sense. We first describe the
very simple logic involved. Its signatures are sets of unary predicates. Its
sentences over a signature X' are the nullary predicate false, and the unary
predicates in Y. Signature morphisms are maps of the unary predicate
names. A model for X is a one point set, with some subset of predicates
in X designated as being satisfied; the satisfaction relation for this model
is then given by this designation. Note that for this logic, Th(X) has as
its objects the set of all sets of X-sentences.

The English signature X in this example is just {river,stream} and
the French signature is X = {fleuve, riviére}, while the blend signature
B is their union. The two tables above can be seen as defining 6 models,
and also as defining the two satisfaction relations, or better, two frames.

It is possible to recover some interesting relationships among the con-
cepts represented by the predicates if we extend the satisfaction relation
to sets of sentences and sets of models as indicated just after Definition 7.
Since the entities corresponding to the three rows of the two tables have
the same properties, we can merge them when we blend the signatures.
If we denote these merged entities by MR, OS and CR, then the merged
models and their satisfaction relation are described by the following:

river|stream|fleuve|riviére
MR |1 0 1 0
oS |1 0 0 1
CR |0 1 0 1

Figure 5 shows the formal concept lattice of this merged context over the
merged signature X2, with its nodes labeled by the model sets and theo-
ries to which they correspond. It is interesting to notice that any minimal
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set of generators for this lattice gives a canonical formal vocabulary for
classifying models. Although in this case, there are 23 = 8 possible sets
of models, only 7 appear in the concept lattice and a subset of 3 are suf-
ficient to generate the lattice. (The reason there are only 7 elements is
that there is no model that both is small and flows into the sea.)

/T\
M, O:r 0,C:r'

M:f/ \O:r,r’/ \C:s
\ /

Fig. 5. A formal concept lattice

€1

A more sophisticated institutional view is that we have blended the
English and French contexts into the single context of the final table, by a
pushout construction (as in Figure 3) in the category of frames, where the
contravariant nature of the model part of the institution means that the
frame pushout does a pullback on models, giving the identifications (or
“alignment”) that we made, whereas the covariant nature of the signature
and sentence components gives a union. The Buddhist monk example can
be understood in the same way. O

Given an institution I, we define another institution 1¢, the Galoisi-
fication of [, as follows: its signature category is the same as that of [,
its sentences are the closed theories of [, its models are the closed model
classes of I, and its satisfaction relation is the natural extension of that
of I. We may call a frame of ¥ a Galois frame, or G-frame for short.
Then the satisfaction relation of each G-frame is a bijective function, the
corresponding pairs of which are the formal concepts of [15] in the special
case of their logic, though this construction applies to any institution.

The category Th(l) is also an example of a very general construction,
called Grothendieck flattening; see [26] for the definition and many exam-
ples, as well as many more details about information flow and channel
algebra over an arbitrary institution. Grothendieck flattening supports
semantic heterogeneity, i.e., working in several different contexts at the
same time, by defining new morphisms, called heteromorphisms, between
objects from different categories; this gives rise to the Grothendieck
category, of which T'h(l) is an example. A number of useful general the-
orems are known about Grothendieck categories, for example, conditions
for limits and colimits to exist.
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Colimits are not an adequate formalization of blending in the sense
of cognitive linguistics, because more than one blend is possible for two
input spaces (e.g., “houseboat” and “boathouse”). This raises the math-
ematical challenge of weakening colimits so that non-multiple isomorphic
solutions are allowed. Another challenge is to discover precise “optimality
principles” that measure the quality of the blend space. These problems
are addressed in algebraic semiotics [23, 24], which is a general theory of
representation, based on the semiotic spaces discussed in Section 3) and
semiotic morphisms, which (partially) preserve the structure of semiotic
spaces, and which model representations, such as an index to a book, a
graph of a dataset, or a GUI for UNIX. A basic principle in [23] is that
the quality of a representation depends on how well its semiotic mor-
phism preserves structure, and [23] proposes a number of quality mea-
sures on that basis; [23] also introduces 3/2-category theory, including
3/2-colimits as a model of blending, under the hypothesis that optimal
blends are achieved by using semiotic morphisms that score well on the
quality measures.

This theory is tested against some simple examples in [23], and has
also been implemented in a blending algorithm called “Alloy” [30, 29],
which generates novel metaphors on the fly as part of a poetry gener-
ation system (called “Griot”) developed by Fox Harrell. The optimality
principles used are purely formal (since they could not otherwise be im-
plemented); they measure the degree to which the injection morphisms
I; — B in Figure 3 preserve structure, including constants, relation in-

stances, and types2’.

6 Reconciliations and Conclusions

This paper considers cognitive, social, pragmatic, and mathematical per-
spectives on concepts. Despite this diversity, there has been a single main
goal, which is to facilitate the design and implementation of systems to
support information integration. Good mathematical foundations are of
course a great help, in providing precise descriptions of what should be
implemented. But without some understanding of broader issues, it is im-
possible to understand the potential limitations of such systems. In ad-
dition, models from cognitive psychology and sociology can inspire new

20 An interesting sidelight is that recent poetry (e.g., Neruda and Rilke) often re-
quires what we call “disoptimality principles” to explain certain especially striking
metaphors [29]. For example, type coercions are needed when items of very different
types are blended.
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approaches to information integration. So the huge gaps that currently
exist between disciplines are really counter-productive. This section is de-
voted to sketching various forms of reconciliation among them, along with
some general conclusions.

It can be argued that some concepts (scientific concepts) have a hard
physical reality, manifesting as perceivable regularities of behavior, or in a
more sophisticated language, as invariants over perceptions, e.g., in James
Gibson’s “ecological” approach to perception [18]. It can also be argued
that other concepts (mathematical) are formal transcendental, existing
independently of humans and even physical reality. But as realized long
ago by the Indian philosopher Nagarjuna [55], phenomenological human
concepts are not like that: they are elastic, situated, evolving, relative,
pragmatic, fuzzy, and strongly interconnected in domains with other con-
cepts; the thoughts we actually have cannot be pinned down as scientific
or mathematical concepts. Contemporary cognitive science has explored
many reasons for this, and Section 4 suggests that there are also many
social reasons.

There are several views on how phenomenological, social and scientific
approaches to concepts can be reconciled; in general, they argue that the
phenomenological and the social are interdependent, in that concepts nec-
essarily exist at both levels, and that scientific and mathematical concepts
are not essentially different from other concepts, though it is convenient
to use these more precise languages to construct models, without needing
to achieve perfect fidelity. For example, Gardenfors [16] argues that for-
mal entities, such as equations, “are not elements of the internal cognitive
process, but function as external devices that are, literally, manipulated”;
this is similar to the material anchors of Hutchins [40], which represent
shared concepts in concrete form to facilitate cooperative work. Terrence
Deacon [10] argues that concepts evolve in social environments in much
the same way that organisms evolve in natural environments, as part of
an ambitious program that (among other things) seeks a biological re-
construction of Richard Dawkins’ implausible reification of concepts as
“memes”.

In a brilliant critique of modernism, Bruno Latour [48] proposes to
reconcile society, science, and the myriad hybrid “quasi-objects” that have
aspects of both (among which he apparently includes natural language)
through a “symmetry principle” that refuses to recognize the “modern”
distinctions among these areas, and that grounds explanations in the
quasi-objects, which inherently mix cognitive, social, and formal aspects.
Latour rightly criticizes the Saussurian dyadic semiotics that dominated
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French cultural thought for a time, but seems unaware of Peirce’s [56]
triadic semiotics, which I believe offers a better solution, because its signs
are already defined to be hybrid “quasi-objects”; note that one of Peirce’s
goals for his triadicity was to reconcile nominalism and realism [41], an
enterprise with a flavor similar to that of Latour’s. A Peircean perspective
is also the basis of Deacon’s theories [10] concerning how concepts evolve
within social contexts.

Ideas in this paper have implications for the study of formal aspects
of concepts, including knowledge representation, analysis and integration.
Section 3 unified two notions of conceptual space, due to Fauconnier and
to Gérdenfors using frames. The Unified Concept Theory of Section 5
generalized this, as well as LOT, FCA, TF and CI, to arbitrary logics by
using institutions. Institutions can be considered to formalize Peirce’s tri-
adic semiotics, as well as Latour’s quasi-objects. It could be interesting to
apply UCT to description logics [1], which are commonly used for ontolo-
gies, or alternatively, as argued in Section 3, to an order sorted algebra
approach to ontologies. I believe there are also fruitful applications to
database systems, e.g., the problem of integrating information from mul-
tiple databases; see [25]. These examples illustrate how the exploration
of ways to reconcile cognitive, social, pragmatic, and formal approaches
to concepts can be useful in suggesting new research directions.

Perhaps the most important conclusion is that research on concepts
should be thoroughly interdisciplinary, and in particular, should tran-
scend the boundaries between sciences and humanities. Unfortunately,
such efforts, including those of this paper, are likely to attract criticism
for blurring distinctions between established disciplines, which indeed of-
ten operate under incompatible assumptions, using incomparable meth-
ods. It is my hope that the reconciliations and unifications sketched above
may contribute to the demise of such obstructions, as well as to a better
understanding of concepts and their applications.
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