Section 3.6

1. The solution is in the book.

4. statement: There is no least positive rational number.

 negation: There is a least positive rational number.

Proof (by contradiction): Suppose not.
That is, suppose there is a least positive rational number.
Call this number \(r \).
Then \(r \) is a real number such that \(r > 0 \), \(r \) is rational, and for all positive rational numbers \(x \), \(x > r \).

Let \(s = r/2 \). [We will show that \(s \) is a positive rational number with \(s < r \).]
[Show that \(0 < s < r \).] Note that if we divide both sides of the inequality
\(0 < r \) by 2, we obtain \(0 < r/2 = s \),
and if we add \(r \) to the inequality \(0 < r \) and then divide by 2, we obtain \(r + r/2 < r/2 + r \), or, equivalently, \(s = r/2 < r \).
Hence \(0 < s < r \).
[Show that \(s \) is rational:] Note also that since \(r \) is rational, \(r = a/b \) for
some integers \(a \) and \(b \) with \(b \neq 0 \) and so \(s = r/2 = a/(2b) = a/2b \).
Since \(a \) and \(2b \) are integers and \(2b \neq 0 \), \(s \) is rational.
Thus we have found a positive rational number \(s \) such that \(s < r \).
This contradicts the supposition that \(r \) is the least positive rational number.
Therefore, there is no least positive rational number.

8. Proof (by contraposition): Suppose \(a \) and \(b \) are [particular but arbitrarily chosen] real numbers such that \(a \geq 25 \) and \(b \geq 25 \).
Then \(a + b \geq 25 + 25 = 50 \).
Hence if \(a + b < 50 \), then \(a < 25 \) or \(b < 25 \).

15. Counterexample: Let \(a = 4 \) and \(n = 2 \).
Then \(4 \mid n^2 \) because \(4 \mid 4 \) (since \(4/4 \) is an integer),
but \(a \nmid n \) because \(4 \nmid 2 \) (since \(2/4 \) is not an integer).

20. Counterexample: \(\sqrt{2} \) is irrational.
Also \(\sqrt{2} - \sqrt{2} = 0 \) and 0 is rational (by Theorem 3.2.1).
Thus 3 irrational numbers whose difference is rational.
Section 3.7

6. This statement is false.
\(\sqrt{2}/4 = (1/4) \cdot \sqrt{2} \), which is a product of a nonzero rational number and an irrational number.
By exercise 18 of section 3.6, such a product is irrational.

That is, suppose \(\exists \) an irrational number \(x \) such that \(\sqrt{x} \) is rational.
By definition of rational, \(\sqrt{x} = a/b \) for some integers \(a \) and \(b \) with \(b \neq 0 \).
Then \(x = (\sqrt{x})^2 = (a/b)^2 = a^2/b^2 \).
But \(a^2 \) and \(b^2 \) are both integers (being products of integers), and \(b \neq 0 \)
by the zero product property.
Hence, \(x \) is rational (by definition of rational).
This contradicts the supposition that \(x \) is irrational, and so the supposition
is false.
Therefore, the square root of an irrational number is irrational.

24. There are (at least) two possible ways of proving this result:

Proof (by contradiction): Suppose not.
Suppose there exist two distinct real numbers \(b_1 \) and \(b_2 \) such that for all
real numbers \(r \), (1) \(b_1 r = r \) and (2) \(b_2 r = r \).
Then \(b_1 b_2 = b_2 \) (by (1) with \(r = b_1 \)) and \(b_2 b_1 = b_1 \) (by (2) with \(r = b_2 \)).
Consequently, \(b_2 = b_1 b_2 = b_2 b_1 = b_1 \) by substitution and the commutative
law of multiplication.
But this implies that \(b_1 = b_2 \), which contradicts the supposition that \(b_1 \)
and \(b_2 \) are distinct.
[Thus the supposition is false and there exists at most one real number \(b \)
such that \(br = r \) for all real numbers \(r \).]

Proof (direct): Suppose \(b_1 \) and \(b_2 \) are real numbers such that \(b_1 \)
and \(b_2 \) are distinct.
(1) \(b_1 r = r \) and
(2) \(b_2 r = r \) for all real numbers \(r \).
By (1) \(b_1 b_2 = b_2 \),
and by the commutative law of multiplication and (2), \(b_1 b_2 = b_2 b_1 = b_1 \).
Since both \(b_1 \) and \(b_2 \) are equal to \(b_1 b_2 \), we conclude that \(b_1 = b_2 \).

Section 3.8

3. \(b. \ z = 4 \)

5. \(c = 41/24 \)

17. Proof: Let \(a \) and \(b \) be any positive integers.

Part 1 (proof that if \(\gcd(a, b) = a \) then \(a \mid b \)):
Suppose that \(\gcd(a, b) = a \).
By definition of greatest common divisor, \(\gcd(a, b) \mid b \),
and so by substitution, \(a \mid b \).
Part 2 (proof that if \(a \mid b \) then \(\gcd(a, b) = a \)):

Suppose that \(a \mid b \).

Then since it is also the case that \(a \mid a \), \(a \) is common divisor of \(a \) and \(b \). Thus by definition of greatest common divisor, \(a \leq \gcd(a, b) \).

On the other hand, since no integer greater than \(a \) divides \(a \), the greatest common divisor of \(a \) and \(b \) is less than or equal to \(a \).

In symbols, \(\gcd(a, b) \leq a \).

Therefore, since \(a \leq \gcd(a, b) \) and \(\gcd(a, b) \leq a \), then \(\gcd(a, b) = a \).

22. a. Proof: Suppose \(a, d, q \) and \(r \) are integers such that \(a = d \cdot q + r \) and \(0 \leq r < d \).

[We must show that \(q = \lfloor a/d \rfloor \) and \(r = a - \lfloor a/d \rfloor \cdot d \).]

Solving \(a = d \cdot q + r \) for \(r \) gives \(r = a - d \cdot q \),

and substitution into \(0 \leq r < d \) gives \(0 \leq a - d \cdot q < d \).

Add \(d \cdot q \): Then \(d \cdot q \leq a < d + d \cdot q = d \cdot (q + 1) \),

and so \(q \leq a/d < q + 1 \).

Thus by definition of floor, \(q = \lfloor a/d \rfloor \),

and by substitution into \(r = a - d \cdot q \), we have \(r = a - \lfloor a/d \rfloor \cdot d \) [as was to be shown].

b. \(r := B, a := A, b := -B \)

\[\textbf{while} \ (b \neq 0) \]
\[r := a - \lfloor a/b \rfloor \cdot b \]
\[a := b \]
\[b := r \]
\[\textbf{end while} \]
\[\gcd := a \]

c. \(\text{lcm}(2 \cdot 3^2 \cdot 5, \ 2^3 \cdot 3) = 2^3 \cdot 3^2 \cdot 5 = 360 \)
\(\text{lcm}(3500, 1960) = \text{lcm}(2^2 \cdot 5^2 \cdot 7, \ 2^3 \cdot 5 \cdot 7^2) = 2^3 \cdot 5^2 \cdot 7^2 = 49,000 \)