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Abstract

The rise of ad-hoc data-intensive computing has led to
the development of data-parallel programming systems
such as Map/Reduce and Hadoop, which achieve scala-
bility by tightly coupling storage and computation. This
can be limiting when the ratio of computation to storage
is not known in advance, or changes over time. In this
work, we examine decoupling storage and computation
in Hadoop through SuperDataNodes, which are servers
that contain an order of magnitude more disks than tra-
ditional Hadoop nodes. We found that SuperDataNodes
are not only capable of supporting workloads with high
storage-to-processing workloads, but in some cases can
outperform traditional Hadoop deployments through bet-
ter management of a large centralized pool of disks.

1 Introduction

Recently, there has been a rapid growth in ad-hoc
data intensive computing, which is computing over very
large, unstructured datasets. Several novel data-parallel
programming systems have been developed to attack
this problem, including Hadoop[2], Map/Reduce[3], and
DryadLINQ[12]. Hadoop scales by allocating and moving
computation efficiently near the data. Hadoop storage
nodes run DataNode processes, which store portions of
the Hadoop Distributed FileSystem (HDFS) on their lo-
cal disks. A single NameNode manages the HDFS meta-
data, and determines which data blocks are located on
each DataNode. Similarly, each worker node hosts a Task-
Tracker process that executes part of each Hadoop job. A
single JobTracker coordinates processing across the Task-
Trackers. Each Hadoop node serves both as a storage
node and worker node, and the Hadoop scheduler tries to
ensure that tasks run on a node with the storage it needs.

Thus, Hadoop achieves scale by harnessing many nodes
that contribute both storage and computation. There are
a variety of benefits to this approach. First, Hadoop is
able to process a portion of the data in parallel on each
node, leading to very high scalability. Second, scaling
independent nodes provides for storage and computing
fault tolerance and resiliency, since higher-layer replica-
tion can mask individual node failures. Third, Hadoop
relies on commodity server nodes and networking fabrics,

Figure 1: A SuperDataNode consists of several dozen
disks forming a single storage pool. From this pool, sev-
eral filesystems are built, each one imported into a vir-
tual machine running an unmodified copy of the Hadoop
DataNode process. Each VM is assigned its own network
interface (if 1 Gbit/sec links are used), or a portion of a
network interface (if 10 Gbit/sec links are used), and its
own IP address.

reducing the cost of deployment considerably. Despite
the advantages of Hadoop, its tight coupling of storage
and computation has some limitations, of which we high-
light two as motivation for this work. The first limita-
tion is that the ratio of computation to storage might
change over time, or might not be known in advance.
This can result in having more data than the storage was
initially provisioned for. A special case of this is “archival
Hadoop,” which is when part of the provisioned storage is
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infrequently accessed, but must still be available for pro-
cessing. The second limitation is that when the workload
varies, it might be desirable to power down or re-purpose
some of the Hadoop nodes for other applications. Unfor-
tunately, Hadoop spreads data over all of the nodes, and
so that data would first have to be migrated elsewhere,
which can be very time consuming. Offloading a single
terabyte off of a typical disk over a gigabit link takes ap-
proximately three hours. This second limitation is partic-
ularly relevant for Cloud computing environments, where
if data is put directly on the nodes, they can not be re-
leased during periods of low demand. On the other hand,
accessing data from infrastructure services like Amazon’s
S3[4] means losing data locality entirely. We would prefer
a third approach that decouples storage from computa-
tion while maintaining some data locality.

To address these limitations, we propose a new type
of Hadoop node called a SuperDataNode. A Super-
DataNode is simply a node with an order of magnitude
more disks (and thus storage) than a traditional Hadoop
DataNode. Using this storage are a number of virtual ma-
chines, each running unmodified Hadoop DataNode pro-
cesses that efficiently utilizes the vast amount of storage
present in a way that is fully backwards compatible with
traditional Hadoop, and can effectively take advantage
of high bandwidth network interfaces present on the Su-
perDataNode. SuperDataNodes have several advantages:
they decouple the amount of storage from the number of
nodes, they support processing archival data, they lead to
more uniformity for job scheduling and datablock place-
ment, and they ease the management of clusters host-
ing both Hadoop and non-Hadoop applications. Super-
DataNodes do have some limitations, including a need for
high-bandwidth connectivity within a datacenter rack, a
possible reduction in fault tolerance due to consolidation
of storage into a single node, and a higher cost than tra-
ditional Hadoop nodes. However, we will show that these
limitations are surmountable. We have deployed a proto-
type of a SuperDataNode in a Hadoop cluster, and found
that SuperDataNodes are not only capable of supporting
workloads with high storage-to-processing workloads, but
in some cases actually outperform traditional Hadoop de-
ployments through better management of a large central-
ized pool of disks. For example, compared to traditional
Hadoop, the use of a SuperDataNode reduced total job
execution time of a Sort workload by 17%, and a Grep
workload by 54%.

2 A Case for SuperDataNodes

We now present the design of our storage-rich Hadoop
SuperDataNodes. We discuss the advantages of adopt-
ing this alternative architecture for Hadoop storage as
well as its limitations. SuperDataNodes represent a fun-
damentally new unit of scaling different from traditional
Hadoop, and so in Section 3 we discuss how large-scale

datacenter environments can scalably incorporate Super-
DataNodes.

2.1 Design

Figure 1 shows the design of a SuperDataNode. A Su-
perDataNode is a standard server with two exceptions: a
much richer than average storage layer consisting of an
order of magnitude more disks (and thus storage) than
is typically present in a standard DataNode, and a large
amount of aggregate bandwidth to the network. For ex-
ample, in our deployment, each SuperDataNode has 48
disks organized across six disk interfaces, and four giga-
bit network links providing 4 Gbit/sec total bandwidth
to the top-of-rack network switch. The type and size of
each disk is comparable to a traditional Hadoop node,
e.g., a 1 TB SATA disk. Each SuperDataNode also hosts
a set of virtual machines, one for each network interface
(with its own IP address). Executing in the VM is a stan-
dard, unmodified copy of the Hadoop DataNode process.
We chose to host multiple Hadoop DataNodes in their
own VMs, rather than executing a single large DataNode
process to provide fine-grained control over the large disk
pool and available memory.

The disks are organized into a single storage pool, and
each VM mounts its storage from that pool. The shared
storage pool serves as a central point for operating system
optimization of the concurrent and interleaved disk oper-
ations issued by the virtual DataNodes. As we will see in
Section 4, this provides an opportunity for optimizations
across DataNode disk accesses that is not possible in tra-
ditional, shared-nothing Hadoop deployments. Relying
on virtual DataNodes means that the switch does not
require any support for Ethernet-level link aggregation–
each virtual DataNode will appear to the rest of the
Hadoop infrastructure on its own IP address. Sharing
the same switch as the SuperDataNode are a set of stan-
dard worker nodes, each running unmodified TaskTracker
processes (though not any DataNode processes). The
TaskTrackers running on these nodes execute map and
reduce tasks on behalf of jobs as usual. When the HDFS
client running within those tasks requires block access,
it will contact the NameNode to receive a list of (in our
case virtual) DataNodes responsible for those blocks. The
client will then connect to the appropriately chosen vir-
tual DataNode to obtain the block. Our approach bal-
ances datablock storage and retrieval traffic over the net-
work interfaces in the SuperDataNode by simply relying
on HDFS’s random block placement algorithm.

2.2 Effect on replication

Hadoop relies on block-level replication for fault tolerance
both at the disk- and node-level, resulting in an N -times
inflation for a replication factor of N . Alternative ap-
proaches to masking disk failure, such as RAID coding of
blocks across disks, are not feasible across DataNodes due

42



to network latency. By consolidating disks from numer-
ous virtual DataNodes into one physical system, such cod-
ing techniques are not only feasible, but can be done at a
level below the virtual machine monitor, remaining trans-
parent to Hadoop itself. This should reduce the storage
requirements due to fault-tolerance. SuperDataNodes are
still susceptible to node failures, and so block-level repli-
cation will still be required, however the level of replica-
tion will be less than simple N -level replication.

2.3 Advantages

Adopting a SuperDataNode approach to storage in
Hadoop provides several benefits:

1. SuperDataNodes decouple the amount of storage in
HDFS from the number of nodes making up the
HDFS deployment.

Traditionally HDFS deployments providing N bytes of
capacity require M = dN/ce nodes, where c is the av-
erage amount of storage in each DataNode. These M
nodes must run at all times, even when not used, since
although HDFS is resilient to individual node and switch
failures, powering down or removing a large number of
nodes can result in data loss unless the replication factor
is set unusually high. Furthermore, HDFS reacts to node
loss or departure by attempting to re-replicate the blocks
that node was responsible for elsewhere, making dynamic
adjustments to the number of HDFS nodes impractical
on short timescales. This impedes the ability to power
off nodes or re-purpose them to run other applications
during periods of low utilization. With our approach, a
SuperDataNode can stay running while all of the Task-
Tracker nodes are powered down or retasked for other
applications.

2. Support for archival data

Traditional Hadoop aims to provide high bandwidth
access to all of the data stored within it. However, over
time some deployments may access some data more in-
frequently than the rest. SuperDataNodes are a good
fit for consolidating that archival data. TaskTrackers can
perform both archival and non-archival jobs: the only dif-
ference is whether they retrieve datablocks locally from
their disks, or remotely from a SuperDataNode. We en-
vision that new support will need to be added to the
Hadoop NameNode to allow users to signify (or for it to
learn by introspection) that some data should be marked
as archival and migrated to a SuperDataNode.

3. Increased uniformity for Job scheduling and dat-
ablock placement

One of the challenges to scheduling in Hadoop is choos-
ing appropriate nodes to execute tasks on based on data
locality. With SuperDataNodes, any rack-local Task-
Tracker is an equally good candidate for scheduling a

given task. Furthermore, since the virtual DataNode
processes running in the SuperDataNode share the same
underlying storage pool, the storage pool has more flex-
ibility to centrally manage disk requests from different
TaskTrackers that would have otherwise been on differ-
ent nodes.

4. Ease of management

Consolidating storage into SuperDataNodes provides
several possible improvements to system management.
The first is that since the TaskTracker nodes are no longer
data-bound, they can be provisioned on much smaller
timescales than traditional Hadoop, leading to better sup-
port for deployments with both Hadoop and non-Hadoop
applications. Additionally, small non-Hadoop clusters
can be extended to support Hadoop by adding a Super-
DataNode.

2.4 Limitations

The use of SuperDataNodes imposes some limitations
that we now highlight:

1. Storage bandwidth between SuperDataNodes and
TaskTrackers is a scarce resource

The performance of TaskTrackers in Hadoop is domi-
nated by their ability to obtain high-throughput access
to storage. With SuperDataNodes, TaskTrackers com-
pete for network bandwidth between each other (to trans-
fer intermediate results) and between themselves and the
SuperDataNode. A single gigabit network link (with
approximately 100 MB/sec capability) can support the
equivalent of b100/Mc local disks if each operates at M
MB/sec on average. Thus, a SuperDataNode with N gi-
gabit links can support the equivalent of Nb100/Mc local
disks. Thus, if the SuperDataNode has a 10 Gbit/sec in-
terface, it will be limited to approximately twenty local
disks worth of bandwidth if each disk supports 50 MB/sec
average throughput. As we discuss in Section 3, we ex-
pect that the bandwidth within a single rack will grow
faster than inter-rack bandwidth, and so scheduling jobs
to be rack-local with SuperDataNodes they access will
help overcome this bandwidth limitation.

2. Effect on fault tolerance

One of the benefits of HDFS is its fault tolerance in
the presence of individual node failures. Consolidating
many nodes’ worth of storage into a single SuperDataN-
ode means that if it fails, the result is significantly worse
than a traditional Hadoop DataNode failure. In fact,
since each SuperDataNode relies on virtualization to ex-
port multiple traditional DataNode servers, a failure of
one SuperDataNode will introduce correlated failures into
HDFS. This is a situation that we need to more exten-
sively test against.
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A feasible way to overcome this limitation is to rely on
the use of disk-level redundancy within the SuperDataN-
ode. A sublinear coding approach, e.g., RAID-5, can be
used in a SuperDataNode since that redundancy can be
amortized over a large number of centrally located disks.
With traditional DataNodes, redundancy must take the
form of replicating entire blocks to different nodes, since
any scheme based on computing disk parity is infeasible
when the disks are in different DataNodes. We still re-
quire at least one block replica outside of the rack to mask
SuperDataNode and switch failures. However, a replica-
tion factor of 2 (one off rack, and one on the RAID storage
in the SuperDataNode) should mask both disk and switch
failures using fewer disks than traditional Hadoop.

3. Cost of SuperDataNodes

One advantage of traditional Hadoop is that its scale
relies on increasing the number of inexpensive commod-
ity servers. SuperDataNodes cost significantly more than
traditional nodes because of their larger memory and
disk footprint, however each one is built from otherwise
commodity components and operating systems. This in-
creased cost could be offset in two ways. First, the in-
troduction of SuperDataNodes could enable already de-
ployed, smaller clusters to run Hadoop workloads without
buying new equipment. Second, the ability to turn off
or re-provision TaskTracker nodes without disrupting the
underlying HDFS filesystem might provide opportunities
for power savings.

3 Scaling SuperDataNodes in the
Cloud

Scaling Hadoop with SuperDataNodes in dynamic dat-
acenter environments such as Cloud Computing de-
ployments operates differently than scaling traditional
Hadoop deployments. First, since we anticipate much
greater intra-rack verses inter-rack bandwidth, it is im-
portant that the SuperDataNode share a rack with the
TaskTrackers that will operate on it. Furthermore, the
ratio of TaskTrackers to each SuperDataNode must be
limited based on the equivalent disk bandwidth that can
be achieved over the network. Thus, between a 10-to-1 or
20-to-1 ratio of SuperDataNodes to TaskTrackers seems
ideal. In the case of archival Hadoop, it may be desirable
to oversubscribe that ratio, trading off lower bandwidth
to each TaskTracker with the fact that the data will be
infrequently accessed.

4 Evaluation

We now describe our evaluation strategy, highlighting the
performance impact of adopting SuperDataNodes. We
found that SuperDataNodes decreased Hadoop job exe-
cution time up to 54% compared to traditional Hadoop

Figure 2: Comparison of the total job execution times of
three canonical Hadoop workloads

for some workloads. We do not intend for these results to
show that SuperDataNodes will perform better or worse
than traditional Hadoop–only that the performance re-
sults are comparable given its other benefits. There are
workloads for which the SuperDataNode performs worse,
and we highlight those as well.

4.1 Experimental Setup

The TaskTrackers in our Hadoop deployment consist
of ten SunFireTMX4150 Servers running OpenSolarisTM,
each with 8 GB of memory and four 146GB SAS disk
drives. One of the disks is dedicated to the operating
system and for storing intermediate data from the Task-
Trackers. For the baseline measurements, two of the
drives are made available to a DataNode process run-
ning on each node. For the SuperDataNode measure-
ments, those two disks are unused, and no DataNode
process runs on the nodes. We deployed Hadoop 0.19
with 128MB blocks. For our SuperDataNode, we used a
SunFireTMX4540 Server (a successor to the “Thumper”)
configured with 64 GB of memory and 48 500GB SATA
drives. The SuperDataNode has four gigabit network
interfaces connected to the same switch as the rest of
our Hadoop cluster. We used OpenSolarisTMZones for
each DataNode VM, and configured only twenty of the
disks as a single ZFSTMstorage pool, so that our baseline
and SuperDataNode measurements would have the same
number of disks allocated to HDFS for an equal com-
parison. Both our baseline and experimental results use
the ZFS filesystem. Our SuperDataNode draws approxi-
mately 1,200 Watts of power.
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4.2 Hadoop Performance Results

We began by deploying three different canonical Hadoop
workloads on both the baseline and SuperDataNode de-
ployments. The first workload is a RandomWriter job
that generates 60GB of random input data into HDFS,
and forms the basis of the second job which is the Sort
example included with Hadoop. The third workload is a
simple Grep job that searches for the keyword Hamlet in
a 34GB text file of repeated Shakespeare plays. Figure
2 shows that in both the Sort and Grep workloads, the
SuperDataNode-based deployment performed better than
traditional Hadoop. With Sort, the execution time was
17% less, and with Grep it was 54% less than the base-
line. In the case of the RandomWriter workload, which
involves the least amount of computation (and thus is
entirely weighted toward raw access to storage), the re-
verse was true, and the latency of the SuperDataNode
approach was 92% larger than baseline. These results
show that the performance impact of SuperDataNodes
is workload dependent, and that achieving the benefits
of SuperDataNodes does not necessarily have to incur a
performance penalty.

4.3 Measuring storage pool latencies
with X-Trace

Next, we wanted to see why using a SuperDataNode re-
sulted in better performance for the Sort and Grep work-
loads. Our hypothesis was that consolidating all of the
DataNode storage into a single node would give that node
the ability to better schedule, manage, and optimize the
performance of the aggregate storage workload, simply
because it had visibility (in our case) to ten times as many
disk operations.

To examine this hypothesis, we instrumented HDFS
with X-Trace[6], a cross-layer datapath tracing frame-
work. Our instrumentation API captures relevant events
that span the TaskTracker, HDFS client, and DataNode
process, including the latencies of disk block read and
write operations. These latencies isolate the time required
to fetch or store data onto the DataNode’s filesystem,
excluding network latency, TaskTracker think time, and
non-DataNode disk subsystem latencies. Figures 3 and 4
show a cumulative distribution function of block read and
write latencies for the Sort workload, and Figure 5 shows
the read block latencies for the Grep workload (there were
too few blocks written to generate a graph for the write
portion).

We see that in the case of the Sort workload, the read
latency within the SuperDataNode from the shared stor-
age pool was larger than the aggregate read latency of
individual DataNodes residing in the traditional cluster.
However, the write performance was significantly better,
as shown in Figure 4, leading to a reduced total job execu-
tion time. In the case of the Grep workload, the read per-
formance for the SuperDataNode was significantly better
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Figure 3: Read block latencies for the Sort workload
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Figure 4: Write block latencies for the Sort workload
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than traditional Hadoop, and since there was so few data
blocks written, the total job execution time for the Su-
perDataNode case was nearly half that of the traditional
case. We plan to better instrument the filesystem dur-
ing read and write block operations to determine exactly
what features of the underlying filesystem and storage
pool led to these differences, however for now we can say
that the benefit is workload dependent, and that our ini-
tial experience integrating SuperDataNodes into typical
clusters is promising.

5 Related work

Balancing storage and computation is not a new problem,
nor specific to data-intensive computing. Jim Gray out-
lines the economics of tradeoffs between storage, network-
ing, and computation, and highlights the benefits of mov-
ing computation near the data over which it operates[7].
One such balance was used by Yahoo on Jim Gray’s sort
benchmark[1], and required 3,800 nodes. An interest-
ing counterpoint discussion to this configuration led by
Joseph M. Hellerstein is available at [11].

Map/Reduce is quickly gaining adoption, and is in-
creasingly being used in the cloud. Amazon now supports
Map/Reduce as a service[9], and it is in fact the only ap-
plication that they will provision directly for EC2 users.
Our SuperDataNode proposal relies on high bandwidth
within racks, and for TaskTrackers to prefer those data
blocks over off-rack locations. Hadoop now supports this
rack affinity[8]. The application of SuperDataNodes to
supporting archival workloads is similar to that taken by
the SAM/QFS storage system[10]. While we do not eval-
uate our approach to power savings, we note that power
utilization is a key concern for datacenter operators, and
typical approaches at large scale rely on maximally utiliz-
ing the provisioned resources, rather than powering down
some of the datacenter during periods of low demand[5].

6 Conclusions

Hadoop and Map/Reduce represent an increasingly im-
portant approach to data-intensive computing. In this
work, we explore the advantages and limitations of de-
coupling storage from computation in Hadoop through
SuperDataNodes. SuperDataNodes consolidate a num-
ber of traditional DataNodes into a single, storage-rich
node, providing more agility in terms of scaling the
amount of computation applied to data. Although not
intended to replace traditional, dedicated Hadoop clus-
ters, two applications for which SuperDataNodes show
promise are extending Hadoop into pre-existing clusters
shared with non-Hadoop applications, and for supporting
Map/Reduce over archival data.
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