
End-to-End Scheduling for All-Optical Data Centers

Chang-Heng Wang, Tara Javidi, and George Porter
University of California, San Diego

Email: {chw009, tjavidi}@ucsd.edu, gmporter@cs.ucsd.edu

Abstract—This paper considers the end-to-end scheduling for
all-optical data center networks with zero in-network buffer
and non-negligible reconfiguration delay. It is known that in
the regime where the scheduling reconfiguration delay is non-
negligible, the rate of schedule reconfiguration should be limited
in such a way as to minimize the impact of reduced duty-cycles
and to ensure bounded delay. However, when the scheduling rate
is restricted, the existing literature also tends to restrict the rate of
monitoring and decision processes. We first present a framework
for scheduling with reconfiguration delay that decouples the rate
of scheduling from the rate of monitoring. Under this framework,
we then present two scheduling algorithms for switches with
reconfiguration delay, both based on the well-known MaxWeight
scheduling policy. The first one is the Periodic MaxWeight
(PMW), which is simpler in computation, but requires prior
knowledge of traffic load. The other is the Adaptive MaxWeight
(AMW), which, in contrast, requires no prior knowledge. We
show the stability condition for both algorithms and evaluate
their delay performance through simulations.

I. INTRODUCTION

An increasing array of online services and applications are
provided online–from search and social networks, to entertain-
ment and streaming video, to healthcare and government sys-
tems. Each of these applications relies on enormous amounts
of data processing to provide useful content to the end user,
and the underlying compute and storage infrastructure needed
to support these applications are increasingly hosted in Internet
data centers. Data centers may exhibit enormous scale–hosting
hundreds of thousands of servers.

The high cost, power demand, and complexity hinder the
adoption of the full bisection bandwidth topologies, such as
FatTrees [1], in data center networks. Data center operators
instead typically rely on oversubscription to reduce network
cost and power by providing a reduced quantity of bisection
network bandwith. The downside of oversubscription is poor
application performance and poor server utilization, since
servers have to wait for data to arrive over the congested
network fabric. More recently, a number of researchers have
proposed reconfigurable network topologies, such as switched
optical pathways [2], [3], [4]. Reconfigurable network topolo-
gies offer very high bisection bandwidth but do not require
several layers of network switches as in FatTrees.

The relatively low costs of reconfigurable optical network
topologies make them promising candidates for data center
networks, nevertheless, there are still two main challenges for
the adoption of reconfigurable optical circuits. Firstly, since
reconfigurable optical circuits are inherently bufferless, data
must be buffered at the source before transmission. Buffer-
less circuit-based networks are fundamentally different from
buffered packet-switched networks. Since data transmissions

cannot rely on buffers along the path, the network control
plane must ensure that data is ready to send along the end-
to-end circuit, with buffering only at the edge of the network.
This network topology can be viewed as a single crossbar
interconnecting the top of rack (ToR) switches, except that the
full bisection bandwidth is not guaranteed. Specifically, due to
the topology constraint, there are certain circuit configurations
that could not allow all the ToR switches to transmit at the
same time.

Secondly, candidate optical circuit switching technologies
(such as “binary MEMS” mirror arrays [5]) typically ex-
hibit a reconfiguration delay when the circuit configuration
is changed. This delay is a period where data cannot flow
through the switch, and for practical circuit switch technolo-
gies, this reconfiguration delay is significantly longer than the
link-layer inter-frame gap. For example, the reconfiguration
delay for state of the art binary MEMS is 2 − 20 µs [5],
which is significantly larger than the interframe gap of 9.6
ns. This nonzero reconfiguration delay motivates the need for
scheduling policies that account for the reconfiguration delay.

In this work, we propose scheduling policies that system-
atically address both challenges outlined above. The proposed
solutions are based on the MaxWeight policy [6] extensively
studied in the context of switching fabrics and crossbar
switches. When specialized to an all-optical network, the
MaxWeight policy configures the current schedule based on
current queue backlog information at the Top of the Rack
(ToR). Let the weight of a schedule to be defined as the
weighted sum of the queue lengths. Under the MaxWeight
policy, at each time slot, the scheduler computes the weight for
each schedule and selects the schedule with maximum weight.
In [7] and [8], the MaxWeight has been shown to stabilize
any admissible packet arrival process. Our proposed Periodic
MaxWeight (PMW) policy periodically reconfigures the optical
circuit according to the MaxWeight schedule, while the period
is selected appropriately given the prior knowledge of the
traffic statistics. On the other hand, the Adaptive MaxWeight
(AMW) policy selects the circuit reconfiguration time in an
adaptive fashion and based on the effectiveness of the current
schedule. We will show that the PMW policy could stabilize
the network if the traffic load is given, while the AMW policy
could stabilize any admissible traffic without any knowledge
of the traffic statistics (hence, achieving 100% throughput).

The rest of the paper is organized as follows. In the next
section, the network model as well as the timing parameters
associated with the monitoring, computation, and reconfig-
uration processes are introduced. In section III, we briefly
discuss relevant related work under the framework described
in section 1. We then introduce our proposed PMW and AMW

scheduling policies in section IV. Sections V and VI give the
stability results of the proposed policies and evaluate their
performances through simulations.

II. SYSTEM MODEL

A. Optical Switch Network

As shown in Fig. 1, we consider a set of N top of
rack (ToR) switches, labeled by {1, 2, . . . , N}, which are
interconnected by an optical switched network. Each ToR
switch can serve as a source and a destination simultaneously.
We assume no buffering in the optical network, hence all
the buffering occurs in the edge of the network, i.e. within
the ToR switches. Each ToR switch maintains N − 1 edge
queues (either physically or virtually), which are denoted by
Qij , where j ∈ {1, 2, . . . , N}\{i}. Packets going from the
ToR switch i to j are enqueued in the edge queue Qij before
transmission.

The system considered is assumed to be time-slotted, with
the time indexed as t ∈ IIN+ = {0, 1, 2, . . . }. Each slot duration
is the transmission time of a single packet, which is assumed
to be a fixed value. Let Aij(t) and Dij(t) be the number
of packets arrived at and departed from queue Qij at time
t, respectively. Let Lij(t) be the number of packets in the
edge queue Qij at the beginning of the time slot t. For ease
of notation, we set Aii(t) = Dii(t) = Lii(t) = 0 for all t
and write A(t) = [Aij(t)],D(t) = [Dij(t)],L(t) = [Lij(t)],
where A(t),D(t),L(t) ∈ IINN×N

+ .

We assume the arrival processes Aij(t) to be independent
over i, j ∈ {1, 2, . . . , N}, i 6= j. Each process Aij(t) is i.i.d.
over time slots. We also assume that Aij(t) has a finite support,
i.e. ∃ K < ∞ such that Aij(t) ≤ K. We call the mean of
Aij(t) as the traffic rate λij = E{Aij(0)}, and define the
traffic rate matrix as λ = [λij] ∈ IRN×N .

Let S(t) ∈ {0, 1}N×N denote the schedule at time t,
which indicates the optical circuits established between the
ToR switches. We set Sij(t) = 1 if an optical circuit from
ToR i to ToR j exists at time t, and Sij(t) = 0 otherwise.
Note that Sii(t) = 0 for all t and i ∈ {1, 2, . . . , N}. We also
assume at any t each ToR can only transmit to at most one
destination, and can only receive from at most one source, i.e.∑
i Sij(t) ≤ 1,

∑
j Sij(t) ≤ 1. The feasible schedules for the

network are determined by the network topology, and we let F
denote the set of all feasible schedules, i.e. S(t) ∈ F for all t.
Note that if a schedule S contains N circuit connections, then
S is a permutation matrix. Furthermore, if all such schedule is
in the feasible schedule set F , we say the network topology
is non-blocking.

B. Stability and Capacity Region

An edge queue Qij is strongly stable if its queue length
Lij(t) satisfies:

lim sup
t→∞

1

t

t∑
τ=1

E{Lij(τ)} <∞

and we say the system of queues is stable if Qij is strongly
stable for all i, j ∈ {1, 2, . . . , N}, i 6= j. A scheduling policy
is said to stabilize the system if the system is stable under

Fig. 1. An Example of the system model

that scheduling policy. With this notion of stability, we define
the capacity region C of the network as the set of all traffic
rate matrix such that there exists a scheduling policy which
stabilizes the system.

The capacity region is given by the interior of the convex
hull of the feasible schedules F [6], that is

C =

{∑
S∈F

αSS :
∑
S∈F

αS < 1, αS ≥ 0, ∀S ∈ F

}

For any traffic rate matrix λ ∈ C, we say that λ is
admissible, and define the load of the traffic as ρ(λ) =
max{r : λ ∈ rC̄, 0 < r < 1}, where C̄ is the closure of
C.

We say that a scheduling policy achieves 100% throughput
if it stabilizes the system of edge queues under any admissible
traffic.

C. Timing Parameters

One of the main attributes of our work is to identify three
distinct time sequences associated with monitoring, computa-
tion, and schedule reconfiguration.

Definition 1. Let {tMk }∞k=1 denote the time instances that the
state of edge queues are uploaded to the centralized scheduler.
Specifically, the information available at the sheduler is a
subset of the edge queue lengths {L(tMk)}∞k=1.

Definition 2. Let {tCk }∞k=1 denote the time instances when a
set of new schedules are computed. A scheduler could generate
one schedule or multiple schedules, which depends on the
scheduling policy used.

Definition 3. Let {tSk }∞k=1 denote the time instances when the
schedule is reconfigured. The schedule between two schedule
reconfiguration time instances remains the same, i.e.

S(τ) = S(tSk), ∀τ ∈ [tSk , t
S
k+1 − 1]

Each of the three processes is associated with a delay as
described below.

Definition 4. Let ∆m be the delay of the monitoring process.
This means that the edge queue lengths at time tMk , L(tMk),
is available at the scheduler after time tMk + ∆m. Therefore,
at any time instance t, the edge queue lengths information
available at the scheduler is the set {L(tMk)}nk=1, where n =
max{k : tMk + ∆m < t}.
Definition 5. Let ∆c be the delay of the computation process
of the scheduler generating a set of new schedules. This means
that the schedules computed at time tCk are available (could be
used) after time tCk + ∆c.

Definition 6. Let ∆r be the reconfiguration delay associ-
ated with establishing a new schedule across the network.
During the period of schedule reconfiguration, no packet
transmission could occur in the network. This means that
∀i, j ∈ {1, 2, . . . N}, ∀k ∈ IIN+, and 0 ≤ τ ≤ ∆r, we have
Dij(t

S
k + τ) = 0.

These timing parameters restrict the scheduling algorithms
from using spontaneous edge queue information. For example,
the beginning of a schedule at time t, S(t), is actually being
reconfigured at time t−∆r. The computation of this schedule
began at time t−∆r −∆c, and the computation is based on
information of edge queues at time t−∆r−∆c−∆m. In this
work, we are primarily interested in the case of ∆c,∆m ≈ 0,
∆r > 0, even though in Section VI, we will briefly discuss
the impact of ∆m > 0 via simulations.

III. RELATED WORK

An alternative to MaxWeight policy, some prior works
in the area of switch scheduling rely on the Birkhoff and
von Neumann (BvN) theorem [9] to construct a scheduling
policy with 100% throughput. The BvN theorem states that
any admissible doubly stochastic matrix can be decomposed
as a convex combination of permutation matrices. The BvN
scheduling policy [10] assumes the knowledge of the arrival
statistics and relies on a BvN decomposition of arrival rate
matrix into a set of schedules. The scheduler ensures queue
stability by ensuring each schedule in the set is served for an
appropriate time interval proportional to the BvN decomposi-
tion coefficients.

While BvN scheduler of [10] indeed ensures queue stability
for ergodic admissible arrivals, the delay performance can be
significantly worse than that of the MaxWeight policy. This
performance degradation gets worse with the number of ToR
switches: while the delay under the MaxWeight scheduler has
an upper bound of O(N), any open loop policy, including the
BvN policy of [10], which assigns schedules independent of
the queue states is shown to result in delay that has a lower
bound of O(N). As a result, in our work we have restricted
our attention to the class of closed loop policies.

In [4], a closed loop scheduling policy based on BvN de-
composition is proposed. The preposed traffic matrix schedul-
ing (TMS) policy [4] falls in the class of fixed batch scheduling
policies proposed in [11] in the context of switching with
non-negligible reconfiguration delay, ∆r > 0. The TMS and
fixed batch policies periodically monitor the edge queue (ToR

Fig. 2. Timing diagram for different scheduling strategies. (a) Quasi-static
monitoring: Series of schedules determined in a single schedule computation,
and some schedules could depend on out-dated queue information when being
deployed. (b) Active monitoring: Each schedule is computed based on the most
up-to-date edge queue information.

queue) lengths to account for outstanding packets accumulated
up to any given scheduling time. The number of outstanding
packets in the ToR queues are normalized to generate a
fixed number of schedules (according to BvN decomposition)
to be used in the pre-specified period till the next moni-
toring/computation time instance. When necessary, the TMS
policy has also been combined with packet switching over an
electronic switched network, as suggested in [4].

The scheduling policies in [4] and [11] both involve “quasi-
static monitoring”: selecting series of schedules based on a
single schedule computation process. When monitoring and
computation times are identically coupled, generated sched-
ules may depend on very out-dated information, as shown
in Figure 2 (a). We argue that it is always beneficial to
employ “active monitoring”: schedules must be selected based
on frequent and up-to-date queue information, as shown in
Figure 2 (b).

In this work, our first contribution is to show that decou-
pling the monitoring and scheduling rates to allow for active
monitoring results in significant improvements. In particular,
we show that rather than pre-selecting a set of schedules, and
hence a fairly tardy queue monitoring, it is advantageous to
allow for “active monitoring” and “frequent computations”. In
the following sections, we propose policies of active monitor-
ing type, namely the PMW and AMW policies, and analyze
their stability and delay performance.

Secondly, to account for the non-negligible reconfiguration
delay, hence the loss in the duty cycle, the prior work either
rely on the explicit traffic statistics or a conservative upper
bound to restrict the rate of schedule reconfigurations. In this
paper, a novel adaptive scheduling algorithm is proposed to
ensure that schedule reconfigurations occur at optimized time
instances.

IV. SCHEDULING POLICIES

In this section we introduce three scheduling policies.
Under the first two policies, the monitoring time instances are
selected such that tMk = kT , k ∈ IIN+, where T would be
the mean schedule duration and is selected appropriately. The
difference of the two scheduling policies is in the choice of
the computation time instances {tCk }. Under the Traffic Matrix
Scheduling (TMS), first introduced in [4] and discussed in
subsection IV-A, schedules are computed in a batch such that
tCk = kqT = tMkq = tSkq for a preselected parameter q; while
Periodic MaxWeight (PMW) relies on active monitoring to
make computation of one schedule at each monitoring time,
i.e. tCk = tMk = tSk . As we will see in sections V and VI,
both TMS and PMW policies require that the selection of the
parameter T be dependent on arrival statistics. In contrast, the
third scheduling policy, the Adaptive MaxWeight, adaptively
selects {tSl } ⊂ {tMk } = {tCk } in a manner to ensure stability
and optimized queue lengths.

A. Traffic Matrix Scheduling

In this subsection we briefly describe the traffic matrix
scheduling (TMS) policy in [4], which would be a benchmark
comparison to our proposed policies. The TMS policy is
based on Birkhoff von-Neumann (BvN) Theorem that every
doubly stochastic matrix could be decomposed as a convex
combination of permutation matrices. The scheduler makes
schedule computation every qT slots, where T is the selected
mean schedule duration, and q be the number of schedules
used between two schedule computation time instances. At
the computation time instances tCk = tMkq , the scheduler takes
the edge queue length matrix L(tMkq) and scales it to a doubly
stochastic matrix B(tMkq) which indicates the relative service
requirement in the following qT slots. The scheduler then
performs a BvN decomposition [10] on B(tMkq):

B(tMkq) =

Q∑
i=1

αiPi

where each Pi is a permutation matrix, and is a schedule that
would be served for αiqT slots within the following qT slots.
Depending on the demand B(tMkq), the number of terms Q in
the decomposition may vary (Q ≤ N2− 2N + 2). In practice,
we select q largest weighted schedules to avoid excessive
schedule changes. Rearrange the order in the decomposition so
that {αi}qi=1 are the q largest coefficients. The coefficients are
then scaled proportionally to α̃i = αi/

∑q
i=1 αi, i = 1, . . . , q.

B. Periodic MaxWeight

The timing sequeces in the PMW policy are selected as
tMk = tCk = tSk = kT, k ∈ IIN+. The PMW policy computes a
schedule at time instance tCk based on the edge queue lengths
L(tMk). The schedule for time tSk is selected as

S
(
tSk
)

= S∗
(
tMk
)

= arg max
S∈F

〈
S,L(tMk)

〉
where S∗

(
tMk
)

= 〈S,L(tMk)〉 =
∑N
i,j=1 SijLij(t

M
k) is the

weight of a schedule S at time t. We call S∗(tMk) the
MaxWeight schedule at time tMk . The scheduler then recon-
figures the schedule at time tSk , S(tSk) = S∗(tMk) .

Fig. 3. Timing diagrams for: (a) Periodic scheduling: While each schedule
is dependent on the most up-to-date edge queue information, the schedule
update is done periodically. (b) Adaptive scheduling: The scheduler frequently
monitors the queue information and computes schedule weights. The schedule
reconfiguration time instances become aperiodic. Each schedule is computed
based on the most up-to-date edge queue lengths.

C. Adaptive MaxWeight

The PMW policy stabilizes any feasible traffic as long as
the traffic load is known, as would be shown in the next
section. However, in terms of the delay performance, it is
not hard to see that the PMW policy might suffer from its
periodic schedule update behavior. The schedule may become
inefficient before the next reconfiguration time. This would
then degrade the throughput of the current schedule.

Based on this observation, we propose the Adaptive
MaxWeight (AMW) algorithm, which determines the schedule
reconfiguration instances, hence their rate, adaptively (based on
instantaneous edge queue information), as shown in Fig. 3. In
AMW, we require the scheduler to continuously monitor the
edge queues and make a MaxWeight computation (at every
time slot tCk) based on edge queue lengths L(tMk): In particular,
the scheduler computes the weight of the MaxWeight schedule

w∗
(
tMk
)

= max
S∈F

〈
S,L(tMk)

〉
and the weight of the current schedule

w
(
tMk
)

=
〈
S(tMk),L(tMk)

〉
.

The AMW algorithm keeps track of the difference
∆w(tMk) = w∗(tMk)−w(tMk) and compares it with a threshold
σ(tMk) = (1 − γ)(w∗(tMk))1−δ , where the ratio threshold
γ ∈ (0, 1) and the sublinear exponent δ ∈ [0, 1) are
predetermined system parameters. If ∆w(tMk) is larger than
the threshold σ(tMk), then the scheduler decides to change
the schedule to the MaxWeight schedule; otherwise keeps the
current schedule. Therefore, the schedule reconfiguration time
instance tSl is given by

tSl = min
{
tMk : tMk > tSl−1,∆w(tMk) > σ(tMk)

}
and the schedule is reconfigured at time tSl as

S(tSl) = arg max
S∈F

〈
S,L(tMk)

〉
where tMk is the monitoring time instance that corresponds to
the schedule reconfiguration time tSl .

Notice under the Adaptive MaxWeight the times to perform
schedule reconfiguration are not limited to the multiples of T ,

which had to be chosen with some knowledge of ∆r and traffic
load. Instead the schedule reconfigurations can occur sooner or
later depending on the current state of the system, which in turn
is a result of prior effective switching rate. The proposed AMW
policy relies on the fact that we have decoupled the restrictions
on the decision process (monitoring and computation) from the
restriction on the action process (reconfiguration). We provide
theoretical guarantees on throughput optimality of the AMW
policy in section V. In section VI we investigate the delay
performance of the proposed scheduling policies empirically.

V. STABILITY ANALYSIS

In this section we analyze the stability of the proposed
scheduling policies, the PMW and AMW policies. The re-
configuration delay is assumed to be nonzero, i.e. ∆r > 0,
while the monitoring and computation delay are assumed to
be negligible, ∆m = ∆c ≈ 0. We consider the irreducible
discrete time Markov chain (DTMC) process describing the
evolution of edge queue occupancies L(t) and prove that it
satisfies the Foster Lyapunov Theorem (see Appendix).

A. Periodic MaxWeight

Due to the overhead that incurred by the reconfiguration
time ∆r, the duty cycle of the PMW algorithm with schedule
reconfigure period T can be determined as 1− ∆r

T . Theorem
1 establishes that given an admissible traffic load ρ, the
PMW algorithm guarantees stability as long as the schedule
reconfigure period T satisfies 1 − ∆r

T > ρ (or equivalently,
T > ∆r

1−ρ).

Theorem 1. Given an admissible traffic λ with load ρ(λ) < 1
and the reconfiguration delay ∆r. If the schedule reconfigure
period of the PMW policy satisfies T > ∆r

1−ρ , then the PMW
policy strongly stabilizes the edge queues.

The proof is given in appendix A.

B. Adaptive MaxWeight

In the AMW algorithm, schedule changes do not necessar-
ily occur at the beginning of each interval [tk, tk+1]. Instead, as
the queue occupancies grow, the time between two schedule re-
configurations may in general increases. In other words, a drop
in duty cycle would delay the packets and create a large queue;
this increase in queue size is then fed back to increase the
threshold σ(t) and hence reduce the rate of reconfigurations.
We then utilize this observation to establish a lower bound
for the time between two schedule reconfigurations and derive
the stability. Additionally, the AMW policy has the advantage
that during low load periods, it reconfigures the MaxWeight
scheduling at a higher reconfiguration rate, resulting in a better
delay performance.

Theorem 2. For any admissible traffic load ρ, if the ratio
threshold γ ∈ (0, 1) and the sublinear exponent δ ∈ (0, 1),
then the AMW policy strongly stabilizes the edge queues.

The proof is given in appendix B.

Finally, notice that we omitted ∆m and ∆c in the proof
of stability. Referring to the proof of stability under MWM
with a fixed delay in [12], we claim that when ∆m and ∆c

Fig. 4. Mean queue length versus traffic load ρ under the uniform traffic.
The TMS policy reconfigures the schedule q = 10 times within qT time
duration. The scheduling rate under either the TMS or PMW is equal to 1/T ,
while under AMW is adapted to the traffic load intensity.

Fig. 5. Mean queue length versus traffic load ρ under the nonuniform
traffic. The TMS policy reconfigures the schedule q = 10 times within qT
time duration.

are fixed values, the stability results proved in this section can
be trivially generalized.

VI. PERFORMANCE EVALUATION

In this section we present simulation results for the pro-
posed PMW and AMW policies, and compare them to the
benchmark scheduling policy TMS.

The experiments are conducted with the simulator built
for the REACToR switch in [13]. The reconfiguration delay
is ∆r = 20 µs. In order to compare scheduling policies in
optical switches, we cease the electronic switches in the hybrid
switch design in [13] and only utilize the optical switches. We
consider N = 100 ToR switches, and the network topology
is assumed to be non-blocking. Therefore, the set of feasible
schedules F is in fact the set of N ×N permutation matrices.
Each link has data bandwidth of B = 100 Gbps, and the
packets are of the same size p = 1500 bytes (each takes
0.12µs for transmission). Each edge queue can store up to

Fig. 6. Mean queue length versus the reconfiguration delay ∆r under the
nonuniform traffic. The traffic load is fixed as ρ = 0.3. We assume negligible
monitoring and computation delay, ∆m = ∆c ≈ 0.

1×105 packets, and incoming packets are discarded when the
queue is full.

The traffic is assumed to be admissible, i.e. ρ(λ) < 1,
while the load matrices λ used in this section are classified to
the following types:

1) Uniform: λij = ρ/N, ∀1 ≤ i, j ≤ N .
2) Nonuniform: λij = ρ

M

∑M
m=1 P

m
ij where Pm,m =

1, . . . ,M ∈ P are permutation matrices picked at
random. The number M determines the skewness of
the load matrix. We set M = 100 here.

The performance measure used is the mean edge queue
length (averaged over queues and over time). Notice thath the
expected average delay in this system is linearly related to the
this quantity according to the Little’s law.

In Figs 4 and 5, we show performance comparison of the
three scheduling algorithms described in section IV under the
uniform and the nonuniform traffic, respectively. For TMS,
we set the number of schedules used between two schedule
computation time instances to be q = 10. In Figs. 4 and 5 we
can see that the TMS and PMW perform comparably with
the PMW slightly outperforming the TMS under the same
schedule reconfiguration rate 1/T . We note that under both the
TMS and PMW policies, the traffic loads they could stabilize
are determined by the reconfiguration rate 1/T . In general, a
smaller T value gives better delay performance at a fixed load,
but choosing a smaller T value also decreases the maximum
load that the TMS or PMW policy could stabilize. On the
other hand, the AMW policy always outperforms the PMW
and TMS.

We now consider the effect of the reconfiguration delay
∆r to the performance. In Fig. 6, we show the performance
of the PMW and AMW under various ∆r, while the traffic
load is fixed as ρ = 0.3. The performance We can see
that the performance of the AMW outperforms the PMW
under each ∆r value, regardless of the parameter selection of
the PMW policy. Although there exists an optimal schedule
reconfiguration period T of the PMW policy that achieves

Fig. 7. Mean queue length versus traffic load for the AMW under different
sublinear exponent δ.

Fig. 8. Mean queue length of AMW alogirthm versus the threshold value γ.
The performance is robust under light to medium traffic loads. Small values
of γ cause large delays as the load increases.

comparable performance to the AMW policy at each ∆r, the
choice of the optimal T is dependent on the traffic load ρ. We
can see that the performance of the AMW actually traces the
optimal performance of the PMW. This observation suggests
that the adaptive strategy of the AMW in fact allows it to
capture the optimal schedule reconfiguration rate based solely
on the queue lengths information and no prior knowledge of
the arrival statistics is required.

Finally we consider the effect of the parameter selection for
the AMW policy. Fig. 7 shows the performance for different
values of sublinear exponent δ. Note that the mean queue
length becomes shorter when δ is smaller. Although the stabil-
ity for the case δ = 0 is not covered in the previous section, we
see from the simulation that it is stable for admissible traffic
and has the best performance. We then consider the selection
of the ratio threshold γ. Fig. 8 presents the mean queue length
varying with the ratio threshold γ under different traffic loads
ρ = {0.3, 0.5, 0.8}. We may observe that the performance is
fairly smooth under wide range of γ value. The optimal value
of γ varies slightly with the traffic load ρ. However, in the
region γ ∈ [0.05, 0.1], the delay performance is generally well
across different traffic loads.

VII. CONCLUSION

This paper considered the end-to-end scheduling problem
in all-optical data center networks. The entire network can
be viewed as a generalized crossbar interconnect with nonzero
schedule reconfiguration delay. We first proposed a decoupling
of three fundamental time series: namely, the monitoring time
instances {tMk }, the computation time instances {tCk }, and the
schedule reconfiguration time instances {tSk }. This decoupling
of the monitoring rate and the schedule reconfiguration rate re-
sults in a performance gain associated with “active monitoring”
and “frequent computations”. Utilizing an active monitoring
paradigm, the Periodic MaxWeight (PMW) and the Adaptive
MaxWeight (AMW) policies were proposed. The proposed
policies are shown to achieve queue stability via theoretical
analysis and to outperform the benchmark scheduling policy
TMS through simulations.

The second contribution of this work is to show the
benefit of the adaptive scheduling in all-optical data center
networks with reconfiguration delay. The proposed adaptive
policy AMW illustrates that utilizing the adaptive scheme,
a scheduling policy could achieve the full stability region
without prior knowledge of the traffic statistics. In contrast, the
periodic scheduling policy PMW requires the prior knowledge
of the traffic load in order to guarantee stability of the network.
The stability guarantees are established both analytically and
empirically through simulations under i.i.d. arrival traffic.

The proposed scheduling policies in this work considers
zero in-network buffer due to the inherently bufferless nature
of the optical circuits. It is interesting to note that the notion
of edge-buffering and end-to-end scheduling has also been
explored in the regime of electronic packet-switched data
center network [14] recently, in an effort to reduce buffering
and congestion within the network. This suggests that our
proposed scheduling policies can also be utilized in the context
of electronic packet switches (with in-network buffering) in
order to further reduce delay and improve performance.

In this work we consider primarily the case of negligible
monitoring delay and computation delay, i.e. ∆m,∆c ≈ 0.
In practice, however, we usually have ∆c,∆m > 0 and
especially ∆m to grow with respect to the scale of the network
or the monitoring system used. Although ∆m do not affect
the system stability, the value of ∆m does affect the delay
performance of scheduling policies. As seen in Fig. 9, in
the small ∆m regime, the AMW policy achieves substantially
better performance over the comparing schedulig policies. In
contrast, as ∆m increases, the performance of the AMW policy
sees a siginificant degradation. This observation motivates two
directions for future research: 1) the development of low-delay
ToR monitoring system and 2) improvements to the AMW
policy in order to increase the robustness with respect to the
monitoring delay ∆m.

ACKNOWLEDGMENT

This work has been partially supported by L3 Communi-
cations and NSF Center for Integrated Access Networks (NSF
Grant EEC-0812072).

Fig. 9. Mean queue length versus monitoring delay ∆m under nonuniform
traffic. The traffic load is fixed as ρ = 0.3. The edge queue state is
monitored/updated every microsecond, tMk+1 − tMk = 1µs for all k.

REFERENCES

[1] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity,
data center network architecture,” in Proc. ACM SIGCOMM, 2008.

[2] N. Farrington, G. Porter, S. Radhakrishnan, H. H. Bazzaz, V. Sub-
ramanya, Y. Fainman, G. Papen, and A. Vahdat, “Helios: A Hybrid
Electrical/Optical Switch Architecture for Modular Data Centers,” in
Proc. ACM SIGCOMM, Aug. 2010.

[3] G. Wang, D. G. Andersen, M. Kaminsky, K. Papagiannaki, T. S. E. Ng,
M. Kozuch, and M. Ryan, “c-through: Part-time optics in data centers,”
in Proc. ACM SIGCOMM, Aug. 2010.

[4] G. Porter, R. Strong, N. Farrington, A. Forencich, P. Chen-Sun, T. Ros-
ing, Y. Fainman, G. Papen, and A. Vahdat, “Integrating microsecond
circuit switching into the data center,” in Proceedings of the ACM
SIGCOMM 2013 Conference on SIGCOMM, SIGCOMM ’13, (New
York, NY, USA), pp. 447–458, ACM, 2013.

[5] “Nistica Wavelength Selective Switch Product Data Sheet.” http://www.
nistica.com/products.html.

[6] L. Tassiulas and A. Ephremides, “Stability properties of constrained
queueing systems and scheduling policies for maximum throughput in
multihop radio networks,” Automatic Control, IEEE Transactions on,
vol. 37, pp. 1936–1948, Dec 1992.

[7] N. McKeown, V. Anantharam, and J. Walrand, “Achieving 100%
throughput in an input-queued switch,” in INFOCOM ’96. Fifteenth
Annual Joint Conference of the IEEE Computer Societies. Networking
the Next Generation. Proceedings IEEE, vol. 1, pp. 296–302 vol.1, Mar
1996.

[8] J. Dai and B. Prabhakar, “The throughput of data switches with
and without speedup,” in INFOCOM 2000. Nineteenth Annual Joint
Conference of the IEEE Computer and Communications Societies.
Proceedings. IEEE, vol. 2, pp. 556–564 vol.2, 2000.

[9] G. Birkhoff, “Tres observaciones sobre el algebra lineal,” Univ. Nac.
Tucumán Rev. Ser. A5, no. 147-150, 1946.

[10] C.-S. Chang, W.-J. Chen, and H.-Y. Huang, “Birkhoff-von neumann
input buffered crossbar switches,” in INFOCOM 2000. Nineteenth
Annual Joint Conference of the IEEE Computer and Communications
Societies. Proceedings. IEEE, vol. 3, pp. 1614–1623 vol.3, Mar 2000.

[11] K. Ross and N. Bambos, “Adaptive batch scheduling for packet switch-
ing with delays,” in High-performance Packet Switching Architectures
(I. Elhanany and M. Hamdi, eds.), pp. 65–79, Springer London, 2007.

[12] A. Mekkittikul and N. McKeown, “A practical scheduling algorithm
to achieve 100% throughput in input-queued switches,” in INFOCOM
’98. Seventeenth Annual Joint Conference of the IEEE Computer and
Communications Societies. Proceedings. IEEE, vol. 2, pp. 792–799,
Mar 1998.

[13] H. Liu, F. Lu, A. Forencich, R. Kapoor, M. Tewari, G. M. Voelker,
G. Papen, A. C. Snoeren, and G. Porter, “Circuit switching under the

radar with reactor,” in Proceedings of the 11th USENIX Conference on
Networked Systems Design and Implementation, NSDI’14, (Berkeley,
CA, USA), pp. 1–15, USENIX Association, 2014.

[14] J. Perry, A. Ousterhout, H. Balakrishnan, D. Shah, and H. Fugal,
“Fastpass: A Centralized Zero-Queue Datacenter Network,” in ACM
SIGCOMM 2014, (Chicago, IL), August 2014.

[15] E. Leonardi, M. Mellia, F. Neri, and M. Ajmone Marsan, “Bounds
on average delays and queue size averages and variances in input-
queued cell-based switches,” in INFOCOM 2001. Twentieth Annual
Joint Conference of the IEEE Computer and Communications Societies.
Proceedings. IEEE, vol. 2, pp. 1095–1103 vol.2, 2001.

[16] Y. Ganjali, A. Keshavarzian, and D. Shah, “Input queued switches: cell
switching vs. packet switching,” in INFOCOM 2003. Twenty-Second
Annual Joint Conference of the IEEE Computer and Communications.
IEEE Societies, vol. 3, pp. 1651–1658 vol.3, March 2003.

APPENDIX

Consider the dynamics of the edge queue lengths L(t) at
the stopping times tk as

L(tk+1) = L(tk) +

T∑
t=1

[
A(tk + t)−D(tk + t)

]
(1)

In the proofs of this appendix, we consider the quadratic
Lyapunov function for the edge queue lengths as V (L) =
〈L,L〉 =

∑N
i=1

∑N
j=1 L

2
ij , and show that L(t) satisfies the

following Foster-Lyapunov Theorem:

Fact 1 (Foster-Lyapunov [15]). Given a system of edge queues
Qij , 1 ≤ i, j ≤ N , with queue occupancies L(t) = [Lij(t)].
Let {tk} be a sequence of stopping times. Let there exist
positive real numbers ε > 0 and B > 0, and a lower bounded,
real-valued Lyapunov function V (L) such that

(1)E [V (L(tk+1))|L(tk)] <∞, ∀L(tk)

(2)E [V (L(tk+1))− V (L(tk))|L(tk)] < −ε||L(tk)||,
∀||L(tk)|| > B

where ||L|| =
√
〈L,L〉 is the 2-norm of queue occupancies.

Then the system of edge queues is strongly stable.

A. Proof of Theorem 1

Proof: We select T such that T > ∆r

1−ρ , and define the
sequence of stopping times as tk = kT . The expected drift of
the Lyapunov function is then given by

E [V (L(tk+1))− V (L(tk))|L(tk)]

=E
[〈

L(tk+1),L(tk+1)
〉
−
〈
L(tk),L(tk)

〉∣∣∣L(tk)
]

=E
[〈

2L(tk) + ∆Lk,∆Lk

〉∣∣∣L(tk)
]

(2)

where ∆Lk =
∑T
t=1 (A(tk + t)−D(tk + t)). The assump-

tion of finite support of the arrival process then implies the
finiteness of ∆Lk, hence there exists a bound C < ∞ such
that

〈
∆Lk,∆Lk

〉
≤ C.

Since the first ∆r time slots in the [tk, tk+1] interval is the

reconfiguration time, D(tk + t) = 0 for t ∈ [0,∆r], we have

E
[〈

L(tk),∆Lk

〉∣∣∣L(tk)
]

=

T∑
t=1

〈
L(tk),λ

〉
−

T∑
t=∆r+1

E
[〈

L(tk),D(tk + t)
〉∣∣∣L(tk)

]
=

T∑
t=∆r+1

〈
L(tk),

T

T − ∆r
λ− S∗(tk)

〉
+

T∑
t=∆r+1

E
[〈

L(tk),S∗(tk) −D(tk + t)
〉∣∣∣L(tk)

]
(3)

Let λr = T
T−∆r

λ, then since the traffic load is ρ and
T

T−∆r
= 1

1−∆r
T

< 1
ρ , we have λr <

1
ρλ and thus λr ∈ C. We

may then write λr =
∑
l αlSl, where

∑
l αl < 1 and Sl ∈ F

for each l. Let δ = 1−
∑
l αl then we have〈

L(tk),λr − S∗(tk)
〉
≤ (
∑
l

αl − 1)w∗(tk)

= −δw∗(tk) (4)

Note that S∗(tk) is the schedule used during the period
[tk, tk+1]. For t ∈ [∆r, T], we have Dij(tk + t) 6= S∗ij(tk + t)
only if Lij(tk + t− 1) = 0, which then implies Lij(tk) ≤ T
since at most one packet could depart from an edge queue at
each time slot. We then have the following bound:

E

[
T∑

t=∆r+1

〈
L(tk),S∗(tk)−D(tk + t)

〉∣∣∣L(tk)

]

≤
T∑

t=∆r+1

N∑
i,j=1

T S∗ij(tk) ≤ (T −∆r)NT (5)

Combining eqs. (2) - (4), we have

E [V (L(tk+1))− V (L(tk))|L(tk)]

≤− 2δ(T −∆r)w
∗(tk) + 2(T −∆r)NT + C

Then since w∗(tk) ≥ 1
N ||L(tk)||, Fact 1 establishes the strong

stability.

B. Proof of Theorem 2

Before we proceed to the proof of Theorem 2, we use the
following definition and fact for the outdated schedules [16]
to establish the relation between the edge queue lengths and
the time between two schedule reconfigurations.

Definition 7. At time instance t, the current schedule S(t) is
a p-outdated schedule if it is a maximum weight schedule at
time t− p, i.e. S(t) = S∗(t− p).

Fact 2 (Lemma 1 of [16]). At any time instance t, suppose
the current schedule S(t) is a p-outdated schedule, then the
difference between the weight of S(t) and the maximum weight
at time t is at most (K + 1)pN , i.e.

w(t) ≥ w∗(t)− (K + 1)pN

where K is the bounding constant of the arrival process A(t).

Given the sequence of stopping times {tk} with tk = kT ,
Fact 2 would imply that when edge queue lengths are large
enough, the time between two schedule reconfigurations would
be larger than T . Specifically, we show in the following
that if a schedule reconfiguration occurs at time tc, and

w∗(tc) ≥
(

1
1−γ (K + 1)TN

) 1
1−δ

+ TN , then no schedule re-
configurations could occur during the time interval [tc, tc+T]:

Since at most N queues are served each time slot, then

w∗(tc + T) ≥
(

1
1−γ (K + 1)TN

) 1
1−δ

, and by Fact 2

w(tc + T) ≥ w∗(tc + T)− (K + 1)TN

⇒ ∆w(tc + T) ≤ (K + 1)TN ≤ (1− γ) (w∗(tc + T))
1−δ

then no reconfiguration would occur within [tc, tc+T]. Hence
the condition of large edge queue lengths stated above restricts
the reconfiguration frequency. We now start the proof of
Theorem 2 with this result.

Proof of Theorem 2:

Similar to the proof in appendix A, we consider stopping
times tk = kT , where T > ∆r

1−ρ . The dynamics of the edge
queue lengths at the stopping times is also given by 1.

Consider an interval [tk, tk+1] where L(tk) satisfies
max
i,j

Lij(tk) ≥ 1
1−γ (K+1)TN . The schedule reconfiguration

occurs at most once in the interval [tk, tk+1] as discussed
above. Assuming that the schedule reconfigures at time tk +d
(consider d = T if no schedule change occurs in the interval),
then the schedules used in the interval can be expressed as

S(tk + t) =

{
S(tk), if 1 ≤ t ≤ d
0, if d < t ≤ d+ ∆r

S∗(tk + d), if d+ ∆r < t ≤ T

we then have

E
[〈

L(tk),∆Lk

〉∣∣∣L(tk)
]

=

T∑
t=1

E
[〈

L(tk),λ−D(tk + t)
〉∣∣∣L(tk)

]
≤

T∑
t=1

t/∈[s+1,s+∆r]

{〈
L(tk),λr − S(tk + t)

〉
+ E

[〈
L(tk),S(tk + t)−D(tk + t)

〉∣∣∣L(tk)
]}

where λr = T
T−∆r

λ. The second term is bounded similarly
as in (5), hence we have a constant C ′ < ∞ such that∑T
t=1 E

[〈
L(tk),S(tk + t)−D(tk + t)

〉∣∣∣L(tk)
]
≤ C ′ . We

now give bounds for the first term.

For 1 ≤ t ≤ d:〈
L(tk),λr − S(tk + t)

〉
=
〈
L(tk),λr − S∗(tk)

〉
+
〈
L(tk),S∗(tk)− S(tk)

〉
≤− βw∗(tk) + (1− γ) (w∗(tk))

1−δ (6)

since
〈
L(tk),S∗(tk) − S(tk)

〉
= w∗(tk) − w(tk) ≤ (1 −

γ) (w∗(tk))
1−δ .

For d+ ∆r < t ≤ T :〈
L(tk),λr − S(tk + t)

〉
=
〈
L(tk),λr − S∗(tk)

〉
+
〈
L(tk),S∗(tk)− S(tk + d)

〉
≤− βw∗(tk) + d(K + 1)N (7)

The bound
〈
L(tk),S∗(tk)−S(tk+d)

〉
≤ d(K+1)N follows

the similar idea in Fact 2 and is omitted here.

Then with (6), (7), and note that 0 ≤ d ≤ T , we have

E
[〈

L(tk),∆Lk

〉∣∣∣L(tk)
]

≤− β(T −∆r)w
∗(tk) + d(1− γ) (w∗(tk))

1−δ

+ (T − d−∆r)d(K + 1)N + C ′

≤− w∗(tk)
[
β(T −∆r)− T (1− γ)(w∗(tk))−δ

]
+ T (T −∆r)(K + 1)N + C ′ (8)

Combining eqs. (2) and (8), we have

E [V (L(tk+1))− V (L(tk))|L(tk)]

≤− 2w∗(tk)
[
β(T −∆r)− T (1− γ)(w∗(tk))−δ

]
+ 2T (T −∆r)(K + 1)N + 2C ′ + C (9)

Since w∗(tk) ≤ 1
N ||L(tk)|| and δ > 0, we have that

(w∗(tk))−δ is small when the norm of the queue occupancies
||L(tk)|| is large. The stability is then constructed by Fact 1.

