
NetBump: User-extensible Active Queue
Management with Bumps on the Wire

Mohammad Al-Fares∗ Rishi Kapoor∗ George Porter∗ Sambit Das∗

Hakim Weatherspoon∗∗ Balaji Prabhakar† Amin Vahdat∗‡
∗UC San Diego ∗∗Cornell University †Stanford University ‡Google Inc.

Abstract
Engineering large-scale data center applications built from thou-
sands of commodity nodes requires both an underlying network
that supports a wide variety of traffic demands, and low latency
at microsecond timescales. Many ideas for adding innovative
functionality to networks, especially active queue management
strategies, require either modifying packets or performing alterna-
tive queuing to packets in-flight on the data plane. However, config-
uring packet queuing, marking, and dropping is challenging, since
buffering in commercial switches and routers is not programmable.
In this work, we present NetBump, a platform for experiment-

ing with, evaluating, and deploying a wide variety of active queue
management strategies to network data planes with minimal intru-
siveness and at low latency. NetBump leaves existing switches and
endhosts unmodified by acting as a “bump on the wire,” examining,
marking, and forwarding packets at line rate in tens ofmicroseconds
to implement a variety of virtual active queuing disciplines and con-
gestion control mechanisms. We describe the design of NetBump,
and use it to implement several network functions and congestion
control protocols including DCTCP and 802.1Qau quantized con-
gestion notification.

Categories and Subject Descriptors
C.2.2 [Network Protocols]: Protocol Architecture; C.2.3 [Network
Operations]: Network Management

General Terms
Design, Experimentation, Management, Performance

Keywords
Datapath programming, vAQM, congestion control

1. INTRODUCTION
One of the ultimate goals in data center networking is predictable,

congestion-responsive, low-latency communication. This is a chal-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ANCS’12, October 29–30, 2012, Austin, Texas, USA.
Copyright 2012 ACM 978-1-4503-1685-9/12/10 ...$15.00.

lenging problem and one that requires tight cooperation between
endhost protocol stacks, network interface cards, and the switching
infrastructure. While there have been a range of interesting ideas in
this space, their evaluation and deployment have been hamstrung
by the need to develop new hardware to support functionality such
as ActiveQueueManagement (AQM) [13,21], QoS [45], traffic shap-
ing [17], and congestion control [1,2,18]. While simulation can show
the merits of an idea and support publication, convincing hardware
manufacturers to actually support new features requires evidence
that a particular technique will actually deliver promised benefits
for a range of application and communication scenarios.

We consider a model where new AQM disciplines can be de-
ployed and evaluated directly in production data center networks
without modifying existing switches or endhosts. Instead of adding
programmability to existing switches themselves, we instead deploy
“bumps on the wire,” called NetBumps, to augment the existing
switching infrastructure.1 Each NetBump exports a virtual queue
primitive that emulates a range of AQMmechanisms at line rate that
would normally have to be implemented in the switches themselves.

NetBump provides an efficient and easy way to deploy and
manage active queue management separate from switches and
endhosts. NetBumps enable AQM functions to be incrementally
deployed and evaluated by their placement at key points in the
network. This makes implementing new functions straightforward.
In our experience, new queuing disciplines, congestion control
strategies, protocol-specific packet headers (e.g. for XCP [18]), and
new packets (for a new congestion control protocol we implement)
can be easily built and deployed at line rate into existing networks.
Developers can experiment with protocol specifics by simply
modifying software within the bump.

The NetBump requirements are: rapid prototyping and evalua-
tion, ease of deployment, support for line rate data processing, low
latency (i.e. tens of μs), packet marking and transformation for a
range of AQM and congestion control policies, and support for dis-
tributed deployment to support data center multipath topologies.
We greatly reduce the latency imposed by NetBump because our
functionality is limited to modifications of packets in flight, with no
actual queuing or buffering done within NetBump. We expect these
bumps on the wire to be part of the production network that will
form a proving ground to inform eventual hardware development
(see Fig. 1 for an example deployment scenario).

We based our NetBump implementation on a user-level, zero-
copy, kernel-bypass network API, and found that it performed well;

1The “bump on the wire” term here is unrelated to previous work
about IPsec deployment boxes [19].

ToR Switch

Host 0

Host n N
et

B
um

p-
E

na
bl

ed
 NetBump NetBump

ToR Switch

Aggregation

Host 0

Host n

Figure 1: Deployment scenario in the data center. “NetBump-
enabled racks” include NetBumps in-line with the Top-of-Rack
(ToR) switch’s uplinks, andmonitor output queues at the host-facing
ports.

able to support custom active queuemanagement of 64-byte packets
at a rate of 14.17Mpps (i.e. 10Gbps line rate) with one CPU core at
20-30μs. In part this performance is the result of NetBump’s simpler
packet handling model supporting pass-through functionality on
the wire, as compared to general-purpose software routers.
The primary contributions of this paper are: 1) the design

of a “bump on the wire” focusing on evaluating and deploying
new buffer management packet processing functions, 2) a simple
virtual Active Queue Management (vAQM) implementation to
indirectly manage the buffers of neighboring, unmodified switches,
3) the evaluation of several new programs implemented on top
of NetBump, including an implementation of IEEE 802.1Qau-
QCN L2 congestion control, and 4) an extensible and distributed
traffic update and management platform for remote physical switch
queues.

2. MOTIVATION
In this section we first present an example of NetBump function-

ality in action, and thenmotivate our requirements for a low-latency
implementation.

2.1 NetBump Example
In Fig. 2, we show a simple network where two source hosts H1

and H2 each send data to a single destination host Hd (in flows
F1 and F2, respectively). H1 and H2 are connected to Switch0 at
1Gbps. Switch 0 has a 10Gbps uplink to a NetBump (through the
aggregation layer), and on the other side of the NetBump is a second
10Gbps link to Switch1. Destination hostHd is attached to Switch1 at
1Gbps. Flows F1 and F2 each have a maximum bandwidth of 1Gbps,
and since hostHd has only a single 1Gbps link, congestionwill occur
on Hd ’s input or output port in Switch1 if rate(F1) + rate(F2) >
1Gbps. Without NetBump, assuming Switch1 implements a drop-
tail queuing discipline, packets from F1 and F2 will be interleaved
in Hd ’s physical queue until it becomes full, at which point Switch1
will drop packets arriving to the full queue. This leads to known
problems such as burstiness and lack of fairness.
Instead, as NetBump forwards packets from its input to its output

port, it estimates the occupancy of a virtual queue associated with
Hd ’s output port buffer. When a packet arrives, Hd ’s virtual queue
occupancy is increased by the packet’s size. Because NetBump has

Hd

ToR 1

NetBump

Hd Virtual
Queue

Hd Physical
Queue

F1
F2

ToR 0

H1

Aggregation
1GigE
10GigE
Flow

H2 H
 H H

Figure 2: An example of NetBump at ToR switch, monitoring
downstream physical queues.

the topology information and knows the speed of the link between
Switch1 and Hd (§ 3.1), it computes the estimated drain rate, or the
rate that data leaves Hd ’s queue. By integrating this drain rate over
the time between subsequent packets, it calculates the amount of
data that has left the queue since the last packet arrival.

Within NetBump, applications previously requiring new hard-
ware development can instead act on the virtual queue. For exam-
ple, to implement Random Early Detection (RED), the NetBump in
Fig. 2 maintains a virtual queue for each physical queue in Switch1.
This virtual queue maintains two parameters, MinThreshold and
MaxThreshold, as well as an estimate of the current downstream
queue length. According to RED, packets are sent unmodified when
themoving average of the queue length is below the MinThreshold,
packets are marked (or dropped) probabilistically when the aver-
age is between the two thresholds, and unconditionally marked (or
dropped) when it is above MaxThreshold.

Note that in this example, just as in all the network mechanisms
presented in this paper, packets are never delayed or queued in the
NetBump itself. Instead, NetBump marks, modifies, or drops pack-
ets at line rate as if the downstream switch directly supported the
functionality in question. Note also that NetBump is not limited
to a single queuing discipline or application–it is possible to com-
pose multiple applications (e.g. QCN congestion control with Ex-
plicit Congestion Notification (ECN) marking [11]). Furthermore,
AQM functionality can act only on particular flows transiting a par-
ticular end-to-end path if desired.

2.2 Design Requirements
The primary goal of NetBump is enabling rapid and easy eval-

uation of new queue management and congestion control mecha-
nisms in deployed networks with minimal intrusiveness. We next
describe the requirementsNetBumpmustmeet to successfully reach
this goal.

Deployment with unmodified switches and endhosts: We seek
to enable AQM development and experimentation to take place in
the data center itself, rather than separate from the network. This
means that NetBump works despite leaving switches and endhosts
unmodified. Thus a requirement of NetBump is that it implements
a virtual Active Queue Management (vAQM) discipline that tracks
the status of neighboring switch buffers. This will differ from previ-
ous work that applies this technique within switches [13, 21], as our
implementation will be remote to the switch.

no_bump 0 20 40 60 80 100
0.5

1

1.5

2

2.5

3

3.5

4

One way Middlebox Latency (us)

N
or

m
al

iz
ed

 T
C

P
 C

om
pl

et
io

n
T

im
e

1 Byte
1 MB

Figure 3: Effect of middlebox latency on completion time of short
(1 Byte) and medium-sized (1MB) TCP flows. Baseline (direct-
connect) transfer time was 213μs (1B), 9.0ms (1MB), others are
through a NetBump with configurable added delay.

Distributed deployment: Modern networks increasingly rely on
multipath topologies both for redundancy in the face of link and
switch failure, and for improving throughput by utilizing several,
parallel links. Left unaddressed, multipath poses a challenge for the
NetBumpmodel since a single bumpmay not be able to monitor all
of the flows heading to a given destination. Therefore a requirement
for NetBump is that it supports enough throughput to manage a
sufficient number of links, and that it supports a distributed de-
ployment model. In a distributed model, multiple bumps deployed
throughout the network coordinate with each other tomanage flows
transiting them. In this way, a set of flows taking separate network
paths can still be subjected to a logically centralized, though physi-
cally distributed, AQM policy.

Ease of development: Rather than serving as a final deployment
strategy, we see NetBump as an experimental platform, albeit one
that is deployed directly on the production network. Thus rapid pro-
totyping and reconfiguration are a requirement of its design. Specif-
ically, the platform should export a clear API with which users can
quickly develop vAQM applications using C/C++.

Minimizing latency: Many data center and enterprise applications
have strict latency deadlines, and any datapath processing elements
must likewise have strict performance guarantees, especially given
NetBump’s target deployment environment of data center networks,
whose one-way latency diameters are measured in microseconds.
Since the throughput of TCP is in part a function of the network
round-trip time [32], any additional latency imposed by NetBump
can affect application flows. Fig. 3 shows the completion times
of two flows as a function of one-way middlebox latency–one
flow transfers a single byte between a sender-receiver pair, the
other transfers 1MB. Adding even tens of microseconds of one-way
latency has a significant impact on flow completion times when the
baseline network RTT is very small.
Since the network layer sits below all data center applications, and

since a single application-layer request might cost several round-
trips, NetBump’s forwarding latency must be very low to minimize
the overhead for those applications.

Figure 4: The NetBump pipeline.

Forwarding at line rate: Although most data center hosts still op-
erate at 1Gbps, 10Gbps has become standard at rack-level aggrega-
tion. Deploying a NetBump inline with top-of-rack uplinks and
between 10Gbps switches will require an implementation that can
support 10Gbps line rates. The challenge then becomes keeping up
with packet arrival rates: 10Gbps corresponds to 14.88M 64-byte
minimum-sized packets per second, including Ethernet overheads.

3. DESIGN
In this section we describe the design of the NetBump vAQM

pipeline, including how it scales to support more links and a dis-
tributed deployment for multi-path data centers.

3.1 The NetBump Pipeline
The core NetBump pipeline consists of four algorithms: 1) packet

classification, 2) virtual queue (VQ) drain estimation, 3) packet
marking/dropping, and optionally 4) extensible packet processing.
This pipeline is exported to the user via the NetBump API (Table 1).

Virtual Queue Table Data Structure: Each NetBump maintains a
set of virtual queues, which differ from physical queues in that they
do not store or buffer packets. Instead, as packets pass through a
virtual queue, it maintains state on what its occupancy would be if
it were actually storing packets. Thus each virtual queue must keep
track of 1) the number and sizes of packets transiting it, 2) the packet
arrival times, and 3) the virtual rate at which they drain from the
queue. Note that packets actually drain at line rate (i.e. 10Gbps),
however a virtual queue could be configured with any virtual drain
parameter (e.g. 1Gbps, 100Mbps).

The virtual queue table is a simple data structure kept by the Net-
Bump that stores these three parameters for each virtual queue at
that bump. For the AQM functionality we consider, we only need
to know the virtual queue occupancy and drain rate, and so each
virtual queue keeps 1) the size in bytes of the queue, 2) the time the
last packet arrived to the queue, and 3) the virtual queue drain rate.
These values are updated when a packet arrives to the virtual queue.

1. Packet Classification: As packets arrive to the NetBump, they
must first be classified to determine into which virtual queue they
will be enqueued. This classification API is extensible in NetBump,
and can be overridden by a user as needed. A reasonable scheme
would be to map packets to virtual queues corresponding to the
downstream physical switch output buffer that the packet will re-
side in when it leaves the bump. In this case the virtual queue is
emulating the downstream switch port directly.

Function Description
void init(vQueue *vq, int drainRate); Initializes a virtual queue and set the given drain rate.

vQueue * classify(Packet *p) const; Classifies a packet to a virtual queue.
void vAQM(Packet *p, vQueue *vq); Updates internal vAQM state during packet reception.
int estimateQlen(vQueue *vq) const; Returns an estimate of a virtual queue’s length.
int process(Packet *p, vQueue *vq); Defines packet processing. Modify, duplicate, drop, etc.

Table 1: The NetBump API. The user may extend any of the provided functions as needed.

Procedure vAQM(Packet *pkt, vQueue *VQ):
1 if (VQ→lastUpdate > 0) {
2 elapsedTime = pkt→timestamp – VQ→lastUpdate
3 drainAmt = elapsedTime * VQ→rate
4 VQ→tokens –= drainAmt
5 VQ→tokens = max(0, VQ→tokens)
6 }
7 VQ→tokens += pkt→len
8 VQ→lastUpdate = pkt→timestamp

Procedure DCTCP(Packet *pkt, vQueue *VQ):
9 if (VQ→tokens > VQ→MaxThresh) {
10 mark(pkt)
11 }

Figure 5: The vAQM queue drain estimation and DCTCP. Max-
Thresh is the ECN marking threshold K.

To make this association, NetBump requires two pieces of infor-
mation: the mapping of packet destinations to downstream output
ports, and the speed of the link attached to that port. The mapping
is needed to determine the destination virtual queue for a particular
packet, and the link speed is necessary for estimating the virtual
queue’s drain rate. There aremanyways of determining these values:
the bump could query neighboring switches (e.g. using SNMP) for
their link speeds, or those values could be statically mapped when
the bump is configured. For software-defined networks based on
OpenFlow [14, 27], the central controller could be queried for host-
to-port mappings and link speeds, as well as the network topol-
ogy. In our evaluation, we statically configure the NetBump with
the port-to-host mapping and link speeds.

2. Queue Drain Estimation: The purpose of the queue drain esti-
mation algorithm is to calculate, at the time a packet is received into
the bump, the occupancy of the virtual queue associated with the
packet (Fig. 5). The virtual queue estimator is a leaky bucket that is
filled as packets are assigned to it, and drained according to a fixed
drain rate determined by the port speed [43].
Lines 1-6 implement the leaky bucket. First, the elapsed time

since the last packet arrived to this virtual queue is calculated. This
elapsed time is multiplied by a physical port’s rate to calculate how
many bytes would have left the downstream queue since receiving
the last packet. The physical port’s drain rate comes from the
link speed of the downstream switch or endhost. This amount is
then subtracted from the current estimate (or set to zero, if the
result would be negative) of queue occupancy to get an updated
occupancy. If this is the first packet to be sent to that port, then the

default queue occupancy estimate of 0 is used instead. Lastly, the
“last packet arrival” field of the virtual queue is updated accordingly.

A key design decision in NetBump is whether to couple the size
of the virtual queue inside the bumpwith the actual size of the phys-
ical buffer in the downstream switch. If we knew the size of the
downstream queue, then we could set the maximum allowed occu-
pancy of the virtual queue accordingly. This would be challenging in
general, since switches do not typically export the maximum queue
size programmatically. Furthermore, for shared buffer switches, this
quantity might change based on the instantaneous traffic in the net-
work. In fact, by assuming a small buffer size in the virtual queue
within NetBump, we can constrain the flow of packets to reduce
actual buffer occupancy throughout the network. Thus, assuming
small buffers in our virtual queues has beneficial effects on the net-
work, and simplifies NetBump’s design.

3. Packet Marking/Dropping: At line 9 in Fig. 5, NetBump has
an estimate for the virtual queue occupancy. Here a variety of ac-
tions can be performed, based on the application implemented in
the bump. The example code shows the Data Center TCP (DCTCP)
application [2]. In this example, there is a “min” limit that results in
packet marking, and a “max” limit that results in packet dropping.
Packet marking takes the form of setting the ECN bits in the header,
and dropping is performed simply in software.

4. Extensible Processing Stage: In addition to the vAQM estima-
tion and packet marking/dropping functionality built into the basic
NetBump pipeline, developers can optionally include arbitrary ad-
ditional packet processing. NetBump developers can include exten-
sions to process packet streams. This API is quite simple, in that the
extension is called once per packet, which is represented by a pointer
to the packet data and length field. Developers can read, modify, and
adjust the packet arbitrarily before re-injecting the packet back into
the NetBump pipeline (or dropping it entirely).

Packets destined to particular virtual queues can be forwarded to
different extensions, each running in its own thread, and coordinat-
ing packet reception from the pipeline through a shared producer-
consumer queue. By relying on multi-core processors, each exten-
sion can be isolated to run on its own core. This has the advan-
tage that any latency induced by an extension only affects the traffic
subject to that extension. Furthermore, correctness or performance
bugs in an extension only affects the subset of traffic enqueued in the
virtual queues serving that extension. This enables an incremental
“opt-in” experimental platform for introducing newNetBump func-
tionality into the production network.

An advantage of the NetBump architecture is that packets travel
a single path from the input port to the output port. Thus, unlike
multi-port software routers, here packets can remain entirely on a
single core, and stay within a single cache hierarchy. The only point

Host i …
Switch

VQi

Host 0
1GigE

Netbump 0 Netbump 1

Qi

Flow 0 Flow 1

VQi

Figure 6: Flow0 and Flow1 both destined to Hosti , with two
NetBumps monitoring the same Qi buffer.

of synchronization is the shared vAQMdata structure, and we study
the overhead of this synchronization and the resulting lock con-
tention in § 6.2.5.

3.2 Scaling NetBump
Managing packet flows in multipath environments requires that

NetBump scale with the number of links carrying a particular set
of flows. This scaling operates within two distinct regions. First,
supporting additional links by adding NICs and CPU cores to a
single server, and second, through a distributed deployment model.

3.2.1 Multi-link NetBump
For environments in which packets headed to a single destination

might travel over multiple paths, it is possible to scale NetBump by
simply adding newNICs andCPU cores. For example, a top-of-rack
switch with two 10Gbps uplinks would meet these requirements.
Here, a single server is only limited in the number of links that it
can support by the amount of PCI bandwidth and the number of
CPU cores. Each pair of network interfaces supports a single link
(10Gbps in, and 10Gbps out), and PCIe gen 2 supports up to three
such bi-directional links. In this case, “Multi-link” NetBump is still
conceptually simpler than a software-based router, since packets still
follow a single-input, single-output path. Each supported link is
handled independently inside the bump, and we can assign to it a
dedicated CPU core. The only commonality between these links is
the vAQM table, which is shared across the links.

3.2.2 Distributed NetBump
For multi-path environments, where NetBumps must be phys-

ically separated, or for those with more links than are supported
by a single server, we consider a distributed NetBump implementa-
tion. Naturally, if multiple NetBumps contribute packets to a shared
downstream buffer, they must exchange updates to maintain accu-
rate VQ estimates. Note that the vAQM table maintains queue esti-
mates for each of neighboring switch’s ports (or amonitored subset).
In this case, where we assume the topology (adjacency matrix

and link speeds) to be known in advance, NetBumps update their
immediate neighbor bumps about the traffic they have processed
(Fig. 6). Hence, updates are not the queue estimate itself, but tuples
of individual packet lengths and physical downstream switch and
port IDs, so that forwarding tables need not be distributed. Each
source NetBump sends an update to its monitoring neighbors at a
given tunable frequency (e.g. per packet, or batched), and each des-

tination NetBump calculates a new queue estimate by merging its
previous estimate with the traffic update from its neighbor, accord-
ing to the algorithm in Fig. 5. In this design, updates are tiny; 4B
per monitored flow packet (i.e. 2B for packet size and 2B for the
port identifier). This translates to about 3MB/s of control traffic per
10Gbps monitored flow. Note also that updates can be transmitted
on a dedicated link, or in-band with themonitored traffic. We chose
the latter for our Distributed NetBump implementation.

The above technique introduces two possible sources of queue
estimation error: 1) batching updates causes estimates to be slightly
stale, and since packet sizes are not uniform, the individual packet
components of a virtual queue and their respective order would not
necessarily be the same, and 2) the propagation delay of the up-
date. Despite this incremental calculation, the estimation naturally
synchronizes whenever the buffer occupancy is near its empty/full
boundaries.

4. DEPLOYED APPLICATIONS
In this section, we describe the design and implementation of two

vAQM applications we developed with NetBump. In addition to
Data Center TCP and Quantized Congestion Notification applica-
tions described here, the tech report version of this work also in-
cludes the implementation of Random Early Detection and rate-
limiting applications [34].

4.1 Data Center TCP
We implemented Data Center TCP (DCTCP) [2] on NetBump.

The purpose of DCTCP is to improve the behavior of TCP in data
center environments, specifically by reducing queue buildup, buffer
pressure, and incast. It requires changes to the endhosts as well as
network switches. A DCTCP-enabled switch marks the ECN bits of
packets when the size of the output buffer in the switch is greater
than the marking threshold K. Unlike RED, this marking is based
on instantaneous queue size, rather than a smoothed average. The
receiver is responsible for signaling back to the sender the particular
sequence ofmarked packets (see [2] for a complete description), and
the sender maintains an estimate α of the fraction of marked pack-
ets. Unlike a standard sender that cuts the congestion window in
half when it receives an ECN-marked acknowledgment, a DCTCP
sender reduces its rate according to: cwnd ← cwnd ∗ (1 − α/2). We
support DCTCP in the endhosts by using a modified Linux TCP
stack supplied by Kabbani and Alizadeh [15].

Implementing DCTCP in NetBump was straightforward. Here,
we mark based on the instantaneous queue size instead of comput-
ing a smoothed queue average of the downstream physical queue
occupancy. Next, we set both LowThresh and HighThresh to the
supplied K (chosen to be 20 MTU packets, based on the authors’
guidelines [2]). We experimented with other values of K, and found
that it had little noticeable effect on aggregate throughput or rate
convergence time.

4.2 Quantized Congestion Notification
We also implemented the IEEE 802.1Qau-QCN L2 Quantized

Congestion Control (QCN) algorithm [1]. QCN-enabled switches
monitor their output queue occupancies and when sensing con-
gestion,they send feedback packets to upstream Reaction Points.
The sender NIC is responsible for adjusting the rate according to
a given formula. For every QCN-enabled link, there are two basic
algorithms:

Congestion Point (CP): For every output queue, the switch cal-
culates a feedback measure (Fb) whenever a new frame is queued.
This measure captures the rate at which the queue is building up
(Qδ), as well as the difference (Qoff) between the current occupancy
and a desired equilibrium threshold (Qeq , assumed to be 20% of the
physical buffer). If Q denotes the current queue occupancy, Qold is
the previous iteration, andw is the weight controlling rate build-up,
then:

Qoff = Q − Qeq Qδ = Q − Qold

Fb = −(Qoff +wQδ)

Based on Fb , the switch probabilistically generates a congestion
notification frame proportional to the severity of the congestion (the
probability profile is similar to RED [12], i.e. it starts from 1% and
plateaus at 10% when ∣Fb ∣ ≥ Fbmax). This QCN frame is destined to
the upstream reaction point from which the just-added frame was
received. If Fb ≥ 0, then there is no congestion and no notification
is generated.

Reaction Point (RP): Since the network generates signals for rate
decreases, QCN senders must probe for available bandwidth grad-
ually until another notification is received. The reaction point al-
gorithm has two phases: Fast-Recovery (FR) and Additive-Increase
(AI). This is similar to, but independent from, BIC-TCP’s dynamic
probing.
TheRP algorithmkeeps track of the sending Target Rate (TR) and

Current Rate (CR).When a congestion control frame is received, the
RP algorithm immediately enters the Fast Recovery phase; it sets the
target rate to the current rate, and reduces the current rate by an
amount proportional to the congestion feedback (by at most 1/2).
Barring further congestion notifications, it tries to recover the lost
bandwidth by setting the current rate to the average of the current
and target rates, once every cycle (where a cycle is defined in the base
byte-counter model as 100 frames). The RP exits the Fast Recov-
ery phase after five cycles, and enters the Additive Increase phase,
where the RP continually probes for more bandwidth by adding a
constant increase to its target rate (1.5Mbps in our implementation),
and again setting the current sending rate to the average of the CR
and TR.

5. IMPLEMENTATION
NetBump can be implemented using a wide variety of underly-

ing technologies, either in hardware or in software. We evaluated
three such choices: 1) the stock Linux-based forwarding path, 2) the
RouteBricks software router, and 3) a user-level application relying
on kernel-bypass network APIs to read and write packets directly to
the network. We call this last implementationUNetBump. We show
in Fig. 7 the latency distributions of these systems when forwarding
1500B packets at 10Gbps (except Linux with 9000B). The baseline
for comparison being a simple loopback.
All of our implementations are deployed onHPDL380G6 servers

with two Intel E5520 four-core CPUs, each operating at 2.26GHz
with 8MB of cache. These servers have 24 GB of DRAM separated
into two 12GB banks, operating at a speed of 1066MHz. For the
Linux and UNetBump implementations, we use an 8-lane Myricom
10G-PCIE2-8B2-2S+E dual-port 10Gbps NIC which has two SFP+
interfaces, plugged into a PCI-Express Gen 2 bus. For RouteBricks,
we used an Intel E10G42AFDA dual-port 10Gbps NIC (using an
82598EB controller) with two SFP+ interfaces.

100 200 300 400 500 700 1000 2000 3000
0

0.2

0.4

0.6

0.8

1

Latency (us) (logscale)

C
D

F

Baseline
UNetBump
Linux (9000B MTU)
RouteBricks
RouteBricks (no outliers)

Figure 7: Forwarding latency at line rate of baseline, UNetBump,
Linux, RouteBricks (batching factor of 16, and a Click burst factor
of 16), with and without an outlier queue.

5.1 Linux
The Linux kernel natively supports a complete IP forwarding

path, including a configurable set of queuing disciplines managed
through the “traffic control (tc)” extensions [23]. Linux tc supports
flow and packet shaping, scheduling, policing, and dropping. While
tc supports a variety of queuing disciplines, it does not support
managing the queues of remote switches. This support would
have to be added to the kernel. In our evaluation we used Linux
kernel version 2.6.32, and found that the latency overheads of the
Linux forwarding path were very high, with a mean latency above
500μs, and a 99th percentile above 1500μs. Furthermore, our
evaluation found that Linux could not forward non-Jumbo frames
at speeds approaching 10Gbps (and certainly not with minimum-
sized packets). This is because the kernel implementation incurs
high per packet and per byte overhead [35]. Based on these
microbenchmarks, we decided not to further consider Linux as
an implementation alternative.

5.2 RouteBricks
RouteBricks [8] is a high-throughput software router imple-

mentation built using Click’s core, extensive element library, and
specification language. It increases the scalability of Click in two
ways–by improving the forwarding rate within a single server, and
by federating a set of servers to support throughputs beyond the
capabilities of a single server. To improve the scalability within
a single server, RouteBricks relies on a re-architected NIC driver
that supports multiple queues per physical interface. This enables
multiple cores to read and write packets from the NIC without
imposing lock contention, which greatly improves performance [7,
26, 47]. Currently, RouteBricks works only with the ixgbe device
driver, which delivers packets out of the driver in fixed-size batches
of 16 packets each. We built a single-node RouteBricks server
using the HP server architecture described above, but with the
Intel E10G42AFDA NIC (the only available the RouteBricks driver
patch still supported). This server used the Intel ixgbe driver
(version 1.3.56.5), with a batching factor of 16. The use of this
batching driver improves throughput by amortizing the overhead
of transferring those packets, at the cost of increased latency on
an individual packet basis. Indeed RouteBricks was designed for

Host24

N
et

bu
m

p1
 (R

P
) N

etbum
p0 (C

P
)

Switch 1 Switch 0

Virtual
Queues

Classifier

D
ow

nstream

Virtual B
uffer

Host13 Host12 Host1
1GigE

10GigE

Figure 8: Two-rack 802.1Qau-QCN and DCTCP Testbed

high throughput, not low-latency. There is nothing in the Click or
RouteBricks model that precludes low-latency forwarding, however
for this work we chose not to use RouteBricks.

5.3 UNetBump
In user-level networking, instead of having the kernel deliver and

demultiplex packets, the NIC instead delivers packets directly to the
application. This is typically coupled with kernel-bypass support,
which enables the NIC to directly copy packets into the application’s
memory region.
User-level networking is a well-studied approach that has been

implemented in a number of commercially-available products [42].
Myricom offers Ethernet NICs with user-level networking APIs
that we use in our evaluation [28]. There have been at least two
efforts to create an open and cross-vendor API to user-level, kernel-
bypass network APIs [31, 36]. In this paper, we re-evaluate the
use of user-level networking to support low-latency applications,
especially those requiring low latency variation. Note that it is
possible to layer the RouteBricks/Click runtime on top of the user-
level, kernel-bypass APIs we use in UNetBump.

6. EVALUATION
Our evaluation seeks to answer the following: 1)Howexpressive is

NetBump? 2) How easy is it to deploy applications? 3) How effective
is vAQM estimation in practice? 4) What are the latency overheads
and throughput limitations?
To answer these, we built and deployed a set of NetBump

prototypes in our experimental testbed. We started by evaluating
the baseline latency and latency variation of these prototypes, and
based on these measurements, we proceeded with construction
of UNetBump, a fully-functional prototype based on user-level
networking APIs. We then evaluate a range of AQM functionalities
with UNetBump.

6.1 Testbed Environment
Our experimental testbed consists of a set dual-processor Ne-

halem server described above, using either Myricom NICs, or in
the case of RouteBricks, the Intel NIC. The Myricom NICs use the
Sniffer10G driver version 1.1.0b3. We use copper direct-attach SFP+
connectors to interconnect the 10Gbps endhosts to our NetBumps.
Experiments with 1Gbps endhosts rely on a pair of SMC 8748L2
switches that each have 1.5MB of shared buffering across all ports.
Each SMC switch has a 10Gbps uplink that we connect to the appro-
priate NetBump.

1 2 3 4 5 6 7 8 9
0

20

40

60

80

100

120

140

160

180

200

Offered Load (Gbps)

La
te

nc
y

(u
s)

Baseline Average 95th 99th 99.9th

Figure 9: Latency percentiles imposed by UNetBump vs. offered
load. Baseline is the loopback measurement overhead.

We evaluate NetBump in three different contexts. The first is in
microbenchmark, to examine its throughput and latency character-
istics. Here we deploy NetBump as a loopback (simply connecting
the two ports to the same host) to eliminate the effects of clock skew
and synchronization. The second simply puts a NetBump inline be-
tween two machines, and tests NetBump’s operation at full 10Gbps.
Separating the source and destination to different machines enables
throughput measurement with real traffic.

The third testbed, Fig. 8, evaluates NetBump in a realistic data
center environment in which it might be deployed right above the
top-of-rack switch. Here, we have two twelve-node racks of end-
hosts, each connected to a 1Gbps switch. A 10Gbps uplink con-
nects the two 1Gbps switches and the NetBump is deployed inline
with those uplinks. In this case, the NetBump actually has four
10Gbps interfaces–two to the uplinks of each of the two SMC 1Gbps
switches, and two that connect to a second NetBump. We use this
testbed to evaluate 802.1Qau-QCN, with one NetBump acting as the
Congestion Point (CP) and the other as the Reaction Point (RP).

6.2 Microbenchmarks

6.2.1 NetBump Latency
A key metric for evaluation is the latency overhead. To measure

this, we use a loopback testbed and had a packet generator on the
client host send packets onto the wire, through the NetBump, and
back to itself. To calibrate, we also replace the NetBump with a
simple loopback wire, which gives us the baseline latency overhead
of the measurement host itself. We subtract this latency from the
observed latency with the NetBump in place, giving us the latency
of just the NetBump. We generated a constant stream of 1500-byte
packets sent at configurable rates (Fig. 9).

For UNetBump, the latency is quite low for the majority of for-
warded packets. There is a jump in latency at the tail due to NIC
packet batching when they arrive above a certain rate. There is no
way to disable this batching in software, even though we were only
using a single CPU core which could have serviced a higher packet
rate without requiring batching. The forwarding performance of
UNetBumpwas sufficient to keep up with line rate usingminimum-
sized packets and a single CPU core.

20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

Time (ms)

Q
ue

ue
 S

iz
e

(K
B

)

Virtual Queue
Downstream

(a) Virtual queue size vs. actual downstream queue. Running an
iperf TCP session between two 10G hosts, rate-limited to 1Gbps
with a 40KB buffer downstream to induce congestion.

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

| Queue Size Estimate | (KB)

C
D

F

Difference
1 MTU
2 MTU
3 MTU

(b) CDF of the queue size difference. The estimate is within two
1500B MTUs 95% of the time.

Figure 10: Downstream vAQM estimation accuracy.

6.2.2 vAQM Estimation Accuracy
To evaluate the accuracy of the vAQM estimation, we ran iperf

sessions between two hosts, connected in series by a NetBump and
another pass-through machine (which records the timestamps of
incoming frames). Since we cannot export physical buffer occu-
pancy of commercial switches, we use the frame timestamps and
lengths from the downstream pass-through machine to recreate the
output buffer size over time, knowing the drain-rate. Fig. 10 shows
the NetBump virtual queue size vs. the actual downstream queue.
The estimate was within two MTUs 95% of the time.

6.2.3 Distributed NetBump
We also measured the accuracy of queue estimation when multi-

pleNetBumps exchange updates to estimate a commondownstream
queue. In the first experiment, measure the effect of update latency
on queue estimate accuracy. We varied the timestamp interleaving
of two TCP iperf flows that share a downstream queue in order
to simulate receiving delayed updates from a neighboringNetBump.
Fig. 11 shows the CDF of the difference between the delayed inter-
bump estimation and the in-sync version; Evenwhen update latency
was 25μs, the difference was always under 2MTU.
Next, we show the accuracy of NetBump’s queue estimating of a

downstream queue, based solely on updates from its neighbor. In
our implementation, the updates are transmitted in-band with the
monitored traffic. Fig. 12 gives the CDF of the difference between
the actual queue size and the distributed NetBump estimate. We

0 0.5 1 1.5 2 2.5 3 3.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

| Delayed Updates Estimate − In Sync Estimate | (KB)

C
D

F

5 us delay
10 us delay
15 us delay
20 us delay
25 us delay

Figure 11: CDF of the absolute difference between the queue esti-
mate with delayed updates and the in-sync version. The combined
throughput is rate-limited to 5Gbps, and the downstream buffer is
40KB.

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

| Neighbor Queue Estimate Downstream Queue | (KB)

C
D

F

No Batching
2X Batching
1 MTU
2 MTU
3 MTU

Figure 12: CDF of the difference between actual queue size and the
Distributed NetBump estimate using a 1Gbps rate-limited TCP flow
and a 40KB buffer. The estimating NetBump does not observe the
monitored traffic directly.

observe that the estimate is within 3MTUs 90% of the time. Note,
however, the effect of update batching: estimates quickly drift when
updates are delayed. Fig. 13 shows a typical relative difference CDF
when background elephant flows are present (i.e. some flows are
observed directly, and others indirectly through updates).

6.2.4 CPU Affinity Effect
One of the challenges of designing NetBump was not only main-

taining a low average latency, but also reducing variance. Mod-
ern CPU architectures provide separate cores on the same die and
physically separate memory across multiple Non-UniformMemory
Access (NUMA) banks. This means that access time to memory
banks changes based onwhich core issues a given request. To reduce
latency outliers, we allocated memory to each UNetBump thread
from the same NUMA domain as the CPU core it was scheduled to.

Given the significant additional latency that may be introduced
by the unmodified Linux kernel scheduler, we compare latency of
NetBump with and without CPU-affinity and scheduler modifica-
tions. Our control experiment uses default scheduling. To improve

0 5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

| Neighbor Queue Estimate Downstream Queue | (KB)

C
D

F
p

Difference

Figure 13: Typical distributed NetBump relative error with back-
ground elephant flows.

Latency (μs) Avg 95th 99th 99.9th Max
No Affinity 32 39 76 1,322 3,630
With Affinity 30 42 83 169 208

Table 2: UNetBump latency percentiles vs. CPU core affinity.

on this, we exclude all but one of the CPU cores from the default
scheduler, and ensure that the UNetBump user-space programs ex-
ecute on the reserved cores. We then examined the average, 95th,
99th, 99.9th, and maximum latencies through NetBump compared
to the baseline (Table 2). CPU-affinity had a minor effect on latency
on average, but was most pronounced on outlier packets. The max-
imum observed latency was 17 times smaller with CPU-affinity at
the 99.9th percentile, showing the importance of explicit resource
isolation in low-latency deployments.

6.2.5 Multicore Performance
In UNetBump, basic vAQM estimation can be done at 10Gbps

using only a single CPU core. However, to support higher link rates,
additional cores might be necessary. The NIC itself will partition
flows across CPU cores using a hardware hash function. In this sce-
nario, a user-space thread would be responsible for handling each
ring pair, and the only time these threads must synchronize would
be when updating the vAQM state table. To evaluate the effect of
this synchronization on the latency of NetBump in amulti-threaded
implementation, we examined the effect of vAQM table lock over-
head. As a baseline, a single-threaded forwarding pipeline (FP) has a
latency of 29.16μs. Running NetBump with two FPs (two ring pairs
in the NIC and each FP running on its own core) increased that
latency by 17.9% to 35.5μs. Further running NetBump with four FPs
on four cores increased the latency by an additional 1.95% to 36.8μs.
Thus we find that the synchronization overhead is minimal to gain
back a four-fold increase in computation per packet, or alternatively,
a four-fold increase in supported line rate. A key observation is
that NetBump avoids some of the required synchronization over-
heads found in software routers [7, 9, 26] with multiple ports, since
in NetBump each input port only forwards to a single output port,
preventing packets from spanning cores or causing contention on
shared output ports.

6.3 Deployed Applications
Onemetric highlighting the ease of writing new applications with

NetBump is shown in Table 3. Most of our applications took only
10s of lines of code, and QCN, which is much more complex, was

Application Lines of Code
NetBump core 940

DCTCP 29
QCN 464

Table 3: Coding effort for NetBump and some of its applications.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.2

0.4

0.6

0.8

1

Response Time (ms)

C
D

F

Baseline TCP
DCTCP

Figure 15: Baseline TCP (CUBIC) and DCTCP response times for
short RPC-type flows in the presence of background elephant flows.

written in less than 500 lines of code. The time commitment ranged
from hours to a couple of days in the case of QCN.We now examine
each application in detail.

6.3.1 Data Center TCP
The next experiment represents a recreation of the DCTCP con-

vergence test presented by Alizadeh et al. [2] performed in our two-
rack testbed (Fig. 8). Five source nodes each open a TCP connec-
tion to one of five destination nodes in 25 second intervals. In the
baseline TCP case (Fig. 14(a)), due to buffer pressure and a drop-
tail queuing discipline, the bandwidth is shared unfairly, resulting
in a wide oscillation of throughput and unfair sending rate among
the flows. Fig. 14(b) shows the throughput of DCTCP-enabled end-
points and a DCTCP vAQM strategy in the NetBump. Like in the
original DCTCP work, here the fair sharing of network bandwidth
results from the lower queue utilization afforded by senders backing
off in response to NetBump-set ECN signals.

Another contribution of reduced queue buildup is better support
for mixtures of latency-sensitive and long-lived flows. Fig. 15
shows the CDF of response time for 10,000 RPC-type requests
in the presence of two large elephant flows, comparing stock
TCP endpoints without NetBump DCTCP support. This figure
recreates a key DCTCP result: signaling the long flows to reduce
their rates results in smaller queues, lower RTT, and in the end,
shorter response times.

6.3.2 Quantized Congestion Notification
Another example of how the NetBump programming model en-

abled rapid prototyping and evaluation of new protocols was de-
ploying 802.1Qau-QCN. Our implementation of QCN is 464 lines
of code, and took around 2-3 days to write and debug. Developing
QCN within NetBump enabled us to easily tune parameters and
evaluate their effect. This was especially important given QCN’s
novelty, and the lack of other tools or simulations we could have
used to study it. Using the testbed topology of Fig. 8, we use Net-
Bump0 as the CP, and NetBump1 as the RP. In our RP, we chose a
virtual queue size of 100KB (and Qeq at 20KB).

0 50 100 150 200 250
0

200

400

600

800

1000

Time (s)

T
hr

ou
gh

pu
t (

M
bp

s)

Flow 1
Flow 2
Flow 3
Flow 4
Flow 5

(a) Baseline TCP (CUBIC)

0 50 100 150 200 250
0

200

400

600

800

1000

Time (s)

T
hr

ou
gh

pu
t (

M
bp

s)

Flow 1
Flow 2
Flow 3
Flow 4
Flow 5

(b) DCTCP

Figure 14: The effect on fairness and convergence of DCTCP on five flows sharing a bottleneck link.

0 5 10 15 20 25
0

100

200

300

400

500

600

700

800

900

1000

Time (s)

T
hr

ou
gh

pu
t (

M
bp

s)

Flow 1
Flow 2
Flow 3

Figure 16: QCN with three 1Gbps UDP flows. With QCN enabled,
the RP virtual queue occupancy never exceeded 40%, as opposed to
persistent drops downstream without.

We found that the QCN feedback loop tends to be more stable
when the frequency of messages is higher and their effect smaller.
For this reason, we use Fbmax = 32, andplateau the probability profile
at 20%. Due to the burstiness in packet arrival, we also decreased w
to 1 to avoid unnecessary rate drops. Our implementation also con-
sidered the relative flow weights in the entire queue when choosing
which flow to rate-limit, rather than using just the current packet.
We use the byte counter-only model of RP in our implementation.
For the Additive Increase phase, we use cycles of 100 packets, and
an increase of 1.5Mbps (to show the convergence of the virtual port
current rates), and 600 packet cycles for the Fast Recovery phase.
We show in Fig. 16 the throughput of three 1GbpsUDPflows sharing
the same bottleneck link. Without QCN, the downstream buffer
would be persistently overwhelmed by the three UDP flows from 5-
20s, but with QCN enabled, congestion is pushed upstream and the
virtual queue occupancy never exceeded 40%, thereby preventing
drops for potential mice flows.

7. RELATED WORK
Virtual Queuing and AQM: In virtual queuing (VQ), metadata
about an incoming packet stream is maintained to simulate the
behavior of a hypothetical physical queue. We differ from previous
work in that we maintain VQs outside of the switch itself. VQ
provides a basis for a variety of active queue management (AQM)
techniques. AQM manipulates packets in buffers in the network to
enact changes in the control loop of that traffic, typically to reduce
packet drops, queue overflows, or buffer sizes. One proposal, Active
Virtual Queue [21], reduces queue sizes in traffic with small flows,
which typically pose challenges for the TCP control loop. Due to
the inefficiency of RED’s dropping packets to signal congestion, the
Early CongestionNotification (ECN) [22] fieldwas developed to de-
couple packet drops from congestion indicators. Several proposals
for improving on RED have been made [4], including Data Center
TCP (DCTCP) [2]. Quantized congestion notification [1] was
proposed as a congestion control mechanism for non-TCP traffic,
and can respond faster than the round-trip time. Implementations
of QCN have been developed on 1Gbps networks [24], as well as
emulated within FPGAs at 10Gbps networks [30]. Our deployment
is done at 10Gbps and distributed across multiple network hops.
Approximate-Fairness QCN (AF-QCN) [16] is an extension that
biases input links’ feedback by the ratio of their queue occupancy.

Datapath Programming in Software: Software-based packet
switches and routers have a long history as a platform for rapidly
developing new functionality. Click [20] is a modular software
router consisting of a pipeline of simple packet-processing building
blocks. Click’s library of modules can be extended by writing
code in C++ designed to work in the Linux kernel or userspace.
RouteBricks [8] focused on scaling out a Click runtime to support
forwarding rates in tens of Gbps by distribution of packet processing
across cores, and across a small cluster of servers. ServerSwitch [24],
allows programming commodity Ethernet switching chips (with
matching/modification of standard header fields), but delegates
general packet processing to the CPU (e.g. for XCP). Besides
avoiding crossing the kernel/user-space boundary, NetBump allows
arbitrary packet modification at line rate. A key distinction is
that these projects are all multi-port software switches focused on
packet routing, while NetBump focuses on pass-through virtual

queuing within a pre-existing switching layer. SideCar [40], on
the other hand, is a recent proposal to delegate a small fraction
of traffic requiring special processing from the ToR switch to a
companion server. While superficially similar, the redirection and
traffic sampling are not applicable for NetBump’s vAQM use-case,
where low-latency is a key design requirement. For these reasons,
we consider these efforts to be orthogonal to this work.
Several efforts have looked at ways of mapping packet handling

tasks necessary to support software routers tomulti-core, multi-NIC
queue commodity servers. Egi et al. [9], and Dobrescu et al. [7]
investigate the effects of casting forwarding paths across multiple
cores, and find thatminimizing core transitions is necessary for high
performance. NetBump takes a similar approach to the “split traffic”
and “cloning” functionality described, inwhich an entire forwarding
path resides on a single core and cache hierarchy. Manesh et al. [26]
study the performance of multi-queue NICs as applied to packet
forwarding workloads. They found that increasing the number of
NIC queues led to reduced performance, and were not able to for-
ward minimum-sized packets at line rate. We did not find such a
limitation with our particular hardware NICs. However, Based on
our experiences we fully support their recommendations for new
NIC APIs for handling packet forwarding for applications.
Typically, the OS kernel translates streams of raw packets to and

from a higher-level interface such as a socket. AndWhile sockets are
a useful networking primitive, the required kernel involvement can
become a bottleneck, and several alternative user-level networking
techniques have been developed [5, 10, 44, 46]. In user-level net-
working, user-programs are responsible for TCP sequence reassem-
bly, retransmission, etc., and this is typically coupled with zero-copy
buffering, where a packet is stored in sharedmemory with target ap-
plications. Kernel-bypass drivers also enable applications to directly
access packets from NIC memory, avoiding kernel involvement on
the datapath. Commercially-available NICs already support these
mechanisms [6, 28, 33, 41, 42]. NetBump is implemented at user-
level, and relies on zero-copy, kernel-bypass drivers.

Datapath Programming in Hardware: One drawback of software-
based packet forwarding is that historically it has suffered from low
performance, and alternative hardware architectures have been pro-
posed. Perhaps the best-known andmostwidely-used hardware for-
warding platform is theNetFPGA [29], a powerful development tool
for FPGA devices; however, the complexity of FPGA programming
remains a challenge. On top of NetFPGA, the CAFE project [25] en-
ables users to more easily develop forwarding engines based on cus-
tom and non-standard packet header formats. RiceNIC [38] is sim-
ilarly based on an FPGA, but provides additional per-packet com-
puting through two embedded PowerPC processors.
Two recent projects sought to address the programming chal-

lenge: Switchblade [3] provides modular building blocks that can
support a wide variety of datapaths, and Chimpp [37] converts
datapaths specified in the Click language into Verilog code suitable
for an FPGA. In addition, network processors (NPs) [39] have
been used to prototype and deploy new network functionality.
They have the disadvantage of a difficult-to-use programming
model and limited production runs. Their primary advantage is
their multiple functional units, providing significant parallelism
to support faster data rates. Commodity CPUs have since greatly
increased their number of cores, and can also provide significant
per-packet processing at high line rates.

8. CONCLUSIONS
A major barrier to developing and deploying new network func-

tionality is the difficulty of programming the network datapath. In
this work, we presented NetBump, a platform for developing, ex-
perimenting with, and deploying alternative packet buffering and
queuing disciplines with minimal intrusiveness and at low latency.
NetBump leaves existing switches and endhosts unmodified. It acts
as a “bump on the wire,” examining, optionally modifying, and for-
warding packets at line rate in tens of microseconds to implement a
variety of virtual active queuing disciplines and congestion control
protocols implemented in user-space. We built and deployed several
applicationswithNetBump, includingDCTCP and 802.1Qau-QCN.
These applications were quickly developed in hours or days, and
required only tens or hundreds of lines of code in total. The adop-
tion of multi-core processors, along with kernel-bypass commod-
ity NICs, provides a feasible platform to deploy data modifications
written in user-space at line rate. Our experience has shown that
NetBump is a useful and practical platform for prototyping and de-
ploying newnetwork functionality in real data center environments.

9. ACKNOWLEDGEMENTS
We would like to thank Brian Dunne for providing the SMC

switches, as well as the anonymous reviewers of this work for their
valuable insight and advice. This work is supported in part by the
National Science Foundation (#CSR-1116079 and #CNS-1053757).

10. REFERENCES

[1] M. Alizadeh, B. Atikoglu, A. Kabbani, A. Lakshmikantha,
R. Pan, B. Prabhakar, and M. Seaman. Data Center Transport
Mechanisms: Congestion Control Theory and IEEE
Standardization. In Allerton CCC, 2008.

[2] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel,
B. Prabhakar, S. Sengupta, and M. Sridharan. Data center
TCP (DCTCP). In ACM SIGCOMM 2010.

[3] M. B. Anwer, M. Motiwala, M. b. Tariq, and N. Feamster.
SwitchBlade: A Platform for Rapid Deployment of Network
Protocols on Programmable Hardware. In ACM SIGCOMM
2010.

[4] J. Aweya, M. Ouellette, D. Y. Montuno, and K. Felske.
Rate-based Proportional-integral Control Scheme for Active
Queue Management. IJNM, 16, 2006.

[5] P. Buonadonna, A. Geweke, and D. Culler. An
Implementation and Analysis of the Virtual Interface
Architecture. In ACM/IEEE CDROM 1998.

[6] Chelsio Network Interface. http://www.chelsio.com.
[7] M. Dobrescu, K. Argyraki, G. Iannaccone, M. Manesh, and

S. Ratnasamy. Controlling Parallelism in a Multicore Software
Router. In ACM Presto 2010.

[8] M. Dobrescu, N. Egi, K. Argyraki, B.-G. Chun, K. Fall,
G. Iannaccone, A. Knies, M. Manesh, and S. Ratnasamy.
RouteBricks: Exploiting Parallelism to Scale Software Routers.
In ACM SOSP 2009.

[9] N. Egi, A. Greenhalgh, M. Handley, M. Hoerdt, F. Huici,
L. Mathy, and P. Papadimitriou. Forwarding Path
Architectures for Multicore Software Routers. In ACM Presto
2010.

http://www.chelsio.com

[10] D. Ely, S. Savage, and D. Wetherall. Alpine: A User-level
Infrastructure for Network Protocol Development. In USITS
2001.

[11] S. Floyd. TCP and Explicit Congestion Notification. ACM
SIGCOMM CCR, 24(5), 1994.

[12] S. Floyd and V. Jacobson. Random Early Detection Gateways
for Congestion Avoidance. IEEE/ACM TON, 1(4), 1993.

[13] R. J. Gibbens and F. Kelly. Distributed Connection
Acceptance Control for a Connectionless Network. In
Teletraffic Engineering in a Competitive World. Elsevier, 1999.

[14] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado,
N. McKeown, and S. Shenker. NOX: Towards an Operating
System for Networks. ACM SIGCOMM CCR, 38(3), 2008.

[15] A. Kabbani and M. Alizadeh. Personal Communication, 2011.
[16] A. Kabbani, M. Alizadeh, M. Yasuda, R. Pan, and

B. Prabhakar. AF-QCN: Approximate Fairness with
Quantized Congestion Notification for Multi-tenanted Data
Centers. In IEEE Hot Interconnects 2010.

[17] S. Karandikar, S. Kalyanaraman, P. Bagal, and B. Packer. TCP
Rate Control. In ACM SIGCOMM 2000.

[18] D. Katabi, M. Handley, and C. Rohrs. Congestion Control for
High Bandwidth-delay Product Networks. In ACM
SIGCOMM 2002.

[19] A. D. Keromytis and J. L. Wright. Transparent Network
Security Policy Enforcement. In USENIX ATC 2000.

[20] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek.
The Click Modular Router. ACM ToCS, 18(3), 2000.

[21] S. Kunniyur and R. Srikant. An Adaptive Virtual Queue
(AVQ) Algorithm for Active Queue Management. IEEE/ACM
TON, 12(2), 2004.

[22] A. Kuzmanovic. The Power of Explicit Congestion
Notification. In ACM SIGCOMM 2005.

[23] Linux Traffic Control howto. http://tldp.org/HOWTO/
Traffic-Control-HOWTO.

[24] G. Lu, C. Guo, Y. Li, Z. Zhou, T. Yuan, H. Wu, Y. Xiong,
R. Gao, and Y. Zhang. ServerSwitch: A Programmable and
High Performance Platform for Data Center Networks. In
USENIX NSDI 2011.

[25] G. Lu, Y. Shi, C. Guo, and Y. Zhang. CAFE: A Configurable
Packet Forwarding Engine for Data Center Networks. In
ACM PRESTO 2009.

[26] M. Manesh, K. Argyraki, M. Dobrescu, N. Egi, K. Fall,
G. Iannaccone, E. Kohler, and S. Ratnasamy. Evaluating the
Suitability of Server Network Cards for Software Routers. In
ACM PRESTO 2010.

[27] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J. Rexford, S. Shenker, and J. Turner. OpenFlow:
Enabling Innovation in Campus Networks. ACM SIGCOMM
CCR, 38(2), 2008.

[28] Myricom Sniffer10G. http://www.myricom.com/
support/downloads/sniffer.html.

[29] J. Naous, G. Gibb, S. Bolouki, and N. McKeown. NetFPGA:
Reusable Router Architecture for Experimental Research. In
ACM PRESTO 2008.

[30] NEC/Stanford: 10G QCN Implementation on Hardware.
http://www.ieee802.org/1/files/public/docs2009/

au-yasuda-10G-QCN-Implementation-1109.pdf.
[31] OpenOnload. http://www.openonload.org.
[32] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose. Modeling TCP

Throughput: A Simple Model and its Empirical Validation. In
ACM SIGCOMM 1998.

[33] PF_RING Direct NIC Access. http://www.ntop.org/
products/pf_ring/dna/.

[34] G. Porter, R. Kapoor, S. Das, M. Al-Fares, H. Weatherspoon,
B. Prabhakar, and A. Vahdat. NetBump: User-extensible
Active Queue Management with Bumps on the Wire.
Technical report, CSE, University of California, San Diego, La
Jolla, CA, USA, 2012.

[35] L. Rizzo. Netmap: A Novel Framework for Fast Packet I/O. In
USENIX ATC 2012.

[36] L. Rizzo and M. Landi. Netmap: Memory-mapped Access to
Network Devices. In ACM SIGCOMM 2011.

[37] E. Rubow, R. McGeer, J. Mogul, and A. Vahdat. Chimpp: A
Click-based Programming and Simulation Environment for
Reconfigurable Networking Hardware. In ACM/IEEE ANCS
2010.

[38] J. Shafer and S. Rixner. RiceNIC: A Reconfigurable Network
Interface for Experimental Research and Education. In ACM
ExpCS 2007.

[39] N. Shah. Understanding Network Processors. Master’s thesis,
University of California, Berkeley, Calif., 2001.

[40] A. Shieh, S. Kandula, and E. G. Sirer. SideCar: Building
Programmable Datacenter Networks without Programmable
Switches. In ACM Hotnets 2010.

[41] SMC SMC10GPCIe-10BT Network Adapter. http://www.
smc.com/files/AY/DS_SMC10GPCIe-10BT.pdf.

[42] SolarFlare Solarstorm Network Adapters. http://www.
solarflare.com/Enterprise-10GbE-Adapters.

[43] J. Turner. New Directions in Communications (or which way
to the Information Age?). IEEE Communications Magazine,
24(10), 2002.

[44] T. von Eicken, A. Basu, V. Buch, and W. Vogels. U-Net: A
User-level Network Interface for Parallel and Distributed
Computing. In ACM SOSP 1995.

[45] Z. Wang. Internet QoS: Architectures and Mechanisms for
Quality of Service. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1st edition, 2001.

[46] M. Welsh, A. Basu, and T. von Eicken. ATM and Fast
Ethernet Network Interfaces for User-level Communication.
In IEEE HPCA 1997.

[47] Q. Wu, D. J. Mampilly, and T. Wolf. Distributed Runtime
Load-balancing for Software Routers on Homogeneous
Many-core Processors. In ACM Presto 2010.

http://tldp.org/HOWTO/Traffic-Control-HOWTO
http://tldp.org/HOWTO/Traffic-Control-HOWTO
http://www.myricom.com/support/downloads/sniffer.html
http://www.myricom.com/support/downloads/sniffer.html
http://www.ieee802.org/1/files/public/docs2009/au-yasuda-10G-QCN-Implementation-1109.pdf
http://www.ieee802.org/1/files/public/docs2009/au-yasuda-10G-QCN-Implementation-1109.pdf
http://www.openonload.org
http://www.ntop.org/products/pf_ring/dna/
http://www.ntop.org/products/pf_ring/dna/
http://www.smc.com/files/AY/DS_SMC10GPCIe-10BT.pdf
http://www.smc.com/files/AY/DS_SMC10GPCIe-10BT.pdf
http://www.solarflare.com/Enterprise-10GbE-Adapters
http://www.solarflare.com/Enterprise-10GbE-Adapters

	Introduction
	Motivation
	NetBump Example
	Design Requirements

	Design
	The NetBump Pipeline
	Scaling NetBump
	Multi-link NetBump
	Distributed NetBump

	Deployed Applications
	Data Center TCP
	Quantized Congestion Notification

	Implementation
	Linux
	RouteBricks
	UNetBump

	Evaluation
	Testbed Environment
	Microbenchmarks
	NetBump Latency
	vAQM Estimation Accuracy
	Distributed NetBump
	CPU Affinity Effect
	Multicore Performance

	Deployed Applications
	Data Center TCP
	Quantized Congestion Notification

	Related Work
	Conclusions
	Acknowledgements
	References

