
Is Memory Disaggregation Feasible?
A Case Study with Spark SQL

Pramod Subba Rao and George Porter
UC San Diego

Abstract
This paper explores the feasibility of entirely disaggregated
memory from compute and storage for a particular, widely
deployed workload, Spark SQL [9] analytics queries. We
measure the empirical rate at which records are processed
and calculate the effective memory bandwidth utilized based
on the sizes of the columns accessed in the query. Our find-
ings contradict conventional wisdom: not only is memory
disaggregation possible under this workload, but achievable
with already available, commercial network technology. Be-
yond this finding, we also recommend changes that can be
made to Spark SQL to improve its ability to support memory
disaggregation.

1. INTRODUCTION
Achieving efficiency in data processing requires balanced

computing, meaning that a system has the right mix of CPU,
memory, storage IO, and network IO so that one part of the
computation is not bottlenecked waiting for results from an-
other part of the computation. Getting this balance just
right is a moving target, since the input data, number and
type of queries, presence of failures, and network conditions
are in a constant state of flux. Correctly provisioning bare-
metal servers is a challenge since one must determine their
specific configuration at entirely the wrong timescales, well
before they are put into production. While virtual machines
play an important role in providing more flexibility in bal-
ancing resources, they are not enough. Even with VMs,
you are limited to configurations implementable in a single
server, you are subject to “fragmentation” of resources, and
you are not able to upgrade individual components like CPU
and memory independently of each other.

These challenges have led to disaggregated server designs,
where individual components such as CPU, memory, and
storage are interconnected over a network, rather than over
a bus within a single chassis [12]. The advantages of dis-
aggregation include more efficient utilization of resources,
and the ability to independently upgrade different system

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ANCS ’16, March 17 - 18, 2016, Santa Clara, CA, USA
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4183-7/16/03. . . $15.00

DOI: http://dx.doi.org/10.1145/2881025.2881030

components. The challenge for disaggregation is the “mem-
ory wall” [21]. Today storage is commonly disaggregated
via SANs and other network-based file storage protocols,
and Facebook has introduced a disaggregated system-on--
chip (SoC) platform called Yosemite [5], which relies on net-
worked storage. Yet there is a growing gap in the rate at
which CPUs can execute instructions and the rate at which
data can be fetched into the CPU from main memory. For
this reason in Yosemite (as well as other designs), memory
and CPU are still tightly integrated in the same chassis.

This paper puts aside the issue of disaggregating mem-
ory in general, and instead examines disaggregating mem-
ory for a common and increasingly deployed type of applica-
tion: analytics queries. Using Spark SQL [9] as a motivat-
ing platform, we measure the actual rate at which threads
of execution access memory and process records, and using
these measurements, determine the feasibility of disaggregat-
ing memory. Spark is an example of a growing set of data-
parallel frameworks which exhibit minimal data-dependent
branches, and as such, can take advantage of significant
amounts of pipelining. For this reason, they are largely la-
tency insensitive, further enabling the use of disaggregated
memory.

Our initial results show that even after significant opti-
mization, Spark SQL analytics queries access memory an
order of magnitude slower than the underlying components
permit, opening up the possibility of disaggregating memory
from compute. In fact, the requirements on the underlying
network are modest, and can be met with existing commer-
cial products such as 40- and 100-Gb/s NICs (e.g., the Mel-
lanox ConnectX-4 NIC [17]). We conclude by recommending
further changes that improve Spark SQL’s ability to support
memory disaggregation.

2. MOTIVATION
Two major reasons that server disaggregation attempts

have avoided memory is that, at a component level, (1)
the bandwidth required between memory and the CPU is
too large to be supported by commercial network equip-
ment, and (2) network latency is too high. In the first case,
we demonstrate experimentally using microbenchmarks that
memory bandwidth indeed exceeds network capabilities (in
Section 2.1). Yet users do not run microbenchmarks, they
run applications, which might not have such stringent re-
quirements, including for memory latency. We explore one
such application in Section 2.2, chosen because of its highly
efficient use of memory, serving as a compelling motivating
application.

Figure 1: Aggregate memory bandwidth of
STREAM benchmark

2.1 The memory wall: barrier or paper tiger?
We start by examining an upper-bound on the bandwidth

requirements of a memory disaggregated system through the
STREAM benchmark [16], which is a synthetic benchmark
that measures sustainable memory bandwidth and the cor-
responding computation rate for simple vector kernels. A
wrapper tool called stream-scaling [7] automates the process
of executing STREAM over the various core counts is used
in this study. We have deployed STREAM onto an 8-core
Intel Xeon 2.27 GHz E5520 processor-based HP ProLiant
DL380 G6 server. This machine has 24GB of DDR3 Syn-
chronous RAM (1333 MHz), configured as 12x2GB banks in
the Advanced Error Correction Code mode.

Figure 1 shows the results of the STREAM Copy bench-
mark on the experiment hardware, which copies data from
one array of doubles to another. The total memory band-
width of the system with all cores active is approximately
21 GB/sec (or 168 Gb/s), a result that matches the HP
ProLiant datasheet [2]. Not only does 168 Gb/s exceed
any commercially available network interface card (NIC), it
exceeds the PCIe 3.0 bandwidth capacity (a x16 device is
limited to 15.75 GB/s, of which approximately 14.2 GB/s
are usable), meaning that modern servers are simply un-
able to keep up with such demand. Thus, absent additional
constraints, memory disaggregation is not feasible. Lim et
al. [14, 15] explore partial memory disaggregation, where
memory is partitioned into local and remote blades. In this
paper, we examine entirely remote disaggregated memory
constrained to a specific, though popular and widely de-
ployed, application.

2.2 Analytic queries with Spark SQL
Spark SQL [9] is a relational data processing system im-

plemented in Scala and built on top of the functional pro-
gramming API of Apache Spark [22]. It bridges the gap
between traditional analytics queries and machine learning
algorithms by offering both an SQL interface and a proce-
dural programmatic interface.

Analytics queries are used to generate summary reports
from large amounts of raw data in order to glean insights.
They are characterized by: (1) accessing the source data in
a read-only manner, (2) accessing a large number of rows
from a table (frequently the entire table), but only for a

small subset of all the available columns in the table, (3) per-
forming aggregation operations (count, sum, average, group
by) on one or more columns or tables, and (4) consisting
of CPU-intensive operations for advanced analytics and ma-
chine learning algorithms. To this last point, Ousterhout
et al. [18] have shown that for a large set of realistic work-
loads, Spark is CPU-bound, not memory, network, or storage
bound. Due to the nature of aggregation-based queries, the
size of the working set can decrease, in some cases signifi-
cantly, after every stage of aggregation.

In this paper, we chose Spark SQL due to its highly-
efficient use of memory, due in part to three major factors:
(1) it stores data in a column oriented format, making it
efficient to access all the rows of a column, (2) it gener-
ates Java bytecode directly for commonly used aggregation
operations like count, min, and max, thus avoiding the over-
head of multiple, and possibly virtual, function calls, and
(3) it applies operators to entire data sets (called RDDs)
in parallel, without data-dependent branching. This lack of
branching reduces the impact of higher memory latency on
overall application throughput. We deploy a series of ana-
lytic queries taken from the literature and published bench-
marks, and for each thread of execution, we measure the
rate at which records are processed and calculate the effec-
tive memory bandwidth based on the sizes of the columns
accessed in the query multiplied by the number of threads.
This results in the overall aggregate memory bandwidth.

Specifically, if there are threadcount threads accessing size
bytes from each record, during a time interval of AvgT ime100000
between every 100,000 records (averaged across all the threads),
the aggregate memory access rate is:

Mem access rate =
(size× 100000)

AvgT ime100000
× threadCount (1)

We use this formula to calculate the actual memory access
rate, rather than potential access rate, for sets of queries.

2.3 High-speed networking
Today 10- and 40-Gb/s Ethernet is commercially available

and widely deployed within production data centers [11].
Commercial 100 Gb/s NICs and switches are now available
from vendors such as Mellanox [17], and 400 Gb/s Ethernet
is in the standardization process [10]. A key aspect of these
new standards is that their high overall speeds are obtained
by joining multiple, parallel, underlying links together. For
example, 100 Gb/s Ethernet is largely 4 25 Gb/s lanes, and
400 Gb/s is currently 16 25 Gb/s lanes (eventually to be re-
placed with 4 100 Gb/s lanes when those become available).
Simply put, the ability to increase a single lane of Ethernet
cannot keep pace with overall bandwidth demands, and so
parallelism is used in new standards.

3. EXPERIMENTAL SETUP

3.1 Hardware and software
The hardware used for the following experiments is a clus-

ter of five nodes, consisting of a single master node and four
workers. Each server is the same configuration as described
above in Section 2.1, and they are interconnected with a 10
Gb/s network. We rely on the cluster to distribute jobs to
servers, however our measurements are limited to a single

server, and thus the network is not a bottleneck for profiling
the bandwidth requirements of the memory system.

We use Apache Spark 1.3.0 [1], deployed in standalone
mode on Ubuntu Linux 14.04.2. One executor process is run
on each worker node and is allotted 18GB of RAM out of the
24GB. To read CSV files, we use the spark-csv library [6].
The Java Virtual Machine used is Java HotSpot 1.6.0 45-
b06. No other software is running on this cluster apart from
the default system processes.

3.2 Spark SQL
Apart from allocating ample memory (18 GB) to each

node, we have set up Spark in a way that increases the
demand on the memory subsystem compared to more gen-
eral configurations, in an effort to provide a conservative
upper-bound on the memory bandwidth requirements. Un-
less mentioned as follows, we maintain the default Spark
configuration. We have modified the following settings:

1. We ensure all memory accesses are to local memory.
In production workloads, off-node memory might be
accessed as well.

2. spark.storage.memoryFraction is increased to 0.8 (de-
fault: 0.6). This is the fraction of Java heap to use for
Spark’s memory cache; increasing this value ensures
that resilient distributed datasets (RDDs) are cached
entirely in memory.

3. We set spark.shuffle.spill to false. This ensures that
data does not spill over to disk during the reduce phase.

4. Memory compression is turned off (spark.sql.inMemory-
ColumnarStorage.compressed) to reduce extra overhead
on the CPU during query processing.

5. Our instrumentation measures access times after ev-
ery 100,000 records, and so we set spark.sql.inMemory-
ColumnarStorage.batchSize to 100001 (from its default
of 1000) to ensure we have a sufficient number of records
in each batch.

6. We turn on dynamic code generation (spark.sql.code-
gen). This optimization within Spark SQL generates
Scala code at runtime which is specialized for the types
and the number of expressions used in the query. It
also avoids autoboxing overhead where primitive types
are being used. In the absence of code generation, sim-
ple operations like extracting a column from a row, or
adding two literals, can result in branching and virtual
function calls. The code generation feature generates
inline Scala code for the same and compiles them to
JVM bytecode before execution.

7. To prevent Spark from writing data to disk during the
shuffle phase, we ensure intermediate data is written to
memory by setting the partition to a tmpfs filesystem.

8. We disable the OS swap partition (via swapoff -a).

9. Whenever measurements are needed for a specific num-
ber of threads, we achieve that by splitting up the data
into an equivalent number of RDD partitions.

3.3 Workloads
We evaluate the feasibility of memory disaggregation us-

ing three workloads. The first is the STREAM benchmark,
described previously, which measures the raw capacity of
the memory subsystem, setting the upper bound on what
application could obtain. The second is a microbenchmark
of Spark SQL’s memory access performance, achieved by
measured a simple COUNT(1) query, which simply scans a
synthetic RDD with rows and columns of different lengths,
using a varying number of threads, all while incrementing a
counter. This sets an upper-bound on the performance of
Spark SQL, as it forms one of the simplest queries possi-
ble to express. Third, we evaluate a series of more complex
queries drawn from the UC Berkeley AMPLab “Big Data”
benchmark [3].

3.4 Measurement technique
We measure memory bandwidth at the application level by

instrumenting Spark SQL, and validate these measurements
by comparing to CPU-level performance counters.

Spark SQL instrumentation: Spark SQL loads data
into an in-memory table accessed via the InMemoryColum-
narTableScan class. Data for all rows of a column is stored in
a Java byte array. The first 4 bytes of the array are used to
specify the data type, and the rest contain the actual data.
We request that the data for the query be cached in memory
through Spark’s rdd.persist() mechanism. When the query is
executed for the first time, a CSV file is read to populate the
in-memory table; subsequent executions of the query access
only the in-memory representation. We log timing informa-
tion within InMemoryColumnarTableScan during iterations
over the table, at intervals of 100,000 records in each of the
threads. Equation 1 is used to calculate the access rate to
memory. All measurements are taken at one of the worker
nodes in the cluster.

CPU performance counters: Intel processors provide
a set of counters and associated monitoring software [4] to
measure CPU utilization and bytes read/written from mem-
ory. We use these during query processing to validate the
application-level measurements, and our findings (not shown)
match those reported by the Spark-level instrumentation.

4. EXPERIMENTAL RESULTS
We examine the memory demands of analytical queries

first by examining a trivial query that provides an upper-
bound on the bandwidth that can be achieved by Spark SQL,
and then by considering two more complex queries drawn
from the AMPLab’s Big Data Benchmark [8].

4.1 Microbenchmark queries
Query 1

SELECT COUNT(1) from SingleColumnTable;

Spark SQL implements Query 1 by fetching the data from
the smallest column in the row and then incrementing a
counter. If the row contains only one column, this is equiv-
alent to fetching the entire row. We chose Query 1 as an
example of a query with minimum CPU usage in order to
measure baseline performance of the system. Based on the
time taken to count every 100,000 records, the memory ac-
cess rate is calculated according to Equation 1.

Columns of data, of various lengths, were generated and
mapped to different numbers of partitions in order to create

0	

250	

500	

750	

1000	

1250	

1500	

1750	

2000	

32	bytes	 64	bytes	 128	bytes	

M
em

or
y	
ba

nd
w
id
th
	(M

B/
s)
	

Record	size	(bytes)	

1	thread	 2	threads	 4	threads	 8	threads	 16	threads	

Figure 2: Select count(1) query

the appropriate number of threads. Figure 2 shows that a
maximum average throughput of 1.9 GB/sec is seen when
running with 16 threads on 128 bytes of data, all from the
in-memory cache. While the throughput increases with the
number of threads, it tapers off as it reaches 16 threads.
Since the hardware has only 16-cores, running more than 16
threads is not representative of the CPU intensive nature of
analytics queries.

Figure 3: Summary statistics for Query 1

Figure 3 shows the average, max and minimum rates of
memory access for Query 1. It can be seen that a maxi-
mum throughput of 3.3 GB/sec is observed while scanning
records of size 128 bytes in 16 threads. A distribution of
this data is shown in Figure 4. The key takeaway from this
result is that while under optimal conditions, Spark SQL is
capable of driving, in aggregate, an impressive 26.4 Gb/s of
network bandwidth on our hardware, it requires 16 indepen-
dent threads to do so.

4.2 AMPLab Benchmark queries
The previous section has looked at microbenchmark queries,

which are significantly memory-intensive, and found that
they are satisfiable with 40 or 100 Gb/s Ethernet devices
currently available from vendors such as Mellanox [17]. We
now turn our attention to more realistic queries, provided

Figure 4: CDF of memory access rates for Query 1
(60M records, 64 bytes, 16 threads)

Column name Column size Comments
sourceIp 19 bytes 4 byte length; 15 byte IP
adRevenue 4 bytes sizeof(FLOAT)
Total 23 bytes

Table 1: Data accessed per row for Query 2

by the AMPLab “Big Data” benchmark suite [8].

4.2.1 “Group by” query
Query 2

SELECT sourceIp, SUM(adRevenue) FROM

uservisits GROUP BY sourceIp

We next look at an Aggregation Query from the Big Data
Benchmark [3], shown as Query 2. It shows the advertise-
ment revenue obtained from each end user IP address based
on all the sites visited by that IP address and grouping the
total revenue obtained from each of those addresses. The
uservisits table has 10 million entries. For each row, the
following columns are accessed: sourceIp and adRevenue.
Table 1 shows that the data accessed per row of this query
is 23 bytes.

Spark SQL creates 8 threads to process this data on each
node. The data accessed per row is 23 bytes, and the av-
erage time interval between every 100,000 records is 63.7
ms, and the minimum is 51.0 ms. Based on Equation 1,
this translates to an access rate of 289 MB/s (2.3 Gb/s),
and a maximum rate of 361 MB/s (2.9 Gb/s). Per thread,
however, the demands are a relatively paltry 289 Mb/s on
average, 361 Mb/s max.

Effect of code generation: Since Query 2 is more re-
source intensive (in terms of both CPU and memory) than
Query 1, it is instructive to look at the performance of the
query without bytecode generation. Figure 5 shows the time
spent in various phases of Query 2 in the absence of code
generation. Due to the creation of a large number of tempo-
rary helper objects for aggregation, and the accompanying
garbage collections, the time spent for iterating over data is
larger than needed, showing that to get high memory uti-
lization, it is essential to run with code generation enabled.
Even with this optimization, it is still practical to support
this result with existing network technology.

Figure 5: Code generation optimizes memory access
rates for Query 2

Column name Column size Comments
url 59 bytes 4 byte length; 55 bytes data
pageRank 4 bytes sizeof(FLOAT)
Total 63 bytes

Table 2: Data accessed per row for Query 3 (Rank-
ings table)

4.2.2 “Join” query
Query 3

SELECT sourceIp, AVG(pageRank) as avgPageRank,
SUM(adRevenue) as totalRevenue

FROM
Rankings AS R, Uservisits AS UV

WHERE
R.pageUrl = UV.destinationUrl AND
UV.visitDate > ’1980-01-01’ AND
UV.visitDate < ’2015-05-20’

GROUP BY
UV.sourceIp

ORDER BY totalRevenue DESC LIMIT 1

We next examine a join query taken from the Big Data
Benchmark [3], shown here as Query 3. Along with the ad-
vertisement revenue obtained from each end user IP address,
it also displays the average rank of the pages visited by that
IP address, by joining with a Rankings table. The Uservisits
table has 10 million rows as earlier, and the Rankings query
also has 10 million rows. To analyze this query it is neces-
sary to inspect the in memory representation more closely
(shown in Tables 2 and 3). Since the data for Rankings is
split into 2 partitions on the given node and the data for
Uservisits is split into 7 partitions, the number of threads
operating upon the two tables are also respectively 2 and 7.

For the Rankings table, the data accessed per row is 63
bytes, and the time interval between every 100,000 records
was an average of 131.6 ms, and a minimum of 67 ms. Based

Column name Column size Comments
adRevenue 4 bytes sizeof(FLOAT)
destinationUrl 59 bytes 4 byte length; 55 bytes data
visitDate 4 bytes sizeof(FLOAT)
sourceIp 19 bytes 4 byte length; 15 byte IP
Total 86 bytes

Table 3: Data accessed per row for Query 3 (Uservis-
its table)

on Equation 1, this translates to an average access rate of
45.1 MB/s (0.4 Gb/s) and a maximum access rate of 94.0
MB/s (0.8 Gb/s). For the Uservisits table, the data accessed
per row is 86 bytes, and the time interval between every
100,000 records was an average of 504.2 ms, with a minimum
of 285.0 ms, translating into an average access rate of 17.1
MB/s (0.1 Gb/s), and a maximum average rate of 30.2 MB/s
(0.2 Gb/s).

The relatively lower speed of access on the Uservisits table
can be explained by the need to filter each row based on
the range condition given in the query. Since the above
two operations happen in parallel, the total average memory
throughput during this phase is 45.1 + 17.1 = 62.2 MB/sec
(0.5 Gb/s). Maximum throughput, assuming both tables are
scanned together in an optimal way, is 94.0 + 30.2 = 124.2
MB/s (1.0 Gb/s). With 7 threads, that’s approximately a
total memory throughput of 7 Gb/s.

5. FEASIBILITY
We now discuss the potential feasibility of disaggregating

memory for analytical queries.

5.1 Reasons to be optimistic
We have purposefully chosen settings and workloads to

increase the overall memory access rates of Spark SQL to
the extent possible with our hardware. For this reason we
are optimistic in the above results, since in real-world de-
ployments, these results are likely to be an upper bound on
Spark SQL’s potential performance. Additional reasons for
this are:

1. Since Spark SQL runs on the Java Virtual Machine,
garbage collection pauses - major collections in partic-
ular - can interfere with system throughput. We miti-
gate this by allocating a large amount of heap memory
relative to the size of the data set and avoiding major
collections entirely, though in a deployed system GC
events would reduce memory demand.

2. Concurrency is achieved by partitioning the data and
processing different subsets of the data in parallel. Con-
currency does not exist within the context of a parti-
tion. If a series of operations have to be performed on
a row (e.g,. filter, compute an expression on the value,
then aggregate), they are performed in sequence and
only then is the next row in the partition accessed.

3. It is a new framework, and possibly lacks advanced
query optimization features. Since the queries run dur-
ing this experiment do not benefit from such optimiza-
tion, their absence should not affect the results.

5.2 Reasons to be pessimistic
Our study is still preliminary, and faces a number of lim-

itations. We focus only on one kind of query (analytical)
and restricts its measurement to the rate of consumption of
input data. Of course other workloads may result in dif-
ferent bottlenecks and need a different model for analysis,
and even within this approach, we have limited our analy-
sis to a subset of published benchmark queries. Considering
the limitations of Spark SQL listed in above, the viability of
this approach needs to be tested using other frameworks like
Impala [13], Redshift [19], and Tez [20].

Finally, we are limited in our hardware in terms of the
number of CPU cores that are available. To this last point,
a major research question addressing the feasibility of mem-
ory disaggregation is to understand the scaling behaviors of
the hardware, as well as the query engine. In particular, if
the bandwidth available at the NIC grows at a rate compa-
rable to the number of threads available to Spark SQL, then
our results will hold up in the future. However if the growth
of CPU threads dedicated to query processing grows faster
than the aggregate bandwidth of the NIC, then disaggrega-
tion will not be feasible without affecting query performance.
Such a limitation might not rule out disaggregated designs,
however, since it provides a number of other benefits (such as
easier management, and incremental upgrades of individual
components).

5.3 Suggested improvements
Based on the above experiments and a study of the Spark

SQL source code, some improvements to the software ar-
chitecture present themselves in the context of disaggre-
gated memory. First, the data storage system should provide
the ability to address and serve specific data items such as
columns, partitions of rows, etc. This will keep aggregate
bandwidth requirement to a minimum. Second, prefetching
of rows should be implemented for queries which are known
to scan all or most of the data set. Pipelining of different
phases of a row (as explained above) can help towards this.

For the queries we analyzed, the per-thread memory ac-
cess rates were all below 25 Gb/s (in some cases much lower).
As new Ethernet standards make their way into the market,
based on aggregating multiple, parallel, underlying lanes, it
would be advantageous to match up these per-thread band-
width demands with the lanes. For example, 4 Spark SQL
threads would match well to a four-lane 100 Gb/s NIC.

6. CONCLUSION
This paper has described a preliminary approach to eval-

uating the feasibility of disaggregated memory. The ap-
proach consists of measuring memory access rates of ana-
lytics queries based on the amount of input data accessed
per row of the query. A few sample queries drawn from the
Big Data Benchmark [3] were used to benchmark this met-
ric for Spark SQL. The results show that it is possible to
disaggregate the memory for such workloads using currently
available network hardware. Improvements in software ar-
chitecture can help in performing better in a disaggregated
memory environment. While care has been taken to set up
Spark SQL so as to get a conservative set of results, more
extensive testing needs to be done using different queries and
configurations.

Acknowledgements
This work was sponsored in part by the National Science
Foundation (CNS-1314921).

7. REFERENCES
[1] Apache Spark version 1.3.0.

https://github.com/apache/spark/tree/branch-1.3.
[2] Best Practice Guidelines for ProLiant Servers with the Intel

Xeon 5500 processor series Engineering Whitepaper, 1st
Edition, Figure 6. ftp://ftp.hp.com/pub/c-products/
servers/options/Memory-Config\--Recommendations\
--for-Intel-Xeon\--5500-Series-Servers-Rev1.pdf.

[3] Big Data Benchmark.
https://amplab.cs.berkeley.edu/benchmark/.

[4] Intel Performance Counter Monitor - A better way to
measure CPU utilization. https://software.intel.com/en-us/
articles/intel-performance-counter-monitor/.

[5] Introducing Yosemite: the first open source modular chassis
for high-powered microservers.
https://code.facebook.com/posts/1616052405274961/
introducing-yosemite-\-the-first-open-source\
--modular-chassis-for\--high-powered-microservers-/.

[6] Spark CSV. https://github.com/databricks/spark-csv.
[7] stream-scaling.

https://github.com/gregs1104/stream-scaling.
[8] Amplab big data benchmark.

https://amplab.cs.berkeley.edu/benchmark/.
[9] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K.

Bradley, X. Meng, T. Kaftan, M. J. Franklin, A. Ghodsi,
and M. Zaharia. Spark sql: Relational data processing in
spark. In Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data,
SIGMOD ’15, pages 1383–1394, New York, NY, USA, 2015.
ACM.

[10] IEEE P802.3bs 400 Gb/s Ethernet Task Force.
http://www.ieee802.org/3/bs/index.html.

[11] Introducing data center fabric, the next-generation
facebook data center network.
https://code.facebook.com/posts/360346274145943/
introducing-data-center\--fabric-the-next-generation-\
-facebook-data-center-network/.

[12] S. Han, N. Egi, A. Panda, S. Ratnasamy, G. Shi, and
S. Shenker. Network support for resource disaggregation in
next-generation datacenters. In Proceedings of the Twelfth
ACM Workshop on Hot Topics in Networks, HotNets-XII,
pages 10:1–10:7, New York, NY, USA, 2013. ACM.

[13] Impala. http://impala.io/.

[14] K. Lim, J. Chang, T. Mudge, P. Ranganathan, S. K.
Reinhardt, and T. F. Wenisch. Disaggregated memory for
expansion and sharing in blade servers. In Proceedings of
the 36th Annual International Symposium on Computer
Architecture, ISCA ’09, pages 267–278, New York, NY,
USA, 2009. ACM.

[15] K. Lim, Y. Turner, J. R. Santos, A. AuYoung, J. Chang,
P. Ranganathan, and T. F. Wenisch. System-level
implications of disaggregated memory. In Proceedings of the
2012 IEEE 18th International Symposium on
High-Performance Computer Architecture, HPCA ’12,
pages 1–12, Washington, DC, USA, 2012. IEEE Computer
Society.

[16] J. D. McCalpin. Stream: Sustainable memory bandwidth in
high performance computers.
https://www.cs.virginia.edu/stream/, 1995.

[17] ConnectX-4 single/dual-port adapter supporting 100 Gb/s
with VPI. http://www.mellanox.com/page/products dyn?
product family=201&mtag=connectx 4 vpi card.

[18] K. Ousterhout, R. Rasti, S. Ratnasamy, S. Shenker, and
B.-G. Chun. Making sense of performance in data analytics
frameworks. In Proceedings of the 12th USENIX
Conference on Networked Systems Design and
Implementation, NSDI’15, pages 293–307, Berkeley, CA,
USA, 2015. USENIX Association.

[19] Amazon AWS RedShift. http://aws.amazon.com/redshift/.
[20] Apache Tez. https://tez.apache.org/.

[21] W. A. Wulf and S. A. McKee. Hitting the memory wall:
Implications of the obvious. SIGARCH Comput. Archit.
News, 23(1):20–24, Mar. 1995.

[22] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and
I. Stoica. Spark: Cluster computing with working sets. In
Proceedings of the 2Nd USENIX Conference on Hot Topics
in Cloud Computing, HotCloud’10, pages 10–10, Berkeley,
CA, USA, 2010. USENIX Association.

