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Abstract
The network is continuing to advance unabated, with 100-
Gb/s Ethernet already a commercial reality, and now 400-
Gb/s in the standardization process. Within a single rack,
inter-server latency will soon be in the range of 250ns,
trending ever closer towards the fundamental propagation
delay of light in a fiber. In this paper we argue that in this
environment, a major performance bottleneck is DRAM
latency, which has stagnated at 100ns per access. Con-
sequently, data should be kept entirely in the CPU cache
which has an order of magnitude lower latency and RAM
should be considered a slower backing store. We describe
the implications of designing a “speed of light” datacenter
network stack that can keep up with ever increasing link
speeds with the goal of keeping latency as close to the
speed of light propagation time as possible.

1 Introduction

Large-scale operators and cloud providers have archi-
tected highly parallel storage systems, data analytics
frameworks, cluster managers and schedulers, and user-
facing applications. Yet processing an individual request
inevitably still relies on some amount of serial execution,
and as a result subsystem latency has become critical,
in line with Amdahl’s Law. Perhaps more important for
cloud providers is processing as much data as possible
per user request, which likewise requires low latency, re-
ferred to as Gustafson-Barsis’s Law [10]. The need for
low-latency networked applications is rooted both in en-
suring good user experiences, and also in maximizing the
amount of data processed per request.

The performance characteristics of system components
evolve independently. Perhaps a decade ago, the network
throughput of gigabit Ethernet was typically much lower
than what could be supported by multi-core CPUs and
their associated memory (e.g., up to 10 Gb/s). This led
to the evolution of interrupt-driven network stacks (in
the 90s and early 2000s). The end of Moore’s law and
Dennard scaling has meant that CPU speed has largely
flattened, leading to more cores (but not higher per-core
performance). With the introduction of 10- and 40-Gb/s
Ethernet, the network has largely caught up, and is nearing
parity with the performance of the CPU and memory. This
has led to the adoption of user-space network stacks like
DPDK [8] and Netmap [29], which bypass the kernel

and typically rely on dedicated cores to handle packet
processing.

The network is continuing to advance unabated, with
100-Gb/s Ethernet already a commercial reality, and now
400-Gb/s in the standardization process, paired with both
research [28] and commercial [36] demonstrations. At
these speeds, links are typically optical, due to cost and
energy constraints. The result will be a datacenter net-
work that can deliver traffic at the speed of light (in a
fiber) at bandwidths that exceed those of the endhost. To
the endhost, the network will appear to deliver data at
near zero latency and with infinite bandwidth. In the re-
stricted environment of cluster and datacenter networks,
the network community will have finally achieved their
end goal of hitting the fundamental physical limits of
communication performance.

Where does this leave server, OS, and application de-
sign? For servers communicating between racks at typical
distances of O(50m), the one-way latency will be in the
range of 250ns, and for intra-rack communication, the
latency could be an order of magnitude smaller. This one-
way latency represents one “component” in our system
that is fundamentally impossible to optimize or improve,
at any cost. The challenge then is to design a server archi-
tecture, network stack, and application that can meet this
fundamental lower bound set by the network.

We have two options. First, we can continue to design
systems that rely on parallelism to hide (but not reduce)
this latency. Systems today adopt this strategy, since they
are equipped with many-core CPUs, multiple memory
banks consisting of multiple parallel channels, and high-
speed network interfaces. Under this strategy, parallelism
increases throughput but does not decrease the latency of
an individual request. Here a major bottleneck is RAM
latency, which has stagnated at 100ns per access [19].
Because of this bottleneck, we propose a second option:
reducing the latency of an individual request by eschewing
RAM in part or entirely! The idea is to move data out
of RAM and keep it in the CPU cache itself, which has
an order of magnitude lower access latency than RAM.
This both lowers the latency of individual requests and
increases total throughput. Eliminating the “RAM latency
bottleneck” results not only in lower application latency,
but also has implications for fault tolerance, consensus,
lock managers, atomic counters, and RPCs–most of which
operate one or two orders of magnitude below the speed



Length (in m) Latency (in ns)
Most common 20 100
50th-percentile 40 200
90th-percentile 110 550

Maximum length 150 751
DRAM 100

L3 Cache 12

Table 1: Lengths of fiber optic cables in modern datacen-
ters [7] and associated propagation delay compared with
the memory hierarchy.

of light between the millisecond to microsecond regime.
In this paper we argue that keeping datacenter commu-

nication close to the speed of light propagation time ne-
cessitates the need for CacheCloud, a cluster-wide SRAM
manager that treats DRAM as a slower backing store and
SRAM as a first class citizen.

2 Motivation

Improving the latency of networked software is not a
new goal. Indeed, for decades providers have worked to
reduce subsystem latency. In this section, we motivate
why fiber propagation delay is the right metric to use as
a baseline in subsystem performance. We then describe
why the recent developments in hardware, the operating
system, and software stack motivate this new baseline at
this point in time.

2.1 Why propagation delay as a baseline?
Singla et al. [32] outlined the case for why the speed of
light serves as an aspirational latency goal in the wide area.
Indeed in wide-area networks, propagation delay domi-
nates communication latency, and so focusing on match-
ing the end-to-end delivery time to the underlying prop-
agation delay aligns well. But what about clusters and
datacenter environments? We know that for large-scale
providers, microseconds count when targeting improved
latency [4]. How do these expressed goals compare to the
speed of light in a fiber?

Table 1 reproduces some reported measurements of
observed fiber-optic cable lengths in datacenters, using
multimode fiber (the distribution of single mode fiber
is similar). At 100 Gb/s, the maximum supported fiber
lengths are 150m, the average length (and latency) ob-
served was just over 50m (271 us), and the 90th percentile
is a bit over 100m (550 us). The most frequently observed
length was only 20m (100 us) [7]. While each datacenter
will be unique, the takeaway from this published study
is that for many server pairs, one-way latencies of 100-
200 µs are very possible.

Packet Size 100G DRAM 100G L3 400G DRAM 400G L3

64 20 2 79 10

128 10 1 40 5

192 7 1 27 4

256 5 1 20 3

320 4 1 16 2

Table 2: Number of physical cores needed to process pack-
ets at line rates for 100G and 400G links for a single DRAM
access. Compared to a single L3 (SRAM) access, a net-
work application with just 1 DRAM access require a 4–8x
increase in physical core count which translates to a 2–10x
increased server cost based on current Intel Xeon SKUs.

2.2 Why speed of light latency now?

A number of recent advancements make this the right
time to strive for ultra-low latency.

Datacenter networks consist not only of individual
fibers, but rather a topology of switches interconnected
into multi-hop end-to-end links. For this reason, the
end-to-end latency is also a function of the number of
hops (and associated queuing delay) in the topology. For
folded-Clos “Fat-Tree” topologies, the end-to-end hop
count is typically uniform, with perhaps 5 to 9 hops be-
tween servers in disjoint parts of the network [1]. Recent
proposals for Expander graph based topologies have the
potential for greatly reducing the average hop count ob-
served by flows in the network [16, 33, 34]. The end
result will be less inherent latency since traffic will transit
fewer switches. Thus propagation delay will increase as a
key source of end-to-end latency.

The evolution of hardware and network capabilities
shows us that we are reaching the beginning of a new era
that brings computer architecture and network closer than
ever before. As links have gotten faster, the inter packet
gap has shrunk but internal hardware performance such
as DRAM and cache latency has stayed mostly constant.
This is due to the tendency for hardware manufacturers to
prefer scaling out rather than reducing latency [27].

For years, DRAM has been sufficient for our network-
ing needs as the interpacket gap has stayed well above
DRAM latency and at one point with 1G links, above disk
latency. Figure 1, however, paints a different picture for
the future. Only for MTU sized packets at 100G the inter-
packet gap is above DRAM latency, meaning that cache
misses from the L3 cache can be tolerated as memory
reads are faster than packet arrival. This changes when
we look beyond 100G. 400G links represent the cusp of a
new era with network latencies finally exceeding DRAM
latency for all packet sizes, whether minimum-sized (64
bytes) or MTU (1500 bytes or higher).
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Figure 1: Evolution of link speeds and interpacket gaps compared to CPU memory hierarchy latencies. The top region
represents the regime where the network was slower than DRAM. In the middle region, networks are faster then DRAM
but slower than cache. In the darkest region, minimum sized packets exceed L3 cache latency for all network speeds above
100G.

2.3 What are the advantages and barriers?

Stubbornly slow DRAM latency: With 100G link
speeds becoming commodity and 400G on the horizon,
the network and architecture community are at a tipping
point. 100 Gb/s links transmit minimum sized packets at
a rate of one every 5ns while a DRAM access is more than
an order of magnitude higher. Even if we consider receive
side scaling among a generous allocation of 12 physical
cores, the processor would only then have 60ns to process
that packet while DRAM latencies are stuck at 100ns. If
each packet incurs a cache miss (i.e. a full memory ac-
cess), queues in the NIC would fill up and packets would
drop. While RAM typically supports higher-performance
“burst modes”, packet data is not a good fit for the spatial
locality required to take advantage of burst mode RAM.

The result of DRAM-based packet drops is increased
congestion, a higher number of retransmits, low overall
throughput, and a significant hit to application-observed
latency. At 400G this becomes a problem even for MTU
sized packets, as packet rates in that regime will be trans-
mitted at a rate of once every 30ns.

PCI Express latency: While RAM latency is approxi-
mately 100ns, the latency of arbitrating and crossing the
PCI Express bus could be as high as 800ns/round-trip [19].
Both PCIe and DRAM have one common property, each
of them force the CPU to access off-chip data. While
both seem like unavoidable hardware issues that systems
designers have no leverage over we argue that this is not
the case. Considering the NIC as a “peripheral”, no dif-
ferent than a mouse or keyboard, is deeply flawed in mod-

ern datacenters. Indeed, at 100 Gb/s and 400 Gb/s, the
NIC is a major pipe in much the same way that memory
bandwidth is a major pipe into and out of the processor.
Co-packaging the NIC into the processor itself is likely
necessary for realizing the vision of an endhost that can
process network traffic at or near the underlying propa-
gation delay of the channel. While a seemingly drastic
redesign of modern server architectures, the idea of a NIC
integrated with the processor appeared a decade ago as
part of Sun Microsystem’s Niagra 2 processor [21].

DDIO: Network latencies have moved beyond the
DRAM regime into the cache regime. Some techniques
exist to help us navigate this new era. Technologies such
as DDIO place packet data directly inside LLC cache and
bypass DRAM entirely on both writes and reads. This
avoids expensive DMAs and allows network stacks to
operate directly from cache without needing to perform
memory access with each packet transfer. While a good
step forward, DDIO suffers from a number of limitations,
including its limited use of cache (about 10% of the LLC
cache size can be used by DDIO [14]), as well as the
inability to control the placement of data into the LLC
using DDIO. This lack of control poses a major problem
for holistically managing the cache as a critical resource
in supporting ultra-low latency endhosts.

Datacenter Cost: Higher speed networks require a
requisitely larger fraction of cores to spread packet pro-
cessing tasks across. The higher the core count, the larger
the available interpacket gap to tolerate software and hard-
ware inefficiencies. This adds to the TCO of the datacen-
ter as faster links will also require more costs in infrastruc-



ture upgrades in the form of a higher physical core count.
Table 2 shows total core count needed to achieve line rate
if each packet made an access to SRAM versus DRAM at
varying speeds. At 400G, line rate packet processing with
a single DRAM access will take 79 physical cores. Keep-
ing the data in the L3 cache can reduce this down to 19
cores. This 4x increase in core count also accounts for a
1.5-2x increase in cost based on the available selection of
modern Intel Xeon processors [13]. More control over the
L2 and L1 caches can bring this core count down further
as the access latencies here are even lower than the L3
cache. Higher link speeds could then be accommodated
with no higher core counts than we have today.

2.4 How do applications benefit?

Some network applications have footprints or working
sets that fit within the cache. Such applications often
set throughput as the primary performance metric with
the goal of operating at line rate. These applications
include software forwarding and routing [31], firewall
and network intrusion detection [30], and network func-
tion virtualization. Such applications essentially process
packets through a data structure at line rate, and these
data structures can be maintained in cache. Panda et. al.
shows that for a network function performing longest pre-
fix matching (LPM) throughput drops linearly with the
number of main memory accesses per packet [25]. In
other cases, components of a larger distributed system
act as serialization points, such as high-throughput se-
quencers in fault-tolerant distributed systems [3]. In these
cases, the throughput of the entire system depends on the
throughput of the component.

Other network applications will benefit from the sub-
microsecond latencies that CacheCloud can provide. The
core of such applications is some form of messaging or
remote procedure call which are becoming increasingly
common in for datacenter applications[4]. The perfor-
mance of cache and acceleration systems like memcached
also fundamentally depends upon message latency since
in essence they are just transporting data with minimal
computation. Latency of message exchanges is at the
heart of fault-tolerant distributed systems.

For these applications, it is unlikely that all of their
data structures will fit in the cache (e.g., memcached
benefits are tied to the capacity of main memory). In
these cases, CacheCloud can accelerate the “hot” portion
of the workload, whether it is frequently accessed data
in memcached, the most common RPC routines, or the
core message exchanges in distributed system protocols.
In all of these cases applications can benefit greatly from
support for explicitly managing where in the memory
hierarchy their data resides.
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Figure 2: Total L2+L3 cache (SRAM) available in 700 Xeon
processors. Specs from Intel datasheets.

3 Networking General Purpose SRAM:
The Case for CacheCloud

As physical and technilogical constraints bring an end to
CPU and DRAM latency scaling, we propose one solu-
tion to side step these issues: explicitely expose the rest
of the memory hierarchy to the programmer. Like main
memory, SRAM (used in CPU caches) latencies have
also remained constant for years, albeit at two orders of
magnitude lower latency than DRAM. While SRAM has
two major drawbacks, small sizes and limited control, cur-
rent hardware trends may allow for the networking of all
available general purpose server SRAM for completely in-
cache distributed systems. Inspired by RAMCloud [24],
we call this SRAM cluster “CacheCloud”.

The cost per bit for SRAM is two orders of magnitude
more than DRAM [6]. This is an incredibly expensive
premium for a resource that users have no explicit control
over. In spite of this, cache sizes have constantly grown.
Figure 2 shows a survey of 700 Xeon processors since
1997 and their combined L2+L3 cache sizes. Over the last
decade there has been an exponential growth in average
cache size of available processors. While SRAM will not
replace DRAM for applications in general, we argue that
networking all available general purpose server SRAM
opens the doors for ultra low-latency and low variance
packet processing. For example, if all the caches in a 1000
node cluster can be addressed as a single unit, 100MiB
of SRAM turns into 1000GiB of SRAM — something
not possible in a single server due to energy, area, and
technology constraints.

To enable networked SRAMs in today’s datacenters,
general purpose processors must support fine grain soft-
ware management of traditionally black box hardware
policies. This includes control over policies such as cache



replacement, consistency and coherence protocols, and
prefetching. We have seen some progress on this in re-
cently years. There has been an explosion of ISA exten-
sions for Intel [11] and ARM [2] exposing some control
over low level policies. Intel processors include instruc-
tions for memory prefetching (PREFETCHW), optimized
cache flush (CFLUSHOPT), cache partitioning (CAT),
and cache line write-back (CLWB). While ARM provides
instructions such as data cache invalidate by set/way (DC
ISC) and data cache clean by set/way (DC CSW). In
addition there has been recent pushes in the architecture
community for improving determinism in general purpose
memory hierarchies [23]. For both systems designers and
architects this opens the door for new explorations of be-
spoke hardware policies for network based application.
For example, are current hardware prefetchers appropriate
for network applications? Can we predict cache misses
before they happen and reroute packets into locations
where data is resident in cache? Additionally, can we
redesign cache replacement policies from being server
oriented to cluster oriented without complete hardware
specialization?

We believe that this trend of increasing the control of
CPU policies will enable a new class of research focus-
ing on these questions and allow CacheCloud clusters to
become a reality.

4 Challenges and open problems

A number of open problems remain to fully realize the
CacheCloud vision.

Software Challenges: There are two major software
challenges to leverage global cache control: (1) a Dis-
tributed Cache Scheduler (DSC), and (2) a progamming
API. Enabling a distributed SRAM cluster requires nodes
to maintain a global view of the current state of the system
and make decisions based on this state. This itself has
challenges for maintaining consistency across the clus-
ter and ensuring that data is being placed strategically to
avoid going to DRAM. The DSC may be implemented
as a traditional cluster scheduler such as Mesos [12] or
Yarn [35], or functionality can be pushed to network de-
vices. Systems like Eris [20] show that programmable
switches may be one avenue to maintain global state for
consensus while maintaining very high throughput.

The second, and possibly most important challenge, is
programmability. It is an open question about how much
of CacheCloud should be exposed to the application de-
velopers and how much policy control they should have
to take advantage of CacheCloud mechanisms. One ques-
tion is whether applications must be forced to conform to
CacheCloud primitives that explicitly place data in certain
cache lines, or whether the burden should fall on the DSC
to provide high level guarantees such as maintaining line

rate processing for each application on the box.
Hardware Challenges: Beyond software improve-

ments, the hardware challenges for CacheCloud require
collaboration from processor and interconnect vendors.
To this end, the systems and architecture communities
must work together to decide which hardware compo-
nents are most appropriate to expose to enable next gen-
eration high speed networks. FlexNIC is one proposal
that offloads some of the packet processing into the NIC
SRAM and steers packets into cores based on coarse grain
application level information [17] but does not provide
interface over the end-host cache. There has been work on
QoS-aware memory and prefetching systems at the hard-
ware [18, 9] and software level [22, 5] but most require
specialized solutions or focus on using cache instructions
to perform isolation for noisy neighbors. We observe that
in contrast to the architecture community, which is mov-
ing towards specialization with devices such as Google’s
TPU [15], the network community with trends such as
NFVs and programmable switches and NICs are moving
towards flexibility. Closing the performance gap between
these flexible solutions and their specialized counter-parts
(e.g., hardware middleboxes and NFVs) requires hard-
ware flexibility at all levels, including the end-hosts, to
take advantage of programmable network hardware.

The second major hardware challenge is the PCIe bus.
PCIe as a technology is built for batch transfers, not nec-
essarily low latency. Alternative interconnects could help
eliminate the latency overhead of this bus. Another option
is directly co-packaging the NIC with the processor or ex-
ploit near data computing [26] or in-network computing.

5 Conclusion

As network speeds march beyond 400G it presents both
an opportunity and a challenge that the network, OS, and
architecture community must approach together. High
speed links require us to drastically change our view
of the memory hierarchy to sustain line rates and ob-
tain low latency. Ultimately, the unbalanced scaling that
has plagued systems designers must be reconciled with
through hardware, software, and network co-design. To
this end, CacheCloud is one proposal that considers such
a design. Only with all three components working in lock
step will we achieve latencies that truly match the speed
of light.
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