Data Center Performance

George Porter
CSE 124
Feb 11, 2016

*Includes material taken from Barroso et al., 2013, UCSD 222a, and Cedric Lam and Hong Liu (Google)
Part 1: Partitioning work across many servers
Network Service Components
Load Management

• Started with “round-robin” DNS in 1995
 – Map hostname to multiple IP addresses, hand out particular mapping in a round robin fashion to clients

• What is the main limitation of this?
 – A: Does not hide failure or inactive servers
 – B: Can not scale to millions of users
 – C: Exposes structure of underlying service
 – D: A&C
 – E: B&C
Load Management

• Started with “round-robin” DNS in 1995
 – Map hostname to multiple IP addresses, hand out particular mapping in a round robin fashion to clients
 – Does not hide failure or inactive servers
 – Exposes structure of underlying service

• Today, middleboxes can inspect TCP session state or HTTP session state (e.g., request headers)
 – Perform mapping of requests to back end servers based on dynamically changing membership information

• “Load balancing” still an important topic
Service Replication
Service Partitioning
Case Study: Search

• Map keywords to set of documents containing all words
 – Optionally rank the document set in decreasing relevance
 • E.g., PageRank from Google

• Need a web crawler to build *inverted index*
 – Data structure that maps keywords to list of all documents
 that contains that word

• Multi-word search
 – Perform *join* operation across individual inverted indices

• Where to store individual inverted indices?
 – Too much storage to place all on each machine (esp if you
 also need to have portions of the document avail as well)
Case Study: Search

• Vertical partitioning
 – Split inverted index across multiple nodes (each node contains as much of index as possible for a particular keyword)
 – Replicate inverted indices across multiple nodes
 – OK if certain portion of document database not reflected in a particular query result (even expected)

• Horizontal partitioning
 – Each node contains portion of inverted index for \textit{all} keywords (or large fraction)
 – Have to visit every node in system to perform full join
Availability Metrics

• Mean time between failures (MTBF)
• Mean time to repair (MTTR)
• Availability = (MTBF – MTTR)/MTBF
• Example:
 – MTBF = 10 minutes
 – MTTR = 1 minute
 – A = (10 – 1) / 10 = 90% availability
• Can improve availability by increasing MTBF or by reducing MTTR
 – Ideally, systems never fail but much easier to test reduction in MTTR than improvement in MTBF
Harvest and Yield

• \(yield = \frac{\text{queries completed}}{\text{queries offered}} \)
 – In some sense more interesting than availability because it focuses on client perceptions rather than server perceptions
 – If a service fails when no one was accessing it…

• \(harvest = \frac{\text{data available}}{\text{complete data}} \)
 – How much of the database is reflected in each query?

• Should faults affect yield, harvest or both?
DQ Principle

- *Data per query * queries per second \rightarrow constant
- At high levels of utilization, can increase queries per second by reducing the amount of input for each response
- Adding nodes or software optimizations changes the constant
Performance
“Hockey Stick” graph

Response time vs. System load
Graceful Degradation

• Peak to average ratio of load for giant-scale systems varies from 1.6:1 to 6:1
• Single-event bursts can mean 1 to 3 orders of magnitude increase in load
• Power failures and natural disasters are not independent, severely reducing capacity
• Under heavy load can limit capacity (queries/sec) to maintain harvest or sacrifice harvest to improve capacity
Graceful Degradation

• Cost-based admission control
 – Search engine denies expensive query (in terms of D)
 – Rejecting one expensive query may allow multiple cheaper ones to complete
• Priority-based admission control
 – Stock trade requests given different priority relative to, e.g., stock quotes
• Reduced data freshness
 – Reduce required data movement under load by allowing certain data to become out of date (again stock quotes or perhaps book inventory)
Online Evolution and Growth

• Internet services undergo rapid development with the frequent release of new products and features

• Rapid release means that software released in unstable state with known bugs
 – Goal: acceptable MTBF, low MTTR, no cascading failures

• Beneficial to have *staging* area such that both new and old system can coexist on a node simultaneously
 – Otherwise, will have to transfer new software after taking down old software \(\rightarrow\) increased MTTR
 – Also makes it easier to switch back to old version in case of trouble
Part 2: Quantifying performance
In-class activity:
The effect of the “long tail”

Reading: “The Tail at Scale”
by Dean and Barroso
Quantifying performance of a cluster

• Typically we think of performance in terms of the mean or median
 – Fine for a single processor/server
 – Not fine for an ensemble of 100s or 1000s of machines
 – Why?
Memcache

• Popular in-memory cache
• Simple get() and put() interface
• Useful for caching popular or expensive requests

```ruby
function get_foo(foo_id)
    foo = memcached_get("foo:" . foo_id)
    return foo if defined foo

    foo = fetch_foo_from_database(foo_id)
    memcached_set("foo:" . foo_id, foo)
    return foo
end
```
Memcached data flow

Client -> M/C Server i (hit) -> Database

Client -> M/C Server i (miss)
 get(key')
 None
 select * from table ...
 [query results]
 set(key', [results])

Client -> M/C Server i -> Database
Tail Tolerance: Partition/Aggregate

• Consider distributed memcached cluster
 – Single client issues request to S memcached servers
 • Waits until all S are returned
 – Service time of a memcached server is normal w/ \(\mu = 90 \text{us}, \sigma = 7 \text{us} \)
 • Roughly based on measurements from my former student
• A service has a response time drawn from a Gaussian (Normal) random variable \(N(\mu, \sigma) \)
 – \(\mu = 90, \sigma^2 = 50\text{us}, \text{ so } \sigma \approx 7 \)
 – In python: `numpy.random.normal(90,7,num)`

• **Scenario 1:**
 – \(c \) clients each issue one independent request to the service
 \(c = \{1,10,100,1000\} \)
 • Calculate the average service response time across all \(c \) clients
 – Hint: define \(\text{avg(list)} \)

• **Scenario 2:**
 – One client issues \(p \) requests to the service, and waits till all finish
 \(p = \{1,10,100,1000\} \)
 • Calculate the service response time seen by the client
 – Hint: define \(\text{max(list)} \)
Part 3: Memcache case study
Matlab simulation

Maximum Expected Latency (in us)

Simulated Number of Servers

99% N(90,50) distribution
50% N(90,50) distribution
Comparing Matlab to the real world

- **Empirically observed latency**
 - 99% latency single server
 - 50% latency single server

- **Maximum Expected Latency**
 - 99% N(90,50) distribution
 - 50% N(90,50) distribution

Graphs showing latency (in us) vs. number of servers for simulations and observed data.
Tail tolerance: Dependent/Sequential pattern

• Consider iterative lookups in a service to build a web page
 – E.g., Facebook

• Issue request, get response, based on response, issue new request, etc…

• How many iterations can we issue within a deadline D?
 – For reference, Facebook limits # of RPCs to ~100
Dependent/Sequential pattern

• Service time of a web service is a function of the load (as is the variance)

• We carried out a queuing theory analysis to calculate the waiting time of the service as a function of the service time and variance
Dependent/Sequential pattern Simulation

#Requests within SLA vs Server load in requests/sec

- 50ms SLA stddev=2us
- 50ms SLA stddev=1us
Dependent/Sequential pattern
Matlab vs. real world

![Graph showing server load vs. #requests within SLA]

- Server load in requests/sec x(1000)
- #Requests within SLA
- 50ms SLA stddev=2us
- 50ms SLA stddev=1us
- SLA 50ms Baseline
- SLA 50 ms Chronos