Data Center Fundamentals: The Datacenter as a Computer

George Porter
CSE 124
Feb 9, 2016

*Includes material taken from Barroso et al., 2013, and UCSD 222a.
Much in our life is now on the web.
The web is driven by data

Data + \textit{amazon.com} = \text{Product Recommendations}

Data + \textit{Spotify} = \text{Custom Stations}

Data + \textit{Google} = \text{Personalized Search}
Data-driven, per-user customization

Data + amazon.com = Product Recommendations

App 1

App 2

App 3

App ...

App ...
Cloud Computing

- **Elastic resources**
 - Expand and contract resources
 - Pay-per-use
 - Infrastructure on demand

- **Multi-tenancy**
 - Multiple independent users
 - Security and resource isolation
 - Amortize the cost of the (shared) infrastructure

- **Flexible service management**
 - Resiliency: isolate failure of servers and storage
 - Workload movement: move work to other locations
Cloud Service Models

- **Software as a Service (Saas)**
 - Provider licenses applications to users as a service
 - e.g., customer relationship management, email, …
 - Avoid costs of installation, maintenance, patches, …

- **Platform as a Service (Paas)**
 - Provider offers software platform for building applications
 - e.g., Google’s App-Engine
 - Avoid worrying about scalability of platform

- **Infrastructure as a Service (Iaas)**
 - Provider offers raw computing, storage, and network
 - e.g., Amazon’s Elastic Computing Cloud (EC2)
 - Avoid buying servers and estimating resource needs
Data centers with 100,000+ servers

- Microsoft
- Google
- Facebook
These things are really big

Google
100 billion searches per month

Facebook
1.15 billion users

Amazon.com
120+ million users
The need for rapid growth
The need for rapid growth
The need for rapid growth

Web Created

Google’s 1st cluster (15 years)
The need for rapid growth

Web Created

Google’s 1st cluster (15 years)

facebook (10 years)
Building blocks of modern data centers

Network switch

Rack

Cluster Switch

Server Racks
Top-of-Rack Architecture

• Rack of servers
 – Commodity servers
 – And top-of-rack switch

• Modular design
 – Preconfigured racks
 – Power, network, and storage cabling

• Aggregate to the next level
Racks of servers (Google)
Facebook
Google
Extreme Modularity

• Containers

• Many containers
Not just a collection of servers

• A data center isn’t just a “small internet”
• Why?
 – Administered as a single domain
 – Trusted administrators
 – No need to be compatible with the “outside world”
 • Except for traffic to/from users
 – No need for international standards bodies
 • Though why do standards help?
“Front-End” datacenter traffic

Data center

Wide-area Internet

Internet Users
“Front-End” datacenter traffic

- Data sizes driven by the content that users actually consume
 - Growth largely due to higher bitrate content (IP TV/movies, iPhone Facetime)
- Mobile Internet source of new users
- Often constrained by the “last mile”
Multi-Tier Applications

• Applications consist of tasks
 – Many separate components
 – Running on different machines

• Commodity computers
 – Many general-purpose computers
 – Not one big mainframe
 – Easier scaling
“Back-end” datacenter traffic

• Back-end analytics:
 – Connections between information
 – “Users who bought X also bought Y”

• Key differentiator determining success
 – Facebook vs Friendster
 – Amazon vs Buy.com

• Large-scale “join” computations spanning thousands of nodes
 – Need bandwidth as well as all-to-all connectivity

• Sorting / Searching
• Collaborative Filtering
• Map/Reduce
• Distributed Key/Value stores
• Video storage, post-production, and transmission
Data-intensive application requirements

All-to-all

- Performance gated on latency of shuffle phases
 - Need high “bisection” bandwidth

Gather/Scatter

- Performance gated on speed of slowest RPC/parallel operation
 - Need low variance
Increasingly stringent network requirements

- Low one-way latency (10s of microseconds)
- 10/40 Gbps at TOR (and soon endhosts)
- Congestion-free operation/low queuing
- Dynamic traffic...
- ...and an increasingly dynamic topology
From networks to backplanes

• Before:
 – Network connects servers to users (FTP, telnet, ...)
 – Massive computing = tightly coupled supercomputer
 • Proprietary interconnects
 • Working sets of data

• Today:
 – Servers connected to each other
 – Data-intensive, web-scale
 – Massive computing = Datacenters
 • Commodity
 • Datacenter network becomes the computing backplane
Data Center Challenges

• Traffic load balancing
• Support for VM migration
• Achieving bisection bandwidth
• Power savings / Cooling
• Network management (provisioning)
• Security (dealing with multiple tenants)
Host Virtualization

- Multiple virtual machines on one physical machine
- Applications run unmodified as on real machine
- VM can migrate from one computer to another
VMM Virtual Switches
Data Center Storage Example

Photos @ Facebook

<table>
<thead>
<tr>
<th></th>
<th>April 2009</th>
<th>Current</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>15 billion photos</td>
<td>65 billion photos</td>
</tr>
<tr>
<td></td>
<td>60 billion images</td>
<td>260 billion images</td>
</tr>
<tr>
<td></td>
<td>1.5 petabytes</td>
<td>20 petabytes</td>
</tr>
<tr>
<td>Upload Rate</td>
<td>220 million photos / week</td>
<td>1 billion photos / week</td>
</tr>
<tr>
<td></td>
<td>25 terabytes</td>
<td>60 terabytes</td>
</tr>
<tr>
<td>Serving Rate</td>
<td>550,000 images / sec</td>
<td>1 million images / sec</td>
</tr>
</tbody>
</table>

Finding a Needle in Haystack: Facebook's Photo Storage, OSDI’10
The storage hierarchy

One Server
- DRAM: 16 GB, 100 ns, 20 GB/s
- Disk: 2 TB, 10 ms, 200 MB/s
- Flash: 128 GB, 100 us, 1 GB/s

Local Rack (80 servers)
- DRAM: 1 TB, 300 us, 100 MB/s
- Disk: 160 TB, 11 ms, 100 MB/s
- Flash: 20 TB, 400 us, 100 MB/s

Cluster (30 racks)
- DRAM: 30 TB, 500 us, 10 MB/s
- Disk: 4.80 PB, 12 ms, 10 MB/s
- Flash: 600 TB, 600 us, 10 MB/s
Latency, bandwidth, and capacity