
CSE	124	
January	14,	2016	

Winter	2016,	UCSD	
Prof.	George	Porter	



Announcements	

•  HW	2	due	this	aDernoon	
•  Project	1	has	been	posted	
•  Textbook	is	in	the	bookstore	

•  Today’s	plan:	
–  Finish	up	API	on	DNS	
–  Briefly	discuss	framing,	encoding,	and	protocol	design	
–  Let’s	design	a	protocol!	
–  Then	let’s	implement	that	protocol	



Part 1: an API to DNS 



Mapping	names	to	addresses	



Linked	list	of	‘addrinfo’	structs	

•  Q:	Why	a	linked	list?	
•  Q:	Which	of	the	mulYple	results	should	you	
use?	



Hints	

•  Can	provide	hints	as	to	what	you’re	looking	
for:	
– Server	socket	(hints.ai_flags	=	AI_PASSIVE)	
– Client	socket	(otherwise)	
–  IPv4	vs.	IPv6	
– TCP	vs.	UDP	



Demo:	Chapter	3	



Part	2:	Encoding	and	framing	

Material	in	Chapter	5	
Not	going	to	cover	in	class	



Encoding	(in	one	slide)	

•  C’s	‘int’,	‘long’,	…	not	well	defined	
– 32	bits?	64	bits?	

•  Use	‘standard’	int	types	instead:	
–  int32_t	
–  int8_t	
– uint32_T	
– uint64_t	
– …	



Chapter	5	stuff	we’re	not	
covering	in	class	

•  Byte	ordering	
•  Signedness,	sign	extension,	
•  Encoding	integers	by	hand	
•  C	struct	layout,	padding	



Buffered	streams	

•  FILE	streams	are	compaYble	with	TCP	sockets	
– FILE	*	fdopen(int	socket,	const	char	*	mode)	
–  fwrite()	
–  fread()	
– fflush()	
–  fclose()	

•  Benefits:	
– They	are	buffered	(minimize	context	switches)	
– They	read/write	fixed-length	objects	



Stream	examples	
FILE	*	out	=	fdopen(sock,	“w”)	
FILE	*	in	=	fdopen(sock2,	“r”)	
	
uint8_t	val8	=	3;	
If	(fwrite(&val8,	sizeof(val8),	1,	out)	!=	1)	…	
	
uint64_t	val64;	
If	(fread(&val64,	sizeof(val64),	1,	in)	!=	1)…	
val64	=	ntohl(val64);	



Part	3:	Protocol	design	



Protocols	
•  Structured	ways	to	communicate	informaYon	
•  An	art	and	a	science	

•  Framing	
–  How	do	you	send	and	receive	messages?	
– More	than	just	‘date’	or	‘Yme’	

•  Encoding	
–  How	do	you	interpret	those	messages?	
–  Text?	Integers?	FloaYng	point	numbers?	Video	frames?	
Photos?	Facebook	profiles?	



Framing	

•  Ensuring	that	you	send/receive	an	enYre	
(variable-length)	message	
– Delimiter-based	
– Explicit	length	



Encoding/parsing	

•  How	to	interpret	a	message?	
•  Text	
•  Binary	



Key	design	principle	

•  Separate	out	framing	from	parsing	
– Via	layering	

•  Layer	0:	send/receive	raw	bytes	
•  Layer	1:	send/receive	messages	
•  Layer	2:	parse/encode	data	structures	into	messages	



In-class	exercise	prep	

•  Break	into	groups	of	about	5	students	
– Ensure	one	of	you	has	a	laptop	

•  Download	the	code	linked	from	today’s	entry	
in	the	syllabus	

•  Make	sure	it	compiles	on	your	server	and/or	
on	the	seed-x60-yyy	server	
– This	is	your	starYng	code	



In-class	exercise	part	1	
•  Design	a	protocol	to	keep	track	of	players’	scores	in	a	
video	game.		Each	player	has:	
–  A	username	
–  An	ID	between	0	and	20,000,000	
–  Their	score	
–  A	256x256	pixel	avatar	image	

•  Your	protocol	should	be	able	to	set	or	get	player	
informaYon	
–  Implicitly	create	the	player	if	they	don’t	exist	

•  Your	group	will	be	assigned	a	‘text’	or	‘binary’	
representaYon	to	develop.	



In-class	exercise	part	2	

•  Code	up	the	implementaYon	
– Either	text	or	binary,	as	assigned	


