Data Center Fundamentals:
The Datacenter as a Computer

George Porter
CSE 124
February 3, 2015

*Includes material taken from Barroso et al., 2013, and UCSD 222a.
Data Center Costs

James Hamilton published basic 2008 breakdown

- Servers: 45%
 - CPU, memory, disk
- Infrastructure: 25%
 - UPS, cooling, power distribution
- Power draw: 15%
 - Electrical utility costs
- Network: 15%
 - Switches, links, transit
Data center power usage

- CPUs: 42.0%
- DRAM: 15.4%
- Disks: 14.3%
- Networking: 11.7%
- Misc.: 7.7%
- Power Overhead: 4.9%
- Cooling Overhead: 4.0%
Data center power efficiency

■ What does power efficiency mean?
■ How could you measure power efficiency?
 • For your own home
 • For a single computer
 • For a data center
■ Can you directly compare
 • Facebook and Google?
 • Netflix.com and Hulu.com?
Quantifying energy-efficiency: PUE

- PUE = Power Usage Effectiveness
- Simply compares
 - Power used for computing
 - Total power used

\[
PUE = \frac{\text{(Facility Power)}}{\text{(Computing Equipment power)}}
\]

- Historically cooling was a huge source of power
 - E.g., 1 watt of computing meant 1 Watt of cooling!
Google’s “Chiller-less” Data Center

- Belgium
- Most of the year it is cool enough to not need cooling
- What about on hot days?
 - Shed load to other data centers!
What about “power saving” features on modern computers?
Cluster Computing and Map/Reduce

George Porter
CSE 124
February 5, 2015
Credits

- Some material taken in part from the Yahoo Hadoop Tutorial
 - (Used with permission via a Creative Commons Attribution 3.0 Unported License)
Announcements

- Read the Dean and Ghemawat paper linked off the web site to learn about today’s topic

- Midterm 1 is Tuesday
 - In class
 - Closed book; you may bring a study sheet (front and back), and will turn that sheet in with your exam
 - Will cover material up to Jan 27
 No data center material, no Brewer, no MapReduce
Datacenter-scale Internet Applications
An explosion of data

- New types of applications are hosted online
- Key feature is large data sizes
 - Application-specific: Maps, searches, posts, messages, restaurant reviews
 - Networks: friends list, contacts list, p2p apps
 - Web analytics: clickstream (ads), logs, web crawl data, trace data, ...

- Processing needs
 - On-line: searches, IMs, ad-insertion
 - Off-line/batch: compute friends network, identify slow machines, recommend movies/books, understand how users traverse your website
Size of “data-intensive” has grown
Size of “data-intensive” has grown

100MB 1 TB 100 TB

1,000,000x increase
Map/Reduce motivation

- Prior experience:
 - Lots of “one off” programs to process data
 - Each one handles data movement, machine failure, network bandwidth management, ...
 - Scheduling, coordinating across the cluster really hard
 - 10s of thousands of these programs!

- Idea:
 - Can we identify the common data operations and provide those as a central service?
 - Solve data movement, fault tolerance, etc. once, not each time
Functional Programming Example

- LISP, Haskell, ...
- (map \(f \) list): apply \(f \) to each element of ‘list’
 - (map square [1 2 3 4]) \(\rightarrow \) (1 4 9 16)
- (reduce \(g \) list): apply \(g \) pairwise with elements of ‘list’
 - (reduce + [1 4 9 16]) \(\rightarrow \) 30
- No side effects
- Order of execution doesn’t matter
- Question:
 - How would we parallelize map?
 - How would we parallelize reduce?
map() examples

map()
- “+1”
 - $(2, 4, 5, 8) \rightarrow (3, 5, 6, 9)$

iseven()
- $(2, 4, 5, 8) \rightarrow (true, true, false, true)$

tokenize()
- (“The quick brown fox”) \rightarrow (“The”, “quick”, “brown”, “fox”)

![Diagram of map function](image-url)
reduce() Examples

reduce()

- “+”
 - (2, 4, 5, 8) → 19

- countTrue()
 - (true, true, false, true) → 3

- max()
 - (2, 4, 5, 8) → 8

- min()
 - (2, 4, 5, 8) → 2
MapReduce Programming Model

Input: Set<key-value pairs>

1. Apply \textit{map()} to each pair
2. Group by key; sort each group
3. Apply \textit{reduce()} to each sorted group

Map tasks \hspace{1cm} Reduce tasks
Map/reduce

- Each color represents a separate key.
- All values with same key processed by the same reduce function
Map/Reduce example: wordcount

- $s = \text{“UCSD Computer Science is a top Computer Science program”}

- wordcount(s) desired result:
 - UCSD: 1
 - Computer: 2
 - Science: 2
 - is: 1
 - a: 1
 - top: 1
 - program: 1
Map/Reduce example: wordcount map

- $s = \text{“UCSD Computer Science is a top Computer Science program”}$
- map(s, const(1)):
- Note repeated values
 - Why?
Map/Reduce example: wordcount shuffle/sort

- Hadoop runtime will gather together key-value pairs with the same key and append the values into a single list:

Map/Reduce example: wordcount reduce

- Reduce function (i.e., +) applied to each key (and value list)
- output:
 - UCSD: 1
 - Computer: 2
 - Science: 2
 - is: 1
 - a: 1
 - top: 1
 - program: 1
Open-source software project

- Implements Map/Reduce and the Google File System
- Originally led by Yahoo
- Where did the name ‘Hadoop’ come from?

Based on two Google papers:

What is Hadoop?

- ...a programming model
 - Way of specifying data processing operations
 - Modeled after functional languages like Haskell or LISP
- ...a distributed system implementing that model
 - Software running in the data center
 - Responsible for executing your program
 - Despite underlying failures
 - Handles jobs from many users
Data center realities

- Computing
 - 2-CPU, 10s of GB of memory, 4 to 8 TB drives

- Networking
 - 2 or 3 level hierarchy
 - 1 or 10 Gb/s from server to top-of-rack switch

- Keep the server cost low

- Reduce the movement of data
 - Move computation to the data
 - (Cross-data center bandwidth can be quite limited)

- Failures are the default case
 - They’re really common!
Execution model

- Distribute processing of data across 100-1000s of machines
- Reuse the infrastructure by providing different implementations of \texttt{map()} and \texttt{reduce()}
- Data oriented—push computation near the data
- Aligned with the realities of data centers
- \textit{Easy to parallelize}
Loading data into HDFS

Large amount of input data...

Data loading step

Node 1
Slice of input

Node 2
Slice of input

Node 3
Slice of input
Hadoop Architecture

- **HDFS**
 - NameNode holds metadata
 - Files broken up and spread across DataNodes

- **Map/Reduce**
 - JobTracker schedules and manages jobs
 - TaskTracker executes individual map() and reduce() tasks
Responsibility for metadata and data

NameNode:
Stores metadata only

METADATA:
/user/aaron/foo → 1, 2, 4
/user/aaron/bar → 3, 5

DataNodes: Store blocks from files
Map/Reduce runtime

Pre-loaded local input data

Intermediate data from mappers

Values exchanged by shuffle process

Reducing process generates outputs

Outputs stored locally

Node 1

Mapping process

Node 2

Mapping process

Node 3

Mapping process

Node 1

Reducing process

Node 2

Reducing process

Node 3

Reducing process