CSE 124: NETWORKING, CLOUD COMPUTING, AND COURSE OVERVIEW

George Porter
Sept 29, 2017
ATTRIBUTION

• These slides are released under an Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0) Creative Commons license
• These slides incorporate material from:
 • Michael Freedman and Kyle Jamieson, Princeton University
Outline

1. Networking and cloud computing
2. Course overview
3. Open Q&A
CSE 124: NETWORKED SERVICES

- Add networking support to software
 - Between two computers
 - Between computer and datacenter (“The Cloud”)

- Develop software that is:
 - Scalable (handles 100s of M to 1+ billion users)
 - Fault-tolerant (survives failures)
 - Evolvable (how to support different versions?)
 - Secure
OUR LIVES ARE (LARGELY) ONLINE!
NETWORKED SERVICES DRIVEN BY DATA

Data + = Product Recommendations

Data + = Custom Stations

Data + = Personalized Search
DATA-DRIVEN, PER-USER CUSTOMIZATION

Data + = Product

Recommendations

App 1

App 2

App 3
DATA CENTERS: THE HOME OF ALL THIS COMPUTING AND STORAGE

Microsoft

Google

Facebook
Google 2012
MASSIVE NETWORKED INFRASTRUCTURE

- **To build:**
 - Google spends about $3B per year
 - Microsoft spent $15B in total

- **To operate:**
 - 1-2% of global energy consumption
 - 91 billion kWh (34 500-MW coal-fired power plants)

- **By 2020:**
 - 140 billion kWh (50 power plants)
 - $13 billion in electricity bills
 - 100 metric tons of carbon pollution per year

1. LBNL, 2013
2. NRDC report
THE NETWORK HAS SEEN RAPID GROWTH
THE NETWORK HAS SEEN RAPID GROWTH
THE NETWORK HAS SEEN RAPID GROWTH

1989
Web Created

1993

1997

2001

2005

2009

2013

Google’s 1st cluster (15 years)
THE NETWORK HAS SEEN RAPID GROWTH

1989 - Web Created
1993
1997
2001
2005
2009
2013

Google’s 1st cluster (15 years)

facebook (10 years)
THE IMPORTANCE OF SCALE

• Network primitives are designed to scale

• Techniques we learn are directly applicable to global-scale services like Google, Facebook, ...

• Your projects will be tested in small scale
 • Yet could scale immensely with minimal to no modifications
CSE 124 VS. 123

• **123: Networking**
 • Theory of how the network works
 • Routing protocols, congestion control theory, switching and forwarding
 • “Up to layer 4”

• **124: Networked services**
 • How to program networked software
 • Socket programming, RPC, DNS, protocol design and implementation, consensus and consistency, security, TLS, ...
WHY FOCUS ON CORRECTNESS?

MOVE FAST AND BREAK THINGS
SELF-DRIVING CARS
SMART CITIES AND SMART GRIDS

Smart, cleanly-powered grid
Interconnected grid with: 1. Distributed, regional, and central generation; 2. Hybrids (multiple means) of power generation at each scale; 3. Smart sensors in buildings for efficient use; 4. Smart technologies to designate critical areas during power losses; 5. New generation batteries and other storage technologies.
FACEBOOK MORE RECENTLY

MOVE FAST WITH STABLE INFRA
THE CHALLENGE OF NETWORKING

- Undergraduate program includes:
 - Algorithms
 - Programming languages
 - Architecture
 - Data structures
 - Etc...
- How does the network change each of these areas?
Outline

1. Networking and cloud computing
2. Course overview
3. Open Q&A
RESOURCES

• Course web page
 • Linked off of www.cs.ucsd.edu/~gmporter
 • Syllabus, schedule, and blog/uploads

• Books

• TA discussion section

• Class meetings

• Each other!
CLASS MEETINGS (M/W/F 10-10:50AM)

- Overview of material, work through examples/demos, small-group activities
- To help you do what you need to do for your projects/homeworks
- **Be involved**--don’t expect 45 minute speeches!
 - Attendance is not taken
 - Engagement:
 - Being unengaged saps energy from your peers and me
BOOKS

Required

TCP/IP SOCKETS in C

A PRACTICAL GUIDE FOR PROGRAMMERS
SECOND EDITION
Michael Donahoo
Kenneth Calvert

Required

The Datacenter as a Computer
An Introduction to the Design of Warehouse-Scale Machines
SECOND EDITION
Luiz André Barroso
Jimmy Clidarás
Urs Hölzle

SYNTHESIS LECTURES ON COMPUTER ARCHITECTURE
Mark D. Hill, Series Editor

Optional

DISTRIBUTED SYSTEMS
Principles and Paradigms
SECOND EDITION
Andrew S. Tanenbaum
Maarten Van Steen

(free PDF online)
TEACHING ASSISTANTS

• Ojas Gupta
• Akash Agrawal
• Rob McGuinness
• Discussion: Tuesday 7-8pm, LEDDN AUD
• Small(er) group meeting to work through examples, ask questions, seek out help on the projects/homeworks, etc.
WEEKLY LECTURES

• M/W/F 10-11am

• Electronic device policy: None allowed in first few rows (ok in back)

Devices permitted
(But no TV, movies, video, or games!)

No devices in first few rows

Picture courtesy http://tinyurl.com/znkuezc
ASSESSMENT

• Six homeworks (25%, lowest dropped)
• Projects
 • Build a webserver (25%)
 • Build a Dropbox-like cloud storage app (30%)
• Final exam (20%)
• Deploy your code on Amazon AWS to datacenters on five continents

• Mumbai, India; Dublin Ireland; Sao Paulo Brazil; Seoul, Korea, San Diego, Calif.
COLLABORATION POLICY

• Homeworks to be completed individually
• Projects can be done in groups of 1 or 2
• GitHub:
 • For all assignments, must use private GitHub repos that we will provide to you
 • Do not post code online, on the web, in a public repo, on discussion forums, etc.
• Be aware of Googling for answers
• Isn’t that what “real” programmers do?
• Will be available if you want to discuss topics from the course with fellow students

• Can ask questions about projects and homeworks, but...

• We may choose to answer questions by updating the assignment specification on the web site to prevent the answers from being buried, and to prevent “notification overload”
Q&A

For Monday:
• Reading due: Donahoo and Calvert, Chapters 1 and 5
QUESTIONS? COMMENTS?

For Monday:
- Read Donahoo and Calvert, Chapter 5
- Homework 1 has been posted (due Oct 9, 5pm)