Proof of Large-cube Theorems for Multiverse PL

S. Gill Williamson (UCSD-CSE)

We need a preliminary definition:

Definition (order-type equivalence) Let \(N \) be the nonnegative integers and let \(k>0 \) be a fixed integer. Two vectors \(x=(x_1,x_2,...,x_k) \) and \(y=(y_1,y_2,...,y_k) \) in \(N^k \) are order-type equivalent if the set \(\{(i,j)\mid i\leq j\}\) equals \(\{(i,j)\mid i\leq j\} \) and \(\{(i,j)\mid i\leq j\} \) equals \(\{(i,j)\mid i\leq j\} \).

We also need a version of Ramsey’s Theorem related to order-type equivalence (see Graham, R. L., Rothschild, B. L., and Spencer, J. H. Ramsey Theory, 2nd edition, John Wiley, New York, 1990, page 23).

Ramsey’s Theorem (version) If \(f \) is a function on \(N \) such that \(\text{Image}(f)=\{f(z)\mid z \text{ an element of } N\} \) is finite then there is an infinite set \(H \subseteq N \) such that \(f \) is constant on the order-type equivalence classes of \(H \).

Lemma (Multiverse PL) Let \(G=(N^2,\Theta) \) be any directed graph on the lattice \(N^2 \). There is an infinite subset \(H=\{h_0,h_1,h_2,...\} \) of \(N \) such that for \(L=H \cap H \) the labeling function \(f_L \) has at most one significant label on \(L \). In fact, the set \(\{f_L(z)\mid z \in L, f_L(z)<\min(z)\} \subseteq \{h_0\} \).

Proof: We define a function \(g \) on \(N^2 \times N^2 \) (which we identify with \(N \)). For each \((x,y) \) in \(N^2 \times N^2 \), define \(g(x,y)=0 \) if \((x,y) \) is not an edge of \(G \) and \(g(x,y)=1 \) otherwise. By Ramsey’s theorem, there is an infinite subset \(H \) of \(N \) where \(g \) is constant on order-type equivalence classes of \(H \) (which we identify with \(H \times H \)). Consider the infinite subset \(L=H \cap H \) of \(N \). We are going to show that \(G \) has at most one significant label on \(L \). Let \(z \) be a vertex of \(G \) with significant label \(f_L(z) \). Let \(z=x_1,x_2,...,x_t \) be a path in \(G \) from \(z \) to a vertex \(x_t \) with \(\min(x_t)=f_L(z) \). Assume that this path is minimal in the sense that \(\min(x_j)>f_L(z) \) for \(1\leq j\leq t \). Note that \(g(z,x_1,x_2,...,x_t)=1 \) because \((x_0, x_1, x_2,...,x_t) \) is an edge of \(G \) (and hence an edge of \(H \)).

Replace any coordinate of \(x_t \) that equals \(\min(x_t) \) by \(h_0=\min(H) \) (the smallest integer in the set \(H \)) and denote the resulting vertex of \(G \) by \(w \). Note that \((x_0, x_1, x_2,...,x_t) \) and \((x_0, x_1, w) \) are order-type equivalent in \(N \) and thus \(g(x_0, x_1, w)=1 \). Thus, \((x_0, x_1, w) \) is an edge of \(G \). Hence, \(z=x_1,x_2,...,w \) is a path in \(G \) from \(z \) to a vertex \(w \) with \(\min(w)=h_0 \). By the definition of \(f_L(z) \), we must have \(f_L(z)=h_0 \) and thus \(h_0 \) is the only possible significant label for a vertex in \(G \). We have shown that \(G \) has at most one significant label. In fact, \(\{f_L(z)\mid z \in L, f_L(z)<\min(z)\} \subseteq \{h_0\} \).

Theorem (Multiverse PL) Let \(G=(N^2,\Theta) \) be any directed graph on the lattice \(N^2 \). Let \(p>0 \) be any integer. There are finite subsets \(E \) and \(F \) such that \(E=F \subseteq N, |E|=p \), and for \(D=F \times F \) and \(S=E=F \times E \), \(f_D \) has at most one significant label on \(S \). In fact, \(\{f_D(z)\mid z \in S, f_D(z)<\min(z)\} \subseteq \{\min(E)\} \).

Proof: There is an infinite subset \(H=\{h_0,h_1,h_2,...\} \) of \(N \) such that for \(L=H \cap H \), \(\{f_D(z)\mid z \in L, f_D(z)<\min(z)\} \subseteq \{h_0\} \). This assertion follows from the previous lemma. Let \(E=\{h_0,h_1,h_2,...,h_p\} \). Define \(S=E=F \). The infinite graph \(G \) has at most one significant label on \(S \), but we want to find a finite set \(F \), \(E=F \subseteq H \), such that \(G_D \), where \(D=F \times F \), has at most one significant label on \(S \). For each \(z \) in \(S \), let \(z=x(z),x_2(z),...,x_t(z) \) be a path in \(G \) from \(z \) to a vertex \(x(z) \) with \(\min(x(z))=f(z) \). For vertices \(z \) with \(f(z)=\min(z) \), this path consists of a single vertex, \(z \) itself. If \(f(z) \) is significant, so \(h_0=f(z)<\min(z) \), this path may have arbitrary but finite length and involve vertices in \(L \) but not in \(S \). Since \(S \) is finite, we can choose a set \(F \), \(E=F \subseteq H \), such that \(D=F \times F \) contains the vertices of all such paths. For this choice of \(F \), \(f_D \) has at most one significant label on \(S \). In fact, \(\{f_D(z)\mid z \in S, f_D(z)<\min(z)\} \subseteq \{h_0\} \subseteq \{\min(E)\} \).

NOTE: In the examples TL and SL, we shall assume the graph \(G \) satisfies the condition that if \((x,y) \) is an edge of \(G \) then \(\max(x) < \min(x) \). With this “downward” condition on edges of \(G \), we can take \(D=S \) in the above theorem. In fact, we could take \(D=S \) if we assumed \(\max(y) \leq \max(x) \).

HIGHER DIMENSIONS: The above results and proofs extend in a straightforward way to graphs \(G \) on \(N^n \).