Multiple Choice Questions for Review

In each case there is one correct answer (given at the end of the problem set). Try to work the problem first without looking at the answer. Understand both why the correct answer is correct and why the other answers are wrong.

1. Which of the following statements is **FALSE**?
 (a) $2 \in A \cup B$ implies that if $2 \notin A$ then $2 \in B$.
 (b) $\{2, 3\} \subseteq A$ implies that $2 \in A$ and $3 \in A$.
 (c) $A \cap B \supseteq \{2, 3\}$ implies that $\{2, 3\} \subseteq A$ and $\{2, 3\} \subseteq B$.
 (d) $A - B \supseteq \{3\}$ and $\{2\} \subseteq B$ implies that $\{2, 3\} \subseteq A \cup B$.
 (e) $\{2\} \in A$ and $\{3\} \in A$ implies that $\{2, 3\} \subseteq A$.

2. Let $A = \{0, 1\} \times \{0, 1\}$ and $B = \{a, b, c\}$. Suppose A is listed in lexicographic order based on $0 < 1$ and B is in alphabetic order. If $A \times B \times A$ is listed in lexicographic order, then the next element after $((1, 0), c, (1, 1))$ is
 (a) $((1, 0), a, (0, 0))$
 (b) $((1, 1), c, (0, 0))$
 (c) $((1, 1), a, (0, 0))$
 (d) $((1, 1), a, (1, 1))$
 (e) $((1, 1), b, (1, 1))$

3. Which of the following statements is **TRUE**?
 (a) For all sets A, B, and C, $A - (B - C) = (A - B) - C$.
 (b) For all sets A, B, and C, $(A - B) \cap (C - B) = (A \cap C) - B$.
 (c) For all sets A, B, and C, $(A - B) \cap (C - B) = A - (B \cup C)$.
 (d) For all sets A, B, and C, if $A \cap C = B \cap C$ then $A = B$.
 (e) For all sets A, B, and C, if $A \cup C = B \cup C$ then $A = B$.

4. Which of the following statements is **FALSE**?
 (a) $C - (B \cup A) = (C - B) - A$
 (b) $A - (C \cup B) = (A - B) - C$
 (c) $B - (A \cup C) = (B - C) - A$
 (d) $A - (B \cup C) = (B - C) - A$
 (e) $A - (B \cup C) = (A - C) - B$

5. Consider the true theorem, “For all sets A and B, if $A \subseteq B$ then $A \cap B^c = \emptyset$.” Which of the following statements is **NOT** equivalent to this statement:
 (a) For all sets A^c and B, if $A \subseteq B$ then $A^c \cap B^c = \emptyset$.
 (b) For all sets A and B, if $A^c \subseteq B$ then $A^c \cap B^c = \emptyset$.

SF-29
Sets and Functions

(c) For all sets A^c and B^c, if $A \subseteq B^c$ then $A \cap B = \emptyset$.
(d) For all sets A^c and B^c, if $A^c \subseteq B^c$ then $A^c \cap B = \emptyset$.
(e) For all sets A and B, if $A^c \supseteq B$ then $A \cap B = \emptyset$.

6. The power set $\mathcal{P}((A \times B) \cup (B \times A))$ has the same number of elements as the power set $\mathcal{P}((A \times B) \cup (A \times B))$ if and only if
 (a) $A = B$
 (b) $A = \emptyset$ or $B = \emptyset$
 (c) $B = \emptyset$ or $A = B$
 (d) $A = \emptyset$ or $B = \emptyset$ or $A = B$
 (e) $A = \emptyset$ or $B = \emptyset$ or $A \cap B = \emptyset$

7. Let $\sigma = 452631$ be a permutation on $\{1, 2, 3, 4, 5, 6\}$ in one-line notation (based on the usual order on integers). Which of the following is NOT a correct cycle notation for σ?
 (a) $(614)(532)$
 (b) $(461)(352)$
 (c) $(253)(146)$
 (d) $(325)(614)$
 (e) $(614)(253)$

8. Let $f : X \to Y$. Consider the statement, “For all subsets C and D of Y, $f^{-1}(C \cap D^c) = f^{-1}(C) \cap [f^{-1}(D)]^c$. This statement is
 (a) True and equivalent to:
 For all subsets C and D of Y, $f^{-1}(C - D) = f^{-1}(C) - f^{-1}(D)$.
 (b) False and equivalent to:
 For all subsets C and D of Y, $f^{-1}(C - D) = f^{-1}(C) - f^{-1}(D)$.
 (c) True and equivalent to:
 For all subsets C and D of Y, $f^{-1}(C - D) = f^{-1}(C) - [f^{-1}(D)]^c$.
 (d) False and equivalent to:
 For all subsets C and D of Y, $f^{-1}(C - D) = f^{-1}(C) - [f^{-1}(D)]^c$.
 (e) True and equivalent to:
 For all subsets C and D of Y, $f^{-1}(C - D) = [f^{-1}(C)]^c - f^{-1}(D)$.

9. Define $f(n) = \frac{n}{2} + \frac{1-(-1)^n}{4}$ for all $n \in \mathbb{Z}$. Thus, $f : \mathbb{Z} \to \mathbb{Z}$, \mathbb{Z} the set of all integers. Which is correct?
 (a) f is not a function from $\mathbb{Z} \to \mathbb{Z}$ because $\frac{n}{2} \notin \mathbb{Z}$.
 (b) f is a function and is onto and one-to-one.
 (c) f is a function and is not onto but is one-to-one.
 (d) f is a function and is not onto and not one-to-one.
(e) f is a function and is onto but not one-to-one.

10. The number of partitions of $\{1, 2, 3, 4, 5\}$ into three blocks is $S(5, 3) = 25$. The total number of functions $f : \{1, 2, 3, 4, 5\} \to \{1, 2, 3, 4\}$ with $|\text{Image}(f)| = 3$ is

 (a) 4×6
 (b) 4×25
 (c) 25×6
 (d) $4 \times 25 \times 6$
 (e) $3 \times 25 \times 6$

11. Let $f : X \to Y$ and $g : Y \to Z$. Let $h = g \circ f : X \to Z$. Suppose g is one-to-one and onto. Which of the following is FALSE?

 (a) If f is one-to-one then h is one-to-one and onto.
 (b) If f is not onto then h is not onto.
 (c) If f is not one-to-one then h is not one-to-one.
 (d) If f is one-to-one then h is one-to-one.
 (e) If f is onto then h is onto.

12. Which of the following statements is FALSE?

 (a) $\{2, 3, 4\} \subseteq A$ implies that $2 \in A$ and $\{3, 4\} \subseteq A$.
 (b) $\{2, 3, 4\} \in A$ and $\{2, 3\} \in B$ implies that $\{4\} \subseteq A - B$.
 (c) $A \cap B \supseteq \{2, 3, 4\}$ implies that $\{2, 3, 4\} \subseteq A$ and $\{2, 3, 4\} \subseteq B$.
 (d) $A - B \supseteq \{3, 4\}$ and $\{1, 2\} \subseteq B$ implies that $\{1, 2, 3, 4\} \subseteq A \cup B$.
 (e) $\{2, 3\} \subseteq A \cup B$ implies that if $\{2, 3\} \cap A = \emptyset$ then $\{2, 3\} \subseteq B$.

13. Let $A = \{0, 1\} \times \{0, 1\} \times \{0, 1\}$ and $B = \{a, b, c\} \times \{a, b, c\} \times \{a, b, c\}$. Suppose A is listed in lexicographic order based on $0 < 1$ and B is listed in lexicographic order based on $a < b < c$. If $A \times B \times A$ is listed in lexicographic order, then the next element after $((0, 1, 1), (c, c, c), (1, 1, 1))$ is

 (a) $((1, 0, 1), (a, a, b), (0, 0, 0))$
 (b) $((1, 0, 0), (b, a, a), (0, 0, 0))$
 (c) $((1, 0, 0), (a, a, a), (0, 0, 1))$
 (d) $((1, 0, 0), (a, a, a), (1, 0, 0))$
 (e) $((1, 0, 0), (a, a, a), (0, 0, 0))$

14. Consider the true theorem, “For all sets A, B, and C if $A \subseteq B \subseteq C$ then $C^c \subseteq B^c \subseteq A^c$.” Which of the following statements is NOT equivalent to this statement:

 (a) For all sets A^c, B^c, and C^c, if $A^c \subseteq B^c \subseteq C^c$ then $C \subseteq B \subseteq A$.
 (b) For all sets A^c, B, and C^c, if $A^c \subseteq B \subseteq C^c$ then $C \subseteq B^c \subseteq A$.
 (c) For all sets A, B, and C^c, if $A^c \subseteq B \subseteq C$ then $C^c \subseteq B^c \subseteq A$.

SF-31
Sets and Functions

(d) For all sets \(A_c, B_c,\) and \(C_c\), if \(A_c \subseteq B_c \subseteq C\) then \(C_c \subseteq B_c \subseteq A\).

(e) For all sets \(A_c, B_c,\) and \(C_c\), if \(A_c \subseteq B_c \subseteq C\) then \(C_c \subseteq B \subseteq A\).

15. Let \(\mathcal{P}(A)\) denote the power set of \(A\). If \(\mathcal{P}(A) \subseteq B\) then

(a) \(2^{\left\lfloor A \right\rfloor} \leq |B|\)
(b) \(2^{\left\lfloor A \right\rfloor} \geq |B|\)
(c) \(2^{\left\lfloor A \right\rfloor} < |B|\)
(d) \(|A| + 2 \leq |B|\)
(e) \(2^{\left\lfloor A \right\rfloor} \geq 2^{|B|}\)

16. Let \(f: \{1, 2, 3, 4, 5, 6, 7, 8, 9\} \rightarrow \{a, b, c, d, e\}\). In one-line notation, \(f = (e, a, b, a, c, c, a, c)\) (use number order on the domain). Which is correct?

(a) \(\text{Image}(f) = \{a, b, c, d, e\}, \text{Coimage}(f) = \{\{6, 7, 9\}, \{2, 5, 8\}, \{3, 4\}, \{1\}\}\)
(b) \(\text{Image}(f) = \{a, b, c, e\}, \text{Coimage}(f) = \{\{6, 7, 9\}, \{2, 5, 8\}, \{3, 4\}\}\)
(c) \(\text{Image}(f) = \{a, b, c, e\}, \text{Coimage}(f) = \{\{6, 7, 9\}, \{2, 5, 8\}, \{3, 4\}, \{1\}\}\)
(d) \(\text{Image}(f) = \{a, b, c, e\}, \text{Coimage}(f) = \{\{6, 7, 9, 2, 5, 8\}, \{3, 4\}, \{1\}\}\)
(e) \(\text{Image}(f) = \{a, b, c, d, e\}, \text{Coimage}(f) = \{\{1\}, \{3, 4\}, \{2, 5, 8\}, \{6, 7, 9\}\}\)

17. Let \(\Sigma = \{x, y\}\) be an alphabet. The strings of length seven over \(\Sigma\) are listed in dictionary (lex) order. What is the first string after \(xxxxyxx\) that is a palindrome (same read forwards and backwards)?

(a) \(xxxxyxy\) (b) \(xxxyxxx\) (c) \(xyxyxxx\) (d) \(xyyyxx\) (e) \(yxxyxx\)

18. Let \(\sigma = 681235947\) and \(\tau = 627184593\) be permutations on \(\{1, 2, 3, 4, 5, 6, 7, 8, 9\}\) in one-line notation (based on the usual order on integers). Which of the following is a correct cycle notation for \(\tau \circ \sigma\)?

(a) \((124957368)\)
(b) \((142597368)\)
(c) \((142953768)\)
(d) \((142957368)\)
(e) \((142957386)\)

Answers: 1 (e), 2 (c), 3 (b), 4 (d), 5 (a), 6 (d), 7 (b), 8 (a), 9 (e), 10 (d), 11 (a), 12 (b), 13 (e), 14 (d), 15 (a), 16 (c), 17 (b), 18 (d).
Notation Index

\(\forall \) (for all) SF-16
\(B^A \) (all functions) SF-16
\(|B|^A \) (all functions) SF-18
\((n)_k \) (falling factorial) SF-9
\(a R b \) (binary relation) SF-16
\(C(n, k) = \frac{n!}{k!(n-k)!} \) (binomial coefficient) SF-9
\(n! \) (n factorial) SF-9
\(\chi \) (characteristic function) SF-10
\(\exists! \) (for exactly one) SF-16
\(\exists \) (for some) SF-16

Function
\(\chi \) (characteristic) SF-10
\(C(n, k) = \binom{n}{k} \) (binomial coefficient) SF-9
\(\text{PER}(A) = S(A) \) (permutations) SF-18
\(\text{Coimage}(f) \) SF-23
\(\text{Image}(f) \) SF-23

Function notation
\(B^A \) (all functions) SF-16, SF-17, SF-18
\(f : A \to B \) (a function) SF-15
\(f^{-1} \) (inverse, \(\neq 1/f \)) SF-18
\(g \circ f \) (composition) SF-20
\(\exists! \) (for exactly one) SF-16
\(\exists \) (for some) SF-16
\(\forall \) (for all) SF-16
\(n = \{1, 2, \ldots, n\} \) SF-16
\(\mathcal{P}(A) \) (set of subsets of A) SF-9
\(\mathcal{P}_k(A) \) (set of k-subsets of A) SF-9
\(\text{PER}(A) = S(A) \) (permutations) SF-18

Set notation
\(\{x : \ldots\} \) (set description) SF-2
\(\{x \mid \ldots\} \) (set description) SF-2
\(\emptyset \) (empty set) SF-2
\(\sim A \) (complement) SF-2
\(\in \) and \(\notin \) (in and not in) SF-1
\(\times^k A \) (k-fold product) SF-2
\(A' \) (complement) SF-2
\(A - B \) (difference) SF-2
\(A \cap B \) (intersection) SF-2
\(A \cup B \) (union) SF-2
\(A \oplus B \) (symmetric difference) SF-2
\(A \setminus B \) (difference) SF-2
\(A \subseteq B \) (subset) SF-1
\(A \times B \) (Cartesian product) SF-2
\(A^c \) (complement) SF-2
\(\mathcal{P}(A) \) (set of subsets of A) SF-9
\(\mathcal{P}_k(A) \) (set of k-subsets of A) SF-9
\(|A| \) (cardinality) SF-1

Sets of numbers
\(\underline{n} = \{1, 2, \ldots, n\} \) SF-16
\(S(n, k) \) (Stirling number) SF-24

Index-1
Subject Index

Absorption rule SF-3
Algebraic rules for sets SF-2
Associative law
 functional composition SF-20
Associative rule SF-3

Bell number SF-11
Bijective function SF-18
Binomial coefficient
 Pascal’s triangle SF-10
 recursion SF-10
Binomial coefficient: $C(n, k) = \binom{n}{k}$ SF-9
Block of a partition SF-11

Cardinality of a set SF-1
Cartesian product of sets SF-2
Characteristic function SF-10
Codomain of a function SF-15
Coimage of a function SF-23
 set partition SF-23
Commutative rule SF-3
Complement of a set SF-2
Composition of functions SF-20, SF-20
 associative law SF-20
Cryptography SF-19
Cycle form of a permutation SF-22

DeMorgan’s rule SF-3
DES (= Data Encryption Standard) SF-19
Dictionary order (= lex order) SF-8
Difference of sets SF-2
 symmetric SF-2
Distributive rule SF-3
Domain of a function SF-15
Double negation rule SF-3

Element method of proof SF-4
Empty set SF-2
Encryption SF-19
Envelope game SF-17

Factorial
 falling SF-9
Falling factorial SF-9
Function SF-15
 bijective SF-18
 binomial coefficient: $\binom{n}{k} = C(n, k)$ SF-9
 characteristic: χ SF-10
 codomain (= range) of SF-15
 coimage and set partition SF-23
 coimage of SF-23
 composition of SF-20, SF-20
 domain of SF-15
 hash SF-19
 image of SF-15, SF-23
 injective SF-18
 inverse SF-18, SF-23
 number of SF-18
 number of $= \binom{n}{k} S(m, k) k!$ SF-25
 one-line notation for SF-16, SF-16
 one-to-one (= injection) SF-18
 onto (= surjection) SF-18
 permutation SF-18
 range (= codomain) of SF-15
 surjective SF-18
 two-line notation for SF-20, SF-20

Functional relation SF-16
Index

Hashing SF-19

Idempotent rule SF-3
Image of a function SF-15, SF-23
Injective function SF-18
Intersection of sets SF-2
Inverse function SF-18
Inverse relation SF-16

Lexicographic order (= lex order) SF-7
Linear order SF-1
List (= ordered set) SF-1

Number
Bell number: B_n SF-11
binomial coefficient: $\binom{n}{k} = C(n, k)$ SF-9
Stirling: $S(n, k)$ SF-24

One-line notation SF-16, SF-16
One-to-one function (= injection) SF-18
Onto function (= surjection) SF-18

Order
dictionary (= lex) SF-8
lex (= lexicographic) SF-7
linear SF-1
relation SF-8

Ordered set SF-1

Partition of a set SF-11
block of SF-11
function coimage and SF-23
number of SF-11, SF-24
refinement of SF-11

Pascal’s triangle SF-10
Permutation SF-18
cycle SF-22
cycle form SF-22
cycle length SF-22

Index-4

PGP (= Pretty Good Privacy) SF-19
Power set SF-9
Product of sets SF-2

Range of a function SF-15
Refinement of set partition SF-11
Relation SF-16
functional SF-16
inverse SF-16
order SF-8

Rule
absorption SF-3
associative SF-3
commutative SF-3
DeMorgan’s SF-3
distributive SF-3
double negation SF-3
idempotent SF-3

Set SF-1
algebraic method SF-5
algebraic rules SF-2
Bell number: B_n SF-11
cardinality of SF-1
Cartesian product SF-2
characteristic function SF-10
complement SF-2
difference SF-2
element method SF-4
empty SF-2
intersection SF-2
number of subsets SF-11
ordered SF-1
power SF-9
subset SF-1
symmetric difference SF-2
union SF-2
universal SF-1
Venn diagrams SF-3

Set partition SF-11
block of SF-11
function coimage and SF-23
refining SF-11
Stirling number: $S(n, k)$ SF-24
Index

Stirling number $S(n, k)$ SF-24
String (= ordered set) SF-1
Subset of a set SF-1
 number of them SF-11
Surjective function SF-18
Symmetric difference of sets SF-2

Two-line notation SF-20, SF-20

Union of sets SF-2
Universal set SF-1

Vector (= ordered set) SF-1
Venn diagrams for sets SF-3

Word (= ordered set) SF-1