1. “If \(k > 1 \) then \(2^k - 1 \) is not a perfect square.” Which of the following is a correct proof?

(a) If \(2^k - 1 = n^2 \) then \(2^k - 1 = (n - 1)^2 \) and \(\frac{n^2 + 1}{(n-1)^2+1} = \frac{2^k}{2} = 2. \) But this latter ratio is 2 if and only if \(n = 1 \) or \(n = 3. \) Thus, \(2^k - 1 = n^2 \) leads to a contradiction.

(b) If \(2^k - 1 = n^2 \) then \(2^k = n^2 + 1. \) Since 2 divides \(n^2, \) 2 does not divide \(n^2 + 1. \) This is a contradiction since obviously 2 divides \(2^k. \)

(c) \(2^k - 1 \) is odd and an odd number which is a perfect square can’t differ from a power of two by one.

(d) \(2^k - 1 \) is odd and an odd number can never be a perfect square.

(e) If \(2^k - 1 = n^2 \) then \(n \) is odd. If \(n = 2j + 1 \) then \(2^k - 1 = (2j + 1)^2 = 4j^2 + 4j + 1 \) which implies that \(2^k, k > 1 \) is divisible by 2 but not by 4. This is a contradiction.

2. The repeating decimal number \(3.14159265265265\ldots \) written as a ratio of two integers \(a/b \) is

(a) 313845111/999900000
(b) 313844841/99900000
(c) 313845006/99990000
(d) 313845106/99900000
(e) 313845123/99000000

3. Which of the following statements is true:

(a) A number is rational if and only if its square is rational.
(b) An integer \(n \) is odd if and only if \(n^2 + 2n \) is odd.
(c) A number is irrational if and only if its square is irrational.
(d) A number \(n \) is odd if and only if \(n(n + 1) \) is even
(e) At least one of two numbers \(x \) and \(y \) is irrational if and only if the product \(xy \) is irrational.

4. Which of the following statements is true:

(a) A number \(k \) divides the sum of three consecutive integers \(n, n + 1, \) and \(n + 2 \) if and only if it divides the middle integer \(n + 1. \)

(b) An integer \(n \) is divisible by 6 if and only if it is divisible by 3.

(c) For all integers \(a, b, \) and \(c, \) \(a \mid bc \) if and only if \(a \mid b \) and \(a \mid c. \)

(d) For all integers \(a, b, \) and \(c, \) \(a \mid (b + c) \) if and only if \(a \mid b \) and \(a \mid c. \)
(e) If \(r \) and \(s \) are integers, then \(r \mid s \) if and only if \(r^2 \mid s^2 \).

5. For all \(N \geq 0 \), if \(N = k(k+1)(k+2) \) is the product of three consecutive non-negative integers then for some integer \(s > k \), \(N \) is divisible by a number of the form

(a) \(s^2 - 1 \)
(b) \(s^2 - 2 \)
(c) \(s^2 \)
(d) \(s^2 + 1 \)
(e) \(s^2 + 2 \)

6. To one percent accuracy, the number of integers \(n \) in the list \(0^4, 1^4, 2^4, \ldots, 1000^4 \) such that \(n \% 16 = 1 \) is

(a) 20 percent
(b) 50 percent
(c) 30 percent
(d) 35 percent
(e) 25 percent

7. Which of the following statements is TRUE:

(a) For all odd integers \(n \), \(\lceil n/2 \rceil = \frac{n+1}{2} \).
(b) For all real numbers \(x \) and \(y \), \(\lceil x + y \rceil = \lceil x \rceil + \lceil y \rceil \).
(c) For all real numbers \(x \), \(\lceil x^2 \rceil = (\lceil x \rceil)^2 \).
(d) For all real numbers \(x \) and \(y \), \(\lceil x + y \rceil = \lceil x \rceil + \lceil y \rceil \).
(e) For all real numbers \(x \) and \(y \), \(\lfloor xy \rfloor = \lfloor x \rfloor \lfloor y \rfloor \).

8. Which of the following statements is logically equivalent to the statement, “If \(a \) and \(b \neq 0 \) are rational numbers and \(r \neq 0 \) is an irrational number, then \(a + br \) is irrational.”

(a) If \(a \) and \(b \neq 0 \) are rational and \(r \neq 0 \) is real, then \(a + br \) is rational only if \(r \) is irrational.
(b) If \(a \) and \(b \neq 0 \) are rational and \(r \neq 0 \) is real, then \(a + br \) is irrational only if \(r \) is irrational.
(c) If \(a \) and \(b \neq 0 \) are rational and \(r \neq 0 \) is real, then \(r \) is rational only if \(a + br \) is rational.
(d) If \(a \) and \(b \neq 0 \) are rational and \(r \neq 0 \) is real, then \(a + br \) is rational only if \(r \) is rational.
(e) If \(a \) and \(b \neq 0 \) are rational and \(r \neq 0 \) is real, then \(a + br \) is irrational only if \(r \) is rational.

9. The number of primes of the form \(|n^2 - 6n + 5| \) where \(n \) is an integer is

(a) 0 (b) 1 (c) 2 (d) 3 (e) 4
10. The Euclidean Algorithm is used to produce a sequence $X_1 > X_2 > \cdots > X_{k-1} > X_k = 0$ of positive integers where each X_t, $2 < t \leq k$, is the remainder gotten by dividing X_{t-2} by X_{t-1}. If $X_{k-1} = 45$ then the set of all (positive) common divisors of X_1 and X_2 is

 (a) $\{1, 3, 5\}$

 (b) $\{1, 3, 5, 9, 15, \}$

 (c) $\{1, 9, 15, 45\}$

 (d) $\{1, 3, 5\}$

 (e) $\{1, 3, 5, 9, 15, 45\}$

11. Let L be the least common multiple of 175 and 105. Among all of the common divisors $x > 1$ of 175 and 105, let D be the smallest. Which is correct of the following:

 (a) $D = 5$ and $L = 1050$

 (b) $D = 5$ and $L = 35$

 (c) $D = 7$ and $L = 525$

 (d) $D = 5$ and $L = 525$

 (e) $D = 7$ and $L = 1050$

12. The Euclidean Algorithm is used to produce a sequence $X_1 > X_2 > X_3 > X_4 > X_5 = 0$ of positive integers where $X_t = q_{t+1}X_{t+1} + X_{t+2}, t = 1, 2, 3$. The quotients are $q_2 = 3$, $q_3 = 2$, and $q_4 = 2$. Which of the following is correct?

 (a) $\gcd(X_1, X_2) = -2X_1 + 6X_2$

 (b) $\gcd(X_1, X_2) = -2X_1 - 6X_2$

 (c) $\gcd(X_1, X_2) = -2X_1 - 7X_2$

 (d) $\gcd(X_1, X_2) = 2X_1 + 7X_2$

 (e) $\gcd(X_1, X_2) = -2X_1 + 7X_2$

Answers: 1 (e), 2 (d), 3 (b), 4 (e), 5 (a), 6 (b), 7 (a), 8 (d), 9 (c), 10 (e), 11 (d), 12 (e).
<table>
<thead>
<tr>
<th>Notation</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>$k \mid n$</td>
<td>k divides n; $n/k \in \mathbb{Z}$</td>
<td>NT-2</td>
</tr>
<tr>
<td>Function (particular)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\lfloor x \rfloor$</td>
<td>greatest integer</td>
<td>NT-9</td>
</tr>
<tr>
<td>$\lceil x \rceil$</td>
<td>ceiling</td>
<td>NT-9</td>
</tr>
<tr>
<td>$\gcd(a, b)$</td>
<td>greatest common divisor</td>
<td>NT-16</td>
</tr>
<tr>
<td>$\phi(n)$</td>
<td>Euler ϕ</td>
<td>NT-19</td>
</tr>
<tr>
<td>$\text{lcm}(a, b)$</td>
<td>least common multiple</td>
<td>NT-16</td>
</tr>
<tr>
<td>$x \mod d$</td>
<td>x mod d</td>
<td>NT-7</td>
</tr>
<tr>
<td>\mathbb{N}</td>
<td>(Natural numbers)</td>
<td>NT-1</td>
</tr>
<tr>
<td>\mathbb{Q}</td>
<td>(Rational numbers)</td>
<td>NT-1</td>
</tr>
<tr>
<td>\mathbb{R}</td>
<td>(Real numbers)</td>
<td>NT-1</td>
</tr>
<tr>
<td>Sets of numbers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\mathbb{N}</td>
<td>(Natural numbers)</td>
<td>NT-1</td>
</tr>
<tr>
<td>\mathbb{N}^+</td>
<td>(Positive integers)</td>
<td>NT-1</td>
</tr>
<tr>
<td>\mathbb{N}_2^+</td>
<td>${n \in \mathbb{Z} \mid n \geq 2}$</td>
<td>NT-1</td>
</tr>
<tr>
<td>\mathbb{P}</td>
<td>(Prime numbers)</td>
<td>NT-2</td>
</tr>
<tr>
<td>\mathbb{Q}</td>
<td>(Rationals)</td>
<td>NT-1</td>
</tr>
<tr>
<td>\mathbb{R}</td>
<td>(Real numbers)</td>
<td>NT-1</td>
</tr>
<tr>
<td>\mathbb{Z}</td>
<td>(Integers)</td>
<td>NT-1</td>
</tr>
<tr>
<td>$d\mathbb{Z} + k$</td>
<td>(residue class)</td>
<td>NT-6</td>
</tr>
<tr>
<td>\mathbb{Z}</td>
<td>(Integers)</td>
<td>NT-1</td>
</tr>
</tbody>
</table>
Subject Index

Algebraic number theory NT-3
Algorithm
 Euclidean NT-18
Arithmetic
 modular NT-6

Ceiling function (= least integer) NT-9
Ciphertext NT-13
Composite number NT-2
Countable set NT-5
Cryptography NT-13
 Diffie-Hellman protocol NT-22
 PGP NT-20
 public key NT-21
 RSA protocol NT-23
 symmetric encryption NT-20
 trapdoor function NT-21

Diagonal argument NT-6
Diffie-Hellman protocol NT-22
Discrete logarithm NT-21
 Diffie-Hellman and NT-22
Divisible by: \(k \mid n \) NT-2

Espionage NT-15
Euclidean algorithm NT-18
Euler \(\phi \) function NT-19
 RSA protocol and NT-23
Even integer NT-1

Factoring
 RSA and NT-23
 uniqueness of NT-3
Fermat’s Last Theorem NT-3

Floor function (= greatest integer) NT-9
Function
 ceiling (= least integer: \([x]\)) NT-9
 Euler \(\phi \) NT-19
 Euler \(\phi \) and RSA protocol NT-23
 floor (= greatest integer: \([x]\)) NT-9
 greatest common divisor
 (= gcd) NT-16
 greatest integer NT-9
 least common multiple
 (= lcm) NT-16
 least integer NT-9
 one-way (= trapdoor) NT-21
 trapdoor NT-21

Greatest common divisor
 (= gcd) NT-16
 Euclidean algorithm NT-18
 Greatest integer function NT-9

Irrationality of square root NT-4

Key (cryptography) NT-13
 Diffie-Hellman NT-22
 RSA and public NT-23
 trapdoor function and NT-21

Least common multiple
 (= lcm) NT-16
Least integer function NT-9
Logarithm
 discrete and Diffie-Hellman NT-22
Index

Mod as binary operator NT-7
Mod as equivalence relation NT-7
Modular arithmetic NT-6

Number
composite NT-2
integer \mathbb{Z} NT-1
irrational: $\mathbb{R} - \mathbb{Q}$ NT-1
natural \mathbb{N} NT-1
prime: \mathbb{P} NT-2
rational: \mathbb{Q} NT-1
real: \mathbb{R} NT-1
square root is irrational NT-4
unique prime factorization NT-3

Number theory
algebraic NT-3
nonunique factorization NT-3

Odd integer NT-1
One-way (= trapdoor) function NT-21

Perfect square NT-4
PGP (= Pretty Good Privacy) NT-20
Plaintext NT-13
Prime factorization NT-3
uniqueness of NT-3
Prime number NT-2
infinitely many NT-4
unique factorization into NT-3
Public key cryptography NT-21
PGP NT-20
RSA protocol NT-23

Residue class (modular arithmetic) NT-6
RSA protocol NT-23

Set
 countable NT-5
Symmetric encryption NT-20

Theorem
 Unique Factorization NT-3
Trapdoor function NT-21
discrete logarithm NT-22

Unique prime factorization NT-3

Index-4