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ABSTRACT

Today, mobile smartphones are expected to be able to run
the same complex, memory-intensive applications that were
originally designed and coded for general-purpose processors.
However, these mobile processors are also expected to be
compact, ultra-portable, and provide an always-on, contin-
uous data access paradigm necessitating a low-power design.
As mobile processors increasingly begin to leverage multi-
core functionality, the power consumption incurred from main-
taining coherence between local caches due to bus snooping
becomes more prevalent. This paper explores a novel ap-
proach to mitigating multi-core processor power consumption
in mobile smartphones. By using dynamic application mem-
ory behavior, one can intelligently target adjustments in the
cache coherency protocol to help reduce the overhead of main-
taining consistency when the benefits of multi-core shared
cache coherence are muted. On the other hand, by utilizing a
fine-grained approach, the proposed architecture can still re-
spond to and enable the benefits of hardware cache coherence
in situations where the performance improvements greatly
outweigh the associated energy costs. The simulation results
show appreciable reductions in overall cache power consump-
tion, with negligible impact to overall execution time.

Categories and Subject Descriptors

B.3.2 [Memory Structures]: Design Styles—Cache mem-
ories; C.1.3 [Processor Architectures]: Other Architec-
ture Styles—Cellular/mobile architecture; C.3 [Computer
Systems Organization]: Special-Purpose and Application-
Based Systems—Real-time and embedded systems
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Design, Performance
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1. INTRODUCTION
The prevalence and versatility of mobile processors has

grown significantly over the last few years. At the current
rate, mobile processors are becoming increasingly ubiqui-
tous throughout our society, resulting in a diverse range of
applications that will be expected to run on these devices.
Even today, mobile processors are required to be able to
run algorithmically-complex, memory-intensive applications
comparable to applications originally designed and coded for
general-purpose processors. Furthermore, mobile processors
are becoming increasingly complex in order to respond to
this more diverse application base. Many mobile proces-
sors have begun to include features such as multi-level data
caches, complex branch prediction, and more recently, multi-
core architectures such as the Qualcomm Snapdragon and
ARM Cortex-A9.

It is important to emphasize the unique usage model em-
bodied by mobile processors. These devices are expected
to be always-on, with the capability to continuously access
data for phone calls, texts, e-mails, internet browsing, news,
music, video, TV, and games. Furthermore, these devices
need to be ultra-portable, being carried unobtrusively on a
person and requiring extremely infrequent power access to
recharge. In addition, due to their small form factor, these
devices often have reduced storage capacity and instead rely
on remote data streaming.

With the constraints embodied by mobile processors, one
typically is concerned with high performance, power effi-
ciency, better execution determinism, and minimized area.
Unfortunately, these characteristics are often adversarial,
and improving one often results in worsening the others.
For example, in order to increase performance, a more com-
plex cache hierarchy is used to exploit data locality, but in-
troduces larger power consumption, more data access time
indeterminism, and increased area. However, if an applica-
tion is highly regular and contains an abundance of both
spatial and temporal data locality, then the advantages in
performance greatly outweigh the drawbacks. On the other
hand, as these applications become more complex and irreg-
ular, they are increasingly prone to excessive cache misses.
For example, video codecs, which are increasingly included
in wireless devices such as mobile phones, utilize large data
footprints and significantly suffer from cache thrashing [1].

In particular, in mobile phone systems, where power and
area efficiency are paramount, smaller, less-associative caches
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Figure 1: Example of Cache Thrashing Reductions

are typically chosen. Earlier researchers realized that these
caches are more predisposed to thrashing and proposed so-
lutions such as a victim cache [2] or dynamically-associative
cache [3] to improve cache hit rates, as shown in Figure 1.
While these approaches can help mitigate cache thrashing
and result in improved execution speed and associated power
reduction by avoiding lower level memory subsystem ac-
cesses, the shift to multi-core systems introduces new as-
pects in terms of power utilization.

Shared-memory Multi-Core System-on-Chip (MCSoC) sys-
tems are becoming prevalent in the mobile smartphone mar-
ket, as they provide benefits such as low communication la-
tency, a well-understood programming model, and a decen-
tralized topology well-suited for heterogeneous processing
cores. Since all the cores typically share a common bus for
their memory accesses, the available bandwidth can become
overwhelmed and cause performance degradation. To alle-
viate this problem, L1 caches are typically localized within
each core, saving bus bandwidth and minimizing memory
contention. An example of a typical quad-core cache archi-
tecture is shown in Figure 2.

This replication of L1 caches introduces the possibility of
data corruption if data is being shared among cores, since
modifications of locally-stored data in one core may leave
other cores with stale versions in their caches which should
no longer be considered valid. To rectify this issue, bus-
snooping cache coherency protocols are typically employed
since they are well suited for embedded MCSoC platforms
using a shared high-speed memory bus. The broadcast na-
ture of the memory requests on the shared bus enables all
local cache controllers to snoop memory transactions from
the other cores. Invalidation and write-back signals are used
to ensure coherence between all local caches and the lower
memory hierarchy (L2 cache in this case). Unfortunately,
as we encounter increased cache accesses and related cache
misses due to the running of more complex and irregular
application sets, the system’s cache coherence overhead also
increases.

Prior research has shown that bus-snooping cache lookups
can amount to 40% of the total power consumed by the cache
subsystem in a multi-core processor [4]. Since caches typ-
ically account for 30-60% of the total processor area and
20-50% of the processor’s power consumption, the overhead

Figure 2: Quad-Core Cache Hierarchy

from cache snooping is rather significant across the system
as a whole. Therefore, the additional power consumption
inherent in bus-snooping is often prohibitive and is typi-
cally avoided in most mobile processors to date. Instead,
these power-sensitive mobile processors rely on purely write-
through local caches or software-based coherence. Unfortu-
nately, these approaches have their own drawbacks. Lever-
aging write-through local caches increases the bus contention
and dynamic power when large quantities of data are modi-
fied, since every L1 cache modification requires updating the
L2 cache as well. Software-based coherence provides coarse-
grain enforcement, and the efficiency varies greatly based on
the software’s coding. Furthermore, to function accurately,
it needs to predict four conditions: (i) whether two memory
references are to the same location; (ii) whether two mem-
ory references are executed on different cores; (iii) whether a
conditional write will actually be executed; and (iv) when a
write will be executed relative to a sequence of reads. Given
the increased complexity and variability of applications that
are expected to run on these devices, factors including condi-
tional branches, pointers, dynamic memory, interrupts, and
OS context switches will all exacerbate the effectiveness of
a static approach. As a result, software approaches will in-
sert invalidation instructions at any point where there may
be a possible need. This can lead to numerous unnecessary
cache misses and instruction count increases. In contrast,
by using a hardware-based approach, one can respond in
a fine-grained manner to any given application’s run-time
behavior.

In this paper, we propose a novel approach in dealing with
the unique constraints of mobile processors while enabling a
dynamic, power-efficient hardware cache coherency protocol.
While the processor normally operates in a baseline config-
uration, wherein the battery life may be muted in order to
deliver full execution speed and responsiveness, a user may
instead desire to sacrifice a small amount of that execution
speed in order to prolong the overall life of the mobile de-
vice. The key to our approach is that this sacrifice of speed
be negligible at first compared to the amount of power saved,
allowing a continuum of large gains in power savings with-
out significantly disrupting execution performance. When
we need to go into a battery-saving mode, the cache co-
herence can be dynamically adjusted to reduce power while
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minimally impacting performance. We show the implemen-
tation of this architecture and provide experimental data
taken over a general sample of complex, real-world multi-
core applications to show the benefits of such an approach.
The simulation results show significant improvement in over-
all cache subsystem power consumption of approximately
15%, while incurring a negligible increase in execution time
and area.

2. RELATED WORK
In the last five years, the industrial mobile smartphone

processor space has seen enormous expansion. Processors
provided by companies such as ARM, Samsung, and Qual-
comm have become increasingly more powerful and complex,
and are used in a wide variety of industrial applications. For
example, current smartphone technology often incorporates
a mixture of ARM9, ARM11, and ARM Cortex embedded
processors, along with a number of sophisticated special-
ized DSP processors, such as Qualcomm’s QDSP6. These
mobile phones are expected to handle a wide variety of pur-
poses, from remote data communication to high-definition
audio/video processing, and even live multi-player gaming.
These target applications are becoming increasingly more
complex and memory-intensive, and numerous techniques
have been proposed to address the challenges of memory ac-
cess. To exacerbate the situation, the mobile processor do-
main is beginning to leverage multi-core architectures, which
then leads to overheads involving cache coherence. Unfor-
tunately, embedded mobile processors are often more highly
constrained than general-purpose processors and require ex-
tra care to minimize power consumption in order to extend
device life.

A proposal using virtually tagged caches was presented in
[4], where much of the TLB overhead from coherence could
be avoided by using virtual addresses in the tag instead of
physical addresses. Unfortunately, most systems will opt to
have virtually indexed, physically tagged primary caches to
avoid complexities arising from aliasing and homonyms.

Serial snooping techniques have been proposed to allevi-
ate overhead from read misses, wherein the assumption of
data locality among various processor cores is exploited [5].
In general, these approaches aim to reduce the overhead of
snooping all other cores in parallel, but rather do it in a serial
fashion starting with the closest cores and move outward.
One important shortcoming of such an approach is that la-
tency can increase as we continue to conduct the snooping
iteratively, unless the data is residing in the closest neigh-
boring cores. For example, the authors in [5] reported an
average increase in latency of 6.25%. Given the importance
of low memory latency and its impact on execution speed for
mobile smartphones, this approach is often unacceptable.

The Jetty approach essentially adds a small directory-like
structure between the shared memory structure and each
replicated cache [6]. This structure will indicate whether a
copy may exist within a particular local cache, helping to
avoid tag accesses if the item is guaranteed not to exist in
the cache. Jetty was proposed for a system where both L1
and L2 were localized, wherein the cost associated with L2
lookups was far greater than the smaller Jetty structure. Un-
fortunately, most mobile processors localize only the smaller
L1 caches, and leave L2 as a shared resource. In this hier-
archy, the overhead of Jetty would be comparable to just
doing the regular L1 lookup, resulting in minimal benefit.

The RegionScout approach attempts to dynamically de-
tect and filter out private regions of the memory space from
performing the snoop-based coherence, reducing read in-
duced tag lookups and write induced invalidation broadcasts
[7]. As the authors write, this implementation is good for
coarse-grained sharing, as reasonable power reductions only
occur when the region size is rather large. The benefits of
this approach are muted if the system has more fine-grained
sharing or if the shared locations are not contiguous. Given
the complexity and variability of applications that can be
run on mobile processors, the assumption of fine-grained,
contiguous data sharing cannot be guaranteed.

An application-driven solution was presented in [8], where
the compiler or software developer would statically deter-
mine the shared regions of memory, allowing the remaining
regions to be placed in a non-shared mode. Again, this so-
lution utilizes rather coarse-grained regions and also relies
on simple application algorithms for sharing. With more
complex, desktop-like applications expected to run on mod-
ern mobile processors, the issues of dynamic memory and
pointer access are introduced, rendering the compile-time
approach insufficient.

Moreover, since the cache is primarily present to mitigate
the performance implications of long memory latencies, it is
important to avoid causing significant degradation in per-
formance just to recuperate power. Since having a longer
run-time will ultimately lead to still more power usage of
the overall system, there is an important balance that must
be struck where the cache coherence power overhead is re-
duced, while not significantly degrading performance.

3. MOTIVATION
The typical cache coherency protocol commonly employed

in MCSoC systems is MESI, consisting of four states per
cache line [9]. The Modified (M) state implies that the data
is the only copy within the localized caches and that that
data is newer than the lower memory hierarchy. The Ex-
clusive (E) state is similar to the M state, except that the
data is clean (e.g. the same value as stored in the lower
memory level). The Shared (S) state conveys that the data
may also be in other local caches, and also that the data is
clean. Lastly, the Invalid (I) state means no valid data is
stored in that cache line.

Figure 3(a) shows the state transition diagram for the
MESI protocol. Explanations of the various abbreviations
used are listed in Table 1. Each cache line is annotated with
a 2-bit representation of these four states. Data reads can
be satisfied from any state except I. Upon a read miss, the
cache line will enter either the E or S state, depending on
the value present on the Shared Signal (SS), which indicates
whether at least one other cache also has the same data
present. Data writes may only take place when in the M or
E states, and only data in the M state requires a write-back
operation when transitioned to another state or evicted. All
valid states must snoop for any bus invalidate transactions,
and upon matching the state will transition to I. Addition-
ally, all valid states must snoop any bus read requests for
matches in order to assert the Shared Signal on the bus, as
well as to transition to the S state if currently in the M or
E states.

Given this, if a read-miss occurs on the bus, the snoop
controllers for all local caches must probe whether the re-
quested data matches a valid entry and if that entry is in an
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Figure 3: (a) MESI Write-Back State Diagram; (b) Simplified Write-Through State Diagram; (c) Listing of
Valid States Between Pair of Caches

exclusive state (M or E) to respond accordingly to main-
tain coherence. Alternatively, a write-miss or invalidation
broadcast on the bus requires all other cache nodes to in-
validate their corresponding entries for that given data ad-
dress. This probing to identify whether an address sent on
the shared bus is present in the local cache entails almost
a full cache lookup; the tag arrays of the cache structure
need to be accessed in order to fully resolve if the address
is a match. Furthermore, the snooping logic occurs even if
the data location is not being shared among other processor
cores, leading to much wasted effort if the current applica-
tion is primarily private-memory based and does very few
shared reads or writes. These snooping requests are the ma-
jor contributing factor to the excessive power consumption
of hardware cache coherency protocols.

Furthermore, we found the local L1 caches exhibited un-
balanced access patterns, wherein portions of the cache may
be infrequently used at a given time, while other portions
may be more heavily used and involved in multi-core data
sharing. By responding dynamically to the application’s
run-time behavior, we can intelligently make modifications
to the cache coherency protocol to appreciably reduce bus-
snooping power overhead while minimally affecting execu-
tion performance. Indeed, by enabling a power-efficient im-
plementation of hardware cache coherence, the execution
performance will significantly improve compared to software-
based or non-cacheable approaches. The goal of this pa-

Abbreviation Description

RM Read Miss in local cache
RH Read Hit in local cache
WM Write Miss in local cache
WH Write Hit in local cache
SBR Snoop Bus Read from remote cache
SBI Snoop Bus Invalidate from remote cache
(WB) Write Back dirty data
(BI) Send Broadcast Invalidate to all caches
(SS) Shared Signal value currently on bus

Table 1: Listing of Abbreviations

per is the dynamic identification of those cache lines which
are highly accessed in a manner that would benefit from a
full write-back MESI coherency protocol, versus those that
can be in a simplified write-through configuration to help
eliminate unnecessary read-based snooping overhead, thus
conserving power while preserving most of the performance
quality.

4. IMPLEMENTATION
The proposed solution enables two complementary types

of write behavior to occur per cache line: write-back and
write-through. The benefits of a write-back policy become
evident when there are numerous updates to a given local
cache line. By avoiding writing each update back to the L2
cache, reductions in bus contention and L2 dynamic power
are achieved. Unfortunately, cache coherence is essential
for a write-back policy, as data in the shared L2 can be-
come stale relative to newer data in a local cache. On the
other hand, a fully write-through policy ensures coherence
since copies in a given local cache will always match what is
backed by the shared L2. However, a write-through policy
suffers if there are many write operations, causing wasteful
updates which congest the shared bus and waste power.

Our proposal is to allow a fine-grained, hybrid interac-
tion between write-back and write-through functionality on
a per-line basis, in a manner similar to [10]. When a given
cache line is heavily modified in a short period of time,
a write-back policy will deliver better performance. Con-
versely, if a given cache line is very infrequently updated, a
write-through policy will deliver lower power by obviating
much of the snoop-read overhead, while also not causing ex-
cessive bus contention due to write-misses. Furthermore, if
that line frequently transitions from the M to the S state, a
write-through policy is also desirable, as this behavior would
be indicative of a producer-consumer algorithm where one
core writes data that another core then reads in. In this
case, the benefits from write-back with regard to multiple
updates are muted, and a write-through setup will deliver
equivalent performance while using less power.

To implement this solution, each cache line will be anno-
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Figure 4: Proposed Cache Architecture

tated with a small number of additional bits to keep track
of the new state information. Figure 4 provides a high-level
view of the architectural additions. In particular, a small
shift register is added to each cache line and will be used to
measure the write frequency of that line. Upon accessing the
cache line with a write operation, the Frequency Shift Regis-
ter (FSR) is left shifted and fed a least-significant-bit (LSB)
value of 1. Upon a write-back to L2 or upon the decay sig-
nal determined by a global countdown register (DECR), the
FSR is right shifted and fed a most-significant-bit (MSB)
value of 0. In this manner, the FSR will saturate with all
1’s if the line is frequently modified, saturate with all 0’s if
rarely modified or written back often, or otherwise possess
the property of having a continuous run of 1’s of some length
L starting from the LSB. This structuring of the FSR will
minimize bit-flipping transitions (avoiding needless dynamic
power consumption), and will greatly reduce the complexity
of comparing the value in the FSR with a given threshold
value. Additionally, the FSR values are initialized to all 0’s
upon reset or flush.

Furthermore, a WB Enable Bit will be added to each
cache line, which will determine if the line is operating in
write-back (1) or write-through (0) mode. When the line is
placed in write-through mode, the MESI protocol is reduced
to just two states, as shown in Figure 3(b): Shared and In-
valid. Given that the MESI states correspond to bit values
of 11, 10, 01, and 00, respectively, this write-through mode is
achieved simply by doing an AND between the high-order
bit of the MESI metadata and the WB Enable Bit. Fig-
ure 3(c) shows all the possible valid states of any pair of
local caches, including both in write-back (MESI/MESI),
mixed (MESI/SI), and both in write-through (SI/SI).

The architecture also has two global threshold registers:
TWB on (Write-Back On) and TWB off (Write-Back Off ).
These threshold registers are the same size as the FSR, and
will contain a single 1 in a specific bit position to indicate
its threshold. Thus, the comparison of a threshold with

the FSR is simply a combinational AND fed into an OR-
reduction (i.e. if any bit is a 1, then the result is 1, else 0).
If the FSR has met or exceeded a given threshold, it can
quickly and efficiently be detected, and the cache can then
make the appropriate changes to either enable or disable
write-back functionality based on the particular threshold
value met.

To avoid ambiguity and deadlock, the threshold registers
are constrained as follows: TWB on > TWB off . Thus, the
minimum size of the threshold registers (and also the FSR)
is 2-bits, and we will denote this size with N .

When the FSR reaches the TWB on threshold (due to a
temporally heavy period of cache writes), the WB Enable
Bit will be set to 1, enabling write-back functionality along
with the full MESI coherency protocol. When the threshold
falls below TWB off , the WB Enable Bit is set to 0, switching
into a write-through mode. In this write-through mode, the
coherence protocol will be degraded in order to glean power
reductions. The cache line will still snoop for write-miss
invalidations like before when in write-through S state, but
the snooping for bus reads will be modified as described in
the following section.

4.1 Modified Read-Miss Snooping Behavior
Normally the MESI protocol for a cache in the S state

will snoop all read-misses and do a complete tag compari-
son to determine if the request matches in order to assert
the Shared Signal on the bus. In contrast, during write-
through mode the cache will always assert the Shared Sig-
nal for the given cache line regardless of whether the tags
match. Thus, in write-through mode the costly tag compar-
isons during read-miss snooping are completely eliminated.
In other words, during write-through mode the Shared Sig-
nal is simply equal to the cache line’s state value (1 if S, 0
if I). Of course, this optimization can cause false positives
if the requesting cache is in write-back mode. By a write-
through cache always asserting the Shared Signal even if it
potentially does not have the matching data, a correspond-
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Thresholds TWB_on TWB_off

Config 0 00000010 00000001
Config 1 00001000 00000001
Config 2 00010000 00000100
Config 3 00100000 00001000
Config 4 10000000 00010000
Config 5 10000000 01000000

Table 2: Configuration Threshold Values

ing cache in write-back mode will always be forced to resolve
a read miss by entering the S state instead of possibly the
E state. It is important to observe that the E state is an
optimization of the S state to reduce the bus invalidation
overhead upon modification. Therefore, even if false posi-
tives occur, correctness will still be maintained. The only
drawback is that if the write-back cache were to modify the
data, since it was in the S state instead of the E state, it
would need to issue a broadcast invalidate signal. An im-
portant observation is that this drawback only occurs on the
first modification of a write-back line (the S to M transi-
tion). None of the subsequent writes will incur this penalty,
since the line will now be in the exclusive M state.

An additional optimization is possible during a read miss
in a write-through cache. The Shared Signal will be pre-set
to 1 by the write-through cache during the bus read trans-
action, since it does not need to differentiate if any other
caches also have a valid copy of the data (e.g. since there is
no E state). During this bus read, any caches in write-back
mode can leverage this if they are in the S state and bypass
the tag lookup if the Shared Signal is already high. The rea-
son this works is because if a MESI cache is in the S state, it
will remain in the S state on a snooped bus read. Normally,
the cache would also need to do the tag comparison to deter-
mine whether to assert the Shared Signal or not, but since
the originating cache miss is in write-through mode, it will
ignore the results of the Shared Signal. Thus, we can further
reduce the overhead of read-miss snooping in the write-back
caches as well in this situation.

4.2 Transitioning Between Policies
It is important to demonstrate that individual cache lines

moving between the write-through and write-back policies
will still maintain overall correctness and coherence. As de-
scribed earlier, Figure 3(c) presents all the possible valid
states of any pair of local caches. When transitioning from
write-back to write-through mode, the behavior is the same
as if a snoop bus read occurred. If the cache line is in the M
state, a write-back is forced before transitioning into the S
state. If the line is in the E state, the transition to S occurs
without further ado. When transitioning from write-through
to write-back mode, there is no special state changes that
need to occur (e.g. the line will remain in the S or I state).
As described earlier, the write-through mode will propagate
any modifications to the L2 cache, maintaining coherence
by still causing a write-miss on the shared bus to invalidate
any copies that may exist in other local write-back or write-
through caches. Since the write-through mode is essentially
a simplified subset of the write-back MESI protocol (e.g. us-
ing only the S and I states), the coherence and correctness of
the overall system remains intact even while corresponding
cache lines in different cores move independently between
the write-through and write-back modes.

Benchmark Description

ferret Content-based similarity search
fft Discrete fast Fourier transform

fluidanimate Incompressible fluid animation
lu Dense matrix triangular factorization

radiosity Equilibrium distribution of light
radix Integer radix sort

raytrace Three-dimensional scene rendering
vips Image affine transformation
x264 H.264 video encoder

Table 3: Description of Benchmarks

The rationale for this approach is leveraging the uneven,
temporal nature of cache line accesses. Some cache lines will
feature many closely occurring write modifications, greatly
benefiting from a write-back cache. Other cache lines may
just be idle and unused in a given hot spot, and being in
write-through mode can avoid wasting power conducting full
read-miss snoops every time another core accesses the same
index. Certain shared-memory multi-core applications will
behave in a simple consumer-producer handshake fashion,
wherein there are no performance benefits to using write-
back on those cache lines, while other lines may incur nu-
merous writes before being read by a remote core. The key
principle is that we respond dynamically in a fine-grained,
temporal fashion to exploit the strengths of the different
cache write and coherency policies, while still maintaining
overall performance.

5. EXPERIMENTAL RESULTS
In order to assess the benefit from this proposed archi-

tectural design, we utilized the M5 multiprocessor simulator
[11], implementing a quad-core system similar to what is
shown in Figure 2. We chose a representative advanced mo-
bile smartphone system configuration, having per-core 32KB
L1 data and instruction caches (1024-entry, direct-mapped
with a 32-byte line size), and a shared 1MB L2 cache.

In addition to the baseline, classic write-back MESI cache
architecture, we provide results for six different system con-
figuration levels to dynamically transition lines between write-
through and write-back mode, each increasingly more ag-
gressive in favor of write-through mode. The associated
threshold values for each configuration are available above
in Table 2.

Nine representative shared-memory benchmark applica-
tions from the SPLASH-2 [12] and PARSEC [13] suites are
used. A listing of these benchmarks and their respective
descriptions is provided in Table 3.

In terms of storage overhead, the dynamically reconfig-
urable cache architecture would require the addition of (N +
1)-bits to capture the Frequency Shift Register (FSR) and
WB Enable Bit on each cache line, as well as N -bits for each
of the two global threshold registers. Additionally, a decay
countdown register (DECR) of 8-bits would be needed to
generate a decay signal every 256 clock cycles. We chose
an 8-bit FSR (N = 8), based on our observation that the
28 possible threshold pair combinations captured by 8-bits
allows for a diverse span of ranges while not imposing pro-
hibitive overhead. Given this and that we have 1024 lines in
our implementation, this results in an additional 1155-bytes
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Figure 5: Reductions in L1 Read Miss Snooping

(≈1.13KB) added to each L1 data cache; this overhead is a
negligible amount of storage compared to the actual cache
size of 32KB of data plus 2.38KB of tag and MESI metadata.
Additionally, this implementation will only need to enhance
the L1 data caches, as the instruction caches are typically
read-only and would be implemented as write-through to
avoid coherence. Thus, only minimal modifications of the
cache subsystem are necessary to leverage this implementa-
tion.

Additionally, we chose an 8-bit Frequency Shift Register
(FSR). This was based on our observation that the 28 pos-
sible threshold pair combinations captured by 8-bits allows
for a diverse span of ranges, while not having prohibitive
overhead.

Figure 5 shows the reductions to L1 read miss snooping
by transitioning infrequently used cache lines into the sim-
plified write-through mode. As cache lines are transitioned
into this mode, they no longer need to process the costly tag
lookups during a bus read event. Furthermore, any comple-
ment caches in write-back mode that have data in S state
also avoid unnecessary tag lookups on read misses from the
write-through cache. As one can see, Config 0, which is least
aggressive in terms of entering write-through mode, still re-
sults in appreciable reductions to read miss snooping. As
we move to more aggressive configurations, such as Config
5, one can see the majority of benchmarks begin to enjoy re-
ductions in snoop tag lookup overhead near 90%. The two
exceptions, ferret and radix, have very high rates of sharing
and data exchange, and thus many of the cache lines do not
ever fall below the TWB off threshold. The average reduction
in read miss snooping overhead for the six configurations is
summarized in Table 4.

While the reductions to read miss snooping will be the ma-
jor contributing factor to reducing the overall cache power
utilization, we must also take into account the increase in

Configuration Read Reduction Write Increase

Config 0 38.50% 1.67%
Config 1 57.16% 2.13%
Config 2 67.69% 2.45%
Config 3 75.71% 3.57%
Config 4 87.26% 5.39%
Config 5 90.06% 7.30%

Table 4: Average Read Miss Snooping Reductions
and Write Miss Snooping Increases

Figure 6: Increases in L1 Write Miss Snooping

write miss snooping that will inherently occur as more cache
lines are placed in write-through operation. Write-through
mode fundamentally will cause more writes to be placed on
the shared bus, resulting in more frequent broadcast invali-
dations (write misses). All local cache lines in S mode will
need to then snoop to ensure they invalidate their copy of
the data if present. Fortunately, an important attribute of
this proposed architecture is to only allow the FSR to decre-
ment when write operations are infrequent, or when there
are many write-backs. In this fashion, we enter the write-
through mode only when the quantity of write operations
is statistically improbable, lessening the chance of attenuat-
ing our gains in power reduction with additional overhead in
write miss snooping. Additionally, applications are typically
dominated by more read operations than writes, which will
further help tip the scales in our favor.

To demonstrate these observations, Figure 6 shows the in-
creases to L1 write miss snooping. As one can see, by mov-
ing from a less aggressive write-through threshold (Config 0 )
to a more aggressive one (Config 5 ), the amount of write-
miss-induced snooping grows rapidly. The average increase
in write miss snooping for the six configurations is shown
in Table 4. One can begin to see how forcing write-through
mode aggressively can start to diminish the returns in power
savings from avoiding read miss snooping. Furthermore, the
additional write misses incur the power overhead of having
to write the data back into the L2 cache, as well as intro-
ducing increased pressure on the shared bus. Both of these
factors need to be taken into account when considering the
overall cache subsystem power usage.

Figure 7: Global Execution Time Overhead
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Figure 8: Total Cache Subsystem Power Improvement

Benchmark Config 0 Config 1 Config 2 Config 3 Config 4 Config 5

ferret 16.41% 20.84% 23.05% 25.67% 27.59% 27.11%
fft 6.16% 0.98% 1.52% -2.39% -2.02% -6.31%

fluidanimate 13.69% 22.22% 26.11% 29.58% 28.82% 28.51%
lu 4.78% 10.45% 11.25% 11.52% 11.10% 8.55%

radiosity 7.36% 8.85% 13.71% 14.78% 15.25% 14.56%
radix -0.19% 0.36% -0.36% -1.89% -11.30% -29.12%

raytrace 8.60% 15.07% 16.99% 16.56% 18.24% 17.15%
vips 12.95% 20.39% 24.44% 27.19% 26.50% 25.23%
x264 7.72% 12.29% 12.97% 14.05% 18.31% 16.95%

Average 8.61% 12.38% 14.41% 15.01% 14.72% 11.41%

Table 5: Total Cache Power Improvement

Figure 7 provides the execution time across the bench-
mark’s lifetime. The impact of additional bus contention
due to increased write miss transactions is taken into ac-
count, and the impact to the overall run-time can be ob-
served. As one can see, on average there is negligible run-
time overhead when employing Config 0, Config 1, or Config
2, but with the more aggressive Config 4 and Config 5 there
is a small overhead of approximately 0.32% and 0.55%, re-
spectively. The highest overhead was observed in the x264
benchmark, having an increase of 0.96%. Luckily, the write-
through operation itself does not introduce a timing cost for
the processor, as it occurs seamlessly in the background.

With regard to overall cache power efficiency, our pri-
mary ambition for these cutting-edge mobile smartphones,
we were able to observe excellent results. Since we only
use a nominal amount of additional hardware, the impact
of the proposed technique is quite minimal. Overall, the
structures proposed account for only 1155-bytes (≈1.13KB)
of additional storage elements, along with some necessary
routing signals and muxing.

We used CACTI [14] and eCACTI [15] to estimate the
overall power consumption for the entire cache hierarchy,
including the proposed modifications. Furthermore, we take
into account the additional power incurred while doing extra

L2 cache writes (due to write-through operation), as well as
the power associated with the prolonged run-time due to bus
contention. Using this information, we are able to determine
the approximate total cache subsystem power consumption
across the entire run-time for each of the aforementioned
benchmarks.

Figure 8 shows the total cache subsystem power improve-
ment across all six configurations for the complete execution
of each benchmark. A tabular listing is provided in Table 5.
As one can see, there is a continuum across the different
configurations. As one progresses from Config 0 to Config
3, on average the benefits of power optimization increase.
This is due to the increase in read miss snoop minimiza-
tion. However, there is a point of diminishing returns as
the biasing in favor of write-through mode increases in ag-
gressiveness. Continuing on to Config 4 and Config 5, one
can see the power benefits begin to wane. This is due to
the increase in L2 and bus activity due to more frequent
write-backs caused by the aggressive policy. Also, it can
be observed that some applications are particularly suscep-
tible to poor power performance with the more aggressive
configurations. In particular, we found fft and radix to be
particularly susceptible, mainly due to the fact that these al-
gorithms have close to the same number of writes as reads.
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Nevertheless, all six configurations still provide an average
overall improvement to power utilization, and Config 3 ap-
pears to do the best across all benchmarks. The key is to
find the ideal balance between the overhead of write miss
snooping and the reductions in read miss snooping.

6. FUTURE EXTENSIONS
While the architecture presented in this paper assumed

fixed, pre-defined threshold values, it should be noted that
an application-specific approach can also be taken. One
could have the compiler statically analyze a given applica-
tion and determine the ideal (or near-ideal) threshold values
for that particular application. The compiler can then em-
bed this information within the application binary, and upon
the operating system loading that application into the pro-
cessor, the loader can convey these values to the underlying
microarchitecture. In this manner, the threshold values do
not need to remain static for the processor, but rather can
dynamically change on a per-application basis. This would
enable a more fine-grained capability for matching the cache
behavior with a given application, and may yield even fur-
ther power and performance benefits.

7. CONCLUSIONS
As shown, caches contribute a significant amount of the

overall processor power budget. Although much work has
gone into mitigating cache power consumption, mobile pro-
cessors still suffer from large caches that are necessary to
bridge the growing memory latency gap. Moreover, these
smartphones are beginning to enter the multi-core SoC do-
main, and cache coherence will further exacerbate the power
overhead of caches. Mobile cellular processors, being far
more constrained in terms of power consumption and area
constraints, embody a unique usage model that demands
continuous access while having a limited battery life. Ultra-
low-power architectural solutions are required to help meet
these consumer demands.

We have presented a novel architecture for significantly re-
ducing overall cache power consumption in high-performance,
multi-core mobile processors. By using varying configura-
tions, a notable increase in memory performance can be
achieved by enabling complete hardware MESI cache co-
herency when plugged-in or fully-charged, while a signifi-
cant decrease in power usage can be achieved when the user
switches the device into a low-power mode, wherein much of
the read miss snooping overhead can be obviated with lit-
tle impact to performance. This has been demonstrated by
using an extensive and representative set of shared-memory
simulation benchmarks, and six example configurations. The
proposed technique has significant implications for mobile
processors, especially high-performance, power-sensitive de-
vices such as smartphones. It significantly reduces power
consumption while minimally degrading run-time performance,
which in turn will permit full hardware cache coherence to
be integrated into future mobile processors without the as-
sociated power overhead cost.

As embedded mobile processors continue to spread and
become ubiquitous, it is essential to maintain high perfor-
mance, low power, and small size. The proposed architec-
ture fulfills these requirements and enables mobile processors
to continue to mature and be able to handle exceedingly
complex and aggressive applications.
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