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ABSTRACT—This article examines the human face as a
transmitter of expression signals and the brain as a de-
coder of these expression signals. If the face has evolved to
optimize transmission of such signals, the basic facial ex-
pressions should have minimal overlap in their informa-
tion. If the brain has evolved to optimize categorization of
expressions, it should be efficient with the information
available from the transmitter for the task. In this article,
we characterize the information underlying the recogni-
tion of the six basic facial expression signals and evaluate
how efficiently each expression is decoded by the under-
lying brain structures.

The ability to accurately interpret facial expressions is of pri-
mary importance for humans to socially interact with one an-
other (Nachson, 1995). Facial expressions communicate infor-
mation from which one can quickly infer the state of mind of
one’s peers, and adjust one’s behavior accordingly. Facial ex-
pressions are typically arranged into six universally recognized
basic categories (fear, happiness, sadness, disgust, anger, and
surprise; Ekman & Friesen, 1975; Izard, 1971) that are similar
across different backgrounds and cultures (Ekman & Friesen,
1975; Izard, 1971, 1994).
In this article, we examine the basic facial expressions

computationally, as signals in a communication channel be-
tween an encoding face (the transmitter of expression signals)
and a decoding brain (the categorizer of expression signals). We
address three main issues: How is facial information encoded to
transmit expression signals? How is information decoded to
categorize facial expressions? How efficient is the decoding
process?

From the standpoint of signal encoding, different facial ex-
pressions should have minimal overlap in their information:
Ideal signals are encoded orthogonally to one another. To un-
derstand how the brain encodes facial signals, we relied on a
model to benchmark the information transmitted in each of the
six basic expressions (plus neutral), and also to quantify how
these signals overlap.
As a decoder, the brain initially analyzes expression signals

impinging on the retina using a number of quasilinear band-
pass filters, each preferentially tuned to a spatial frequency
band (De Valois & De Valois, 1991). Spatial scales are therefore
good candidates as building blocks for understanding the de-
coding of facial expression information. We applied Bubbles
(Gosselin & Schyns, 2001) to estimate how the brain uses
spatial-scale information to decode and classify the six basic
facial expressions (plus neutral), and also to quantify how the
information in these expressions overlaps.
From the estimates of transmitted and decoded facial infor-

mation, we measured the brain’s efficiency in decoding the fa-
cial expression information that is transmitted.

EXPERIMENT

Participants
Participants were 7 male and 7 female students at Glasgow
University, Scotland. All had normal or corrected-to-normal
vision and were paid for their participation.

Stimuli
Stimuli were produced from 5 male and 5 female faces, each
displaying the six basic facial expressions and neutral (making
a total of 70 stimuli normalized for location of the eyes and
the mouth). Specifically, face stimuli were posed, and the
posers were tutored in producing the correct expressions for the
six basic emotions according to the Facial Action Coding
System (FACS; Ekman & Friesen, 1978). After the images were
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captured, a certified FACS coder examined all the images and
rated them using the FACS system. All 70 stimuli used met the
FACS criteria for the six basic emotional expressions plus
neutral. These images form part of the California Facial Ex-
pressions (CAFE) database (Dailey, Cottrell, & Reilly, 2001).1

Procedure
On each of 8,400 trials, observers saw information from a ran-
domly chosen face. The image features that were presented were
randomly sampled from five spatial scales, using scale-adjusted
Gaussian windows. Specifically, the original face picture was
decomposed into five nonoverlapping spatial frequency band-
widths of one octave each (120–60, 60–30, 30–15, 15–7.5, and
7.5–3.8 cycles/image; the remaining bandwidth served as
constant background). Each bandwidth was independently
sampled with a number of randomly positioned Gaussian win-
dows adjusted at each scale to reveal 6 cycles per window. The
sampled information was then recombined to produce a sparse
stimulus (see Fig. 1; for details of the Bubbles procedure, see
Gosselin & Schyns, 2001, and Schyns, Bonnar, & Gosselin,
2002). The advantage of sampling information across scales is
that local and global face cues for face processing are presented
simultaneously (see Fig. 1; see Oliva & Schyns, 1997, for dis-
cussions).
Observers categorized each sparse stimulus by pressing a

labeled key on a computer keyboard. Stimuli remained on
screen until response. The sampling density (i.e., the total
number of Gaussian windows) was adjusted on each trial, in-
dependently for each expression, to maintain 75% correct
categorization.
To benchmark the information available for performing the

task, and therefore to be able to rank human use of information
for each expression and scale, we built a model observer. The
model was submitted to the same experiment as the human
observers, using the average values derived from our human
observers as parameters (i.e., accuracy for each expression,
number of information samples per expression, total number of
trials). However, we added to the original stimulus an adjustable
density of white noise, independently for each expression, to
produce the required percentage of errors for each expression
(Fig. 1 illustrates the stimulus composition for the model). For
each trial, the model determined the Pearson correlation be-
tween the sparse input and each of the 70 possible original
images revealed with the same bubble mask. Its categorization

response was the category of the original image with the highest
correlation to the sparse input (a winner-take-all scheme). Be-
cause all pixels of the 70 images were represented in memory,
the model could use all information to classify the input ex-
pressions. It therefore provides a benchmark of the available
facial expression information.

Results and Discussion
Following the experiment and simulation, we performed the
same analysis for the human and model observers. Indepen-
dently for each expression, scale, and pixel, we first computed
the number of times each pixel led to a correct categorization
over the number of times the pixel was presented. We then
identified which of these probabilities differed significantly
from the average ( p < .05; henceforth, diagnostic pixel proba-
bilities). For each expression, we computed these diagnostic
pixel probabilities independently for the 7 male and 7 female
observers and the 5 male and 5 female stimuli. Because there
were no significant differences between genders (in either ob-
servers or expressive faces), we pooled the data.
For each expression, the diagnostic pixel probabilities cir-

cumscribe a subspace in the input space: the information that is
used to classify the expression. This subspace can easily be
turned into a diagnostic filter, across spatial scales and infor-
mation locations, that summarizes the ‘‘information-selecting
strategy’’ for classifying a given facial expression. We applied
this filter on the original face stimuli to reveal the effective
information for each facial expression.2 Figure 2 presents these
effective faces for the human and model observers. Using the
human and model diagnostic filtering functions, we examined
how the brain encodes and decodes facial expression signals.
If the human face has evolved as an efficient transmitter of

facial expression signals, the filtering functions for the different
expressions should generally be minimally correlated with one
another, to minimize overlap of encoded signals. Note that the
model used all of the information available in the 70 stimuli to
categorize their expressions. We could therefore estimate how
distinguishable each expression was by calculating the Pearson
correlations among the model diagnostic filtering functions.3

Table 1 reveals that the correlations were generally low (m 5
.28, s 5 .34), with anger being quasi-orthogonal to happiness
and inversely correlated with fear. We therefore conclude that
the brain transmits facial expression signals with generally low

1The images can be viewed on the Web at http://www.cs.ucsd.edu/users/gary/
CAFE. Although we are aware that posed expressions are made under cognitive
control and might not always activate exactly the same muscle groups as
spontaneous facial expressions of emotions, we feel that this does not negate the
validity of FACS-coded faces as stimuli to start a scientific investigation of
emotion perception (e.g., Adolphs, Tranel, Damasio, & Damasio, 1994; Adolphs
et al., 1999; Blair, Morris, Frith, Perrett, & Dolan, 1999; Morris, DeGelder,
Weiskrantz, & Dolan, 2001; Phillips et al., 1997; Vuilleumier, Armony, Driver,
& Dolan, 2003; Winston, Vuilleumier, & Dolan, 2003). The use of posed ex-
pressions only constrains the generalization of the results.

2The diagnostic filter comprises five masks (one per spatial frequency
bandwidth), each pixel of which can take one of two possible values: 1 if it is
diagnostic, 0 if it is not. To apply the diagnostic filter to a face, we decomposed
the face into five bandwidths, multiplied each bandwidth by its smoothed di-
agnostic mask, and recombined the partial products into an effective face. This
operation would be illustrated in Figure 1 if the random Gaussian windows
represented the diagnostic pixels.

3To correlate the diagnostic filtering functions, we vectorized the five band-
widths of diagnostic filters for each expression and correlated the resulting
vectors with each other. These calculations produced the values in Tables 1 and
2 and Figure 2.
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overlap in their information. Note that the correlations them-
selves are based on the locations of the diagnostic information
for the expressions, not on the expression information itself.
Hence, our correlations values probably overestimate the cor-
relations between the expressions. For example, although the
diagnostic region is around the mouth area for both the happy
and the surprise expressions, the actual information for these
two expressions is quite different (open mouth with teeth in
happy, empty open mouth in surprise).
On the receiving end, if the human brain has evolved to ef-

ficiently decode facial expressions, then its decoding routines

should seek to minimize remaining ambiguities (technically, to
orthogonalize the input classes; see Barlow, 1985, for a generic
version of this point). For example, the expressions of fear and
surprise are transmitted with highest overlap (.87) and are
therefore ambiguous: Information from the eyes and information
from the mouth are used in both transmissions (compare the
human vs. model effective faces in Fig. 2). Decoding routines
should seek to further decorrelate these signals to reduce their
overlap and enhance categorization performance.
Interestingly, analyses of the human filtering functions re-

vealed that they had lower correlations with each other overall

Fig. 1. Illustration of the stimulus-generation process. The upper portion of the figure shows how the bubbled stimuli were
generated. First, as shown in the top row, each original face was decomposed into five spatial frequency bandwidths of one
octave each (120 to 7.5 cycles/image). Each bandwidth was then independently sampled with randomly positioned Gaussian
windows (0.36 to 5.1 cycles/deg of visual angle). The second row illustrates the windows in each bandwidth, and the third row
shows the resulting sampling of facial information. The sum of information samples across scales (plus a constant, nonsam-
pled, and coarsest sixth scale) produced an experimental stimulus (e.g., the right-most picture in the third row). The bottom
row illustrates how the bubbled stimuli were modified to be used for the model. White noise was added to the original picture,
which was then decomposed into the five spatial scales and sampled with Gaussian windows to produce one experimental
stimulus.
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than the model filtering functions (Table 2; m 5 .12, s 5 .25),
with anger, fear, and sadness being quasi-orthogonal to all other
expressions. In the case of fear and surprise, humans use de-
correlated subsets (.25) of the overlapped (.87) available in-
formation (eyes for fear and mouth for surprise; cf. the human vs.
model effective faces on Fig. 2). This confirms that the decoding
structures of the brain further disambiguate (i.e., orthogonalize)
dissimilar inputs.
The results thus far show that the brain transmits facial ex-

pression signals with low overlap, but also that these are further
decorrelated when categorized. We now turn to the relationship
between transmitted and decoded facial expression signals to
estimate the sensitivity of the decoder to the statistic of the
transmitted information. To this end, we calculated the Pearson
correlation between the human and model filtering functions for

each facial expression. The positive correlations (m5 .52, s5
.23; see Fig. 2) indicate a sensitivity of decoding brain struc-
tures to the statistics of the information available, a desirable
property in recognition tasks that have been controlled by
strong evolutionary pressures. The sensitivity to information
statistics can be finely measured for each facial feature with a
pixel-wise comparison of the human and model filtering func-
tions, which reflects the optimality of information use.
The optimality of information use is defined here as the log-

arithm4 of a pixel-wise division of the human filtering function
by that of the model. The results of this analysis are shown in
Figure 3. Light blue corresponds to values close to 0, indicating
optimal use of the information available to categorize a given
expression (e.g., the mouth in the surprised expression). Dark
blue corresponds to values below 0, indicating a suboptimal use
of the available information (e.g., the left eye in the happy ex-
pression, parts of the mouth in the fearful expression). Red and
yellow regions (positive values) indicate a greater use by hu-
mans than model observers of information that is not optimal for
the task (a reflection of human biases; e.g., bias to the inter-
section of the lower forehead and eyebrows in the anger ex-
pression and bias to the region surrounding the nose in the
disgust expression). Optimality can be further assessed by the
spread of the distribution of optimality values around 0 (see Fig. 3).

Fig. 2. Effective faces representing diagnostic filtering functions for the human (top) and model (bottom) observers. For each expression, we
derived an independent diagnostic filtering function by locating, independently at each scale, the pixels leading to performance significantly (p<
.05) above 75% correct. We smoothed the resulting scale-specific filters and multiplied them by a sample stimulus image to produce each of the
images shown here. The numbers represent the Pearson correlations between the estimated diagnostic filtering functions of the human andmodel
observers. Higher correlations indicate higher adaptation to image information statistics. All reported correlations are between the filtering
functions (not shown here), not between the applications of the filters to specific faces (i.e., the effective faces). These correlations correspond to
an upper bound, and might be lower if the filters were more thoroughly characterized (e.g., with orientation).

TABLE 1

Pearson Correlations of the Model Filtering Functions

Expression Neutral Happy Surprised Fearful Disgusted Angry Sad

Neutral 1 .34 .14 .12 .35 .31 .30
Happy 1 .71 .69 .71 !.09 .29
Surprised 1 .87 .54 !.24 0
Fearful 1 .66 !.36 !.08
Disgusted 1 !.12 .25
Angry 1 .57
Sad 1 4We used logarithms to compress the outcomes of the division—that is, to

prevent small values in the denominator from causing misleadingly large values.
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The larger the spread (e.g., happy), the less optimal the use of
information is. The direction of the spread toward positive or
negative values indicates whether the trend is for biased or
suboptimal use, respectively.

CONCLUSIONS

Our comparative analyses of the diagnostic filtering functions of
the human and the model observers suggest that the face, as a
transmitter, evolved to send expression signals that have low
correlations with one another and that the brain, as a decoder,
further decorrelates and therefore improves these signals (i.e.,
the effective faces in Fig. 2). Such decorrelated signals (the
human filtering functions) constitute optimized inputs that can
be used to isolate the specific response of specialized brain
structures to the facial features transmitting facial expression
signals (Blair, Morris, Frith, Perrett, & Dolan, 1999; Morris
et al., 1996; Phillips et al., 1997; Vuilleumier, Armony, Driver,
& Dolan, 2003; Winston, Vuilleumier, & Dolan, 2003). A direct
practical implication of our results is that functional magnetic

resonance imaging studies with effective faces (because they
are decorrelated input signals) could in principle tease apart the
brain structures (if any) that are specialized for the processing
of a specific expression (see Luan Phan, Wager, Taylor, &
Liberzon, 2002, for a discussion).
From a theoretical viewpoint, the idea that the face has

evolved to transmit orthogonal signals raises interesting ques-
tions about how the expression of emotion signals and the de-
velopment of facial muscle groups have co-evolved. In
principle, the repertoire of emotion signals to be transmitted by
the face has been evolutionarily constrained by the skeletal and
muscular movements of the face as an encoder, by pressures
such as the evolutionary advantage of decoding expressions
from long viewing distances, and by the generic computational
requirement of transmitting decorrelated signals. A promising
research avenue could derive the categorization threshold of
each facial expression in terms of viewing distance and deter-
mine the skeletal and muscular movements that are involved in
these transmissions.
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