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But first…
Hal White passed away March 31st, 2012

• Hal was “our theoretician of neural
nets,” and one of the nicest guys I
knew.

• His paper on “A heteroskedasticity-
consistent covariance matrix
estimator and a direct test for
heteroskedasticity” has been cited
15,805 times, and led to him being
shortlisted for the Nobel Prize.

• But his paper with Max Stinchcombe:
“Multilayer feedforward networks are
universal approximators” is his
second most-cited paper, at 8,114
cites.
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But first…
• In yet another paper (in Neural

Computation, 1989), he wrote

“The premise of this article is that
learning procedures used to train
artificial neural networks are
inherently statistical techniques. It
follows that statistical theory can
provide considerable insight into the
properties, advantages, and
disadvantages of different network
learning methods…”

This was one of the first papers to make
the connection between neural
networks and statistical models - and
thereby put them on a sound
statistical foundation.
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We should also remember…
Dave E. Rumelhart passed away

on March 13, 2011

• Many had invented back
propagation; few could
appreciate as deeply as Dave
did what they had when they
discovered it.
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What is backpropagation, and why
is/was it important?

• We have billions and billions of neurons
that somehow work together to create the
mind.

• These neurons are connected by 1014 - 1015

synapses, which we think encode the
“knowledge” in the network - too many for
us to explicitly program them in our
models

• Rather we need some way to indirectlyindirectly
set them via a procedure that will achieve
some goal by changing the synaptic
strengths (which we call weights).

• This is called learninglearning in these systems.
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Learning: A bit of history

• Frank Rosenblatt studied a simple version of a neural net
called a perceptron:
• A single layer of processing
• Binary output
• Can compute simple things like (some) boolean functions (OR,

AND, etc.)
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Learning: A bit of history

net inputnet input      

output   output   
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Learning: A bit of history
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Learning: A bit of history

• Rosenblatt (1962) discovered a learning rule for perceptrons called
the perceptron convergence procedure.

• Guaranteed to learn anything computable (by a two-layer
perceptron)

• Unfortunately, not everything was computable (Minsky & Papert,
1969)
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Perceptron Learning Demonstration

• Output activation rule:
• First, compute the net input to the output unit:
!wixi = net

• Then, compute the output as:
    If net " # then output = 1

               else  output = 0

net input   net input   

output   output   
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Perceptron Learning Demonstration

• Output activation rule:
• First, compute the net input to the output unit:

!wixi = net
    If net " # then output = 1

               else  output = 0
• Learning rule:

If output is 1 and should be 0, then lower weights to active inputs
and raise the threshold (#)

If output is 0 and should be 1, then raise weights to active inputs
and lower the threshold (#)

(“active input” means xi = 1, not 0)
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• STOP HERE FOR DEMO
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Characteristics of perceptron learning

• Supervised learning: Gave it a set of input-output examples
for it to model the function (a teaching signal)

• Error correction learning: only correct it when it is wrong.

• Random presentation of patterns.

• Slow! Learning on some patterns ruins learning on others.
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Perceptron Learning Made Simple

• Output activation rule:
• First, compute the net input to the output unit:
!wixi = net

    If net " # then output = 1
    else output = 0

• Learning rule:
If output is 1 and should be 0, then lower weights to

active inputs and raise the threshold (#)
If output is 0 and should be 1, then raise weights to

active inputs and lower the threshold (#)
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Perceptron Learning Made Simple
• Learning rule:

If output is 1 and should be 0, then lower weights to active inputs
and raise the threshold (#)

If output is 0 and should be 1, then raise weights to active inputs
and lower the threshold (#)

• Learning rule:

wi(t+1) = wi(t) + !*(teacher - output)*xi

(! is the learning rate)

• This is known as the delta rule because learning is based
on the delta (difference) between what you did and what
you should have done: $ = (teacher - output)
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Problems with perceptrons

• The learning rule comes with a great guarantee: anything a
perceptron can compute, it can learn to compute.

• Problem: Lots of things were not computable,

     e.g., XOR (Minsky & Papert, 1969)

• Minsky & Papert said:
• if you had hidden units, you could compute any boolean function.

• But no learning rule exists for such multilayer networks, and we
don’t think one will ever be discovered.
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Problems with perceptrons
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Aside about perceptrons

• They didn’t have hidden units - but Rosenblatt assumed
nonlinear preprocessing!

• Hidden units compute features of the input

• The nonlinear preprocessing is a way to choose features by
hand.

• Support Vector Machines essentially do this in a principled
way, followed by a (highly sophisticated) perceptron
learning algorithm.
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Enter Rumelhart, Hinton, & Williams (1985)

• Discovered a learning rule for networks with hidden units.

• Works a lot like the perceptron algorithm:

• Randomly choose an input-output pattern

• present the input, let activation propagate through the network

• give the teaching signal

• propagate the error back through the network (hence the name
back propagation)

• change the connection strengths according to the error
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Enter Rumelhart, Hinton, & Williams (1985)

• The actual algorithm uses the chain rule of calculus to go downhill in
an error measure with respect to the weights

• The hidden units must learn features that solve the problem

. . .. . .

. . .. . .

ActivationActivation ErrorError

INPUTSINPUTS

OUTPUTSOUTPUTS

Hidden UnitsHidden Units
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XOR

• Here, the hidden units learned AND and OR - two features
that when combined appropriately, can solve the problem

Back PropagationBack Propagation  
LearningLearning

Random NetworkRandom Network XOR NetworkXOR Network

ANDANDOROR
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XOR

But, depending on initial conditions, there are an infinite
number of ways to do XOR - backprop can surprise you
with innovative solutions.

Back PropagationBack Propagation  
LearningLearning

Random NetworkRandom Network

XOR NetworkXOR Network

ANDANDOROR
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Why is/was this wonderful?

• Efficiency

• Learns internal representations

• Learns internal representations

• Learns internal representations

• Generalizes to recurrent networksrecurrent networks
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Hinton’s Family Trees example

• Idea: Learn to represent relationships between people that
are encoded in a family tree:
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Hinton’s Family Trees example

• Idea 2: Learn distributed representations of concepts:
     localist outputs

Learn: features of these
entities useful for 

solving the task

Input:   localist people localist relations
Localist: one unit “ON” to represent each item
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People hidden units: Hinton diagram

• What does the unit 1 encode?

What isWhat is  unit 1 encoding?unit 1 encoding?
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People hidden units: Hinton diagram

• What does unit 2 encode?

What isWhat is  unit 2 encoding?unit 2 encoding?
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People hidden units: Hinton diagram

• Unit 6?

What isWhat is  unitunit  6 encoding?6 encoding?
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People hidden units: Hinton diagram

When all three are on,When all three are on,  these units pick out Christopher and Penelope:these units pick out Christopher and Penelope:

Other combinations pick out other parts of the treesOther combinations pick out other parts of the trees
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Relation units

What does the lower middle one code?

Back propagation, 25 years laterBack propagation, 25 years later 3131

Lessons
• The network learns features in the service of the

task - i.e., it learns features on its own.

• This is useful if we don’t know what the features
ought to be.

• Can explain some human phenomena
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Another example

• In the next example(s), I make two points:

• The perceptron algorithm is still useful!

• Representations learned in the service of the task can explain the
“Visual Expertise Mystery”
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The Face Processing SystemThe Face Processing System
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The Gabor Filter Layer
• Basic feature: the 2-D Gabor wavelet filter (Daugman, 85):

• These model the processing in early visual areas

Convolution

*

Magnitudes

Subsample in
a 29x36
grid
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Principal Components Analysis

• The Gabor filters give us 40,600 numbers

• We use PCA to reduce this to 50 numbers

• PCA is like Factor Analysis: It finds the underlying
directions of Maximum Variance

• PCA can be computed in a neural network through a
competitive Hebbian learning mechanism

• Hence this is also a biologically plausible processing step

• We suggest this leads to representations similar to those in
Inferior Temporal cortex
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How to do PCA with a neural network
(Cottrell, Munro & Zipser, 1987; Cottrell & Fleming 1990; Cottrell & Metcalfe 1990;

O’Toole et al. 1991)

! A self-organizing network that learns whole-object representations

 (features, Principal Components,  (features, Principal Components, HolonsHolons, , eigenfaceseigenfaces))

...

Holons

(Gestalt layer)

Input fromInput from
Perceptual LayerPerceptual Layer
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How to do PCA with a neural network
(Cottrell, Munro & Zipser, 1987; Cottrell & Fleming 1990; Cottrell & Metcalfe 1990;

O’Toole et al. 1991)

! A self-organizing network that learns whole-object representations

 (features, Principal Components,  (features, Principal Components, HolonsHolons, , eigenfaceseigenfaces))
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Holons
• They act like face cells (Desimone, 1991):

• Response of single units is strong despite occluding eyes, e.g.

• Response drops off with rotation

• Some fire to my dog’s face

• A novel representation: Distributed templates --

• each unit’s optimal stimulus is a ghostly looking face (template-like),

• but many units participate in the representation of a single face (distributed).

• For this audience: Neither exemplars nor prototypes!

• Explain holistic processing:

• Why? If stimulated with a partial match, the  firing represents votes for
this template:

    Units “downstream” don’t know what caused this unit to fire.

     (more on this later…)
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The Final Layer: Classification
(Cottrell & Fleming 1990; Cottrell & Metcalfe 1990; Padgett & Cottrell 1996; Dailey & Cottrell,

1999; Dailey et al. 2002)

The holistic representation is then used as input to a
categorization network trained by supervised learning.

• Excellent generalization performance demonstrates the
sufficiency of the holistic representation for recognition

Holons

CategoriesCategories

...

Output: Cup, Can, Book, Greeble, Face, Bob, Carol, Ted, Happy, Sad, Afraid, etc.Output: Cup, Can, Book, Greeble, Face, Bob, Carol, Ted, Happy, Sad, Afraid, etc.

Input fromInput from
Perceptual LayerPerceptual Layer
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The Final Layer: Classification

• Categories can be at different levels: basic, subordinate.

• Simple learning rule (~delta rule). It says (mild lie here):

• add inputs to your weights (synaptic strengths) when
you are supposed to be on,

• subtract them when you are supposed to be off.

• This makes your weights “look like” your favorite patterns
– the ones that turn you on.

• When no hidden units => No back propagation of error.

• When hidden units: we get task-specific features (most
interesting when we use the basic/subordinate distinction)
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Facial Expression Database
• Ekman and Friesen quantified muscle movements (Facial Actions)

involved in prototypical portrayals of happiness, sadness, fear, anger,
surprise, and disgust.
• Result: the Pictures of Facial Affect Database (1976).
• 70% agreement on emotional content by naive human subjects.

• 110 images, 14 subjects, 7 expressions.

Anger, Disgust, Neutral, Surprise, Happiness (twice), Fear, and Sadness 
This is actor “JJ”: The easiest for humans (and our model) to classify
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Results (Generalization)

• Kendall’s tau (rank order correlation):  .667,
p=.0441

• Note: This is an emergent property of the model!

ExpressionExpression Network % CorrectNetwork % Correct Human % AgreementHuman % Agreement

HappinessHappiness 100.0%100.0% 98.7%98.7%

SurpriseSurprise 100.0%100.0% 92.4%92.4%

DisgustDisgust 100.0%100.0% 92.3%92.3%

AngerAnger 89.2%89.2% 88.9%88.9%

SadnessSadness 82.9%82.9% 89.2%89.2%

FearFear 66.7%66.7% 87.7%87.7%

AverageAverage 89.9%89.9% 91.6%91.6%
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Correlation of Net/Human Errors

• Like all good Cognitive Scientists, we like our
models to make the same mistakes people do!

• Networks and humans have a 6x6 confusion
matrix for the stimulus set.

• This suggests looking at the off-diagonal terms:
The errors

• Correlation of off-diagonal terms: r = 0.567. [F
(1,28) = 13.3; p = 0.0011]

• Again, this correlation is an emergent property of
the model: It was not told which expressions were
confusing.
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Examining the Net’s Representations
• We want to visualize “receptive fields” in the network.

• But the Gabor magnitude representation is noninvertible.

• We can learn an approximate inverse mapping, however.

• We used linear regression to find the best linear
combination of Gabor magnitude principal components for
each image pixel.

• Then projecting each unit’s weight vector into image space
with the same mapping visualizes its “receptive field.”
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Examining the Net’s Representations

• The “y-intercept” coefficient for each pixel is simply the
average pixel value at that location over all faces, so
subtracting the resulting “average face” shows more
precisely what the units attend to:

• Apparently local features appear in the global templates.
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Morph Transition Perception

• Morphs help psychologists study categorization
behavior in humans

• Example: JJ Fear to Sadness morph:

• Young et al. (1997) Megamix: presented images
from morphs of all 6 emotions (15 sequences) to
subjects in random order, task is 6-way forced
choice button push.

    0%       10%      30%       50%      70%      90%     100%
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Results: classical Categorical Perception:
 sharp boundaries…

    …and higher discrimination of pairs of images
when they cross a perceived category boundary

iness Fear Sadness Disgust Anger Happ-Surprise

PERCENT CORRECT DISCRIMINATIONPERCENT CORRECT DISCRIMINATION

6-WAY ALTERNATIVE FORCED CHOICE6-WAY ALTERNATIVE FORCED CHOICE
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Results: Non-categorical RT’s
• “Scalloped” Reaction Times

iness Fear Sadness Disgust Anger Happ-Surprise

REACTION TIMEREACTION TIME

BUTTONBUTTON  PUSHPUSH
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Results: More non-categorical effects

Mixed-In Expression Detection
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• Young et al. Also had subjects rate 1st, 2nd, and 3rd most
apparent emotion.

• At the 70/30 morph level, subjects were above chance at
detecting mixed-in emotion. These data seem more
consistent with continuous theories of emotion. Back propagation, 25 years laterBack propagation, 25 years later 5858

Modeling Megamix

• 1 trained neural network = 1 human subject.

• 50 networks, 7 random examples of each expression for
training, remainder for holdout.

• Identification = average of network outputs

• Response time = uncertainty of maximal output (1.0 -
ymax).

• Mixed-in expression detection: record 1st, 2nd, 3rd largest
outputs.

• Discrimination: 1 – correlation of layer representations

• We can then find the layer that best accounts for the data
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Modeling Six-Way Forced Choice

• Overall correlation r=.9416, with NO FIT PARAMETERS!

iness Fear Sadness Disgust Anger Happ-Surprise
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Model Discrimination Scores

• The model fits the data best at a precategorical layer:
The layer we call the “object” layer; NOT at the
category level

iness Fear Sadness Disgust Anger Happ-Surprise

PERCENT CORRECT DISCRIMINATIONPERCENT CORRECT DISCRIMINATION

HUMANHUMAN

MODELMODEL
OUTPUTOUTPUT
LAYERLAYER
R=0.36R=0.36

MODELMODEL
OBJECTOBJECT
LAYERLAYER
R=0.61R=0.61



Back propagation, 25 years laterBack propagation, 25 years later 6161

Discrimination

• Classically, one requirement for “categorical perception” is
higher discrimination of two stimuli at a fixed distance
apart when those two stimuli cross a category boundary

• Indeed, Young et al. found in two kinds of tests that
discrimination was highest at category boundaries.

• The result that we fit the data best at a layer before any
categorization occurs is significant: In some sense, the
category boundaries are “in the data,” or at least, in our
representation of the data.
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Outline

• An overview of our facial expression recognition
system.

• The internal representation shows the model’s
prototypical representations of Fear, Sadness, etc.

• How our model accounts for the “categorical” data

• How our model accounts for the “non-categorical”
data

• Discussion

• Conclusions for part 1
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Reaction Time: Human/Model
iness Fear Sadness Disgust Anger Happ-Surprise

Correlation between model & data: .6771, p<.001Correlation between model & data: .6771, p<.001

HUMANHUMAN  SUBJECTS REACTION TIMESUBJECTS REACTION TIME

MODEL REACTION TIME (1 MODEL REACTION TIME (1 - - MAX_OUTPUT)MAX_OUTPUT)
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Mix Detection in the Model
Mixed-In Expression Detection
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Can the network account for the continuous data as well as the
categorical data?  YES.
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Human/Model Circumplexes
These are derived from similarities between images using

non-metric Multi-dimensional scaling.

For humans: similarity is correlation between 6-way forced-
choice button push.

For networks: similarity is correlation between 6-category
output vectors.
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Outline

• An overview of our facial expression recognition
system.

• How our model accounts for the “categorical” data

• How our model accounts for the “two-
dimensional” data

• The internal representation shows the model’s
prototypical representations of Fear, Sadness, etc.

• Discussion

• Conclusions for part 1

Back propagation, 25 years laterBack propagation, 25 years later 6767

Discussion
• Our model of facial expression recognition:
• Performs the same task people do
• On the same stimuli
• At about the same accuracy

• Without actually “feeling” anything, without any access to
the surrounding culture, it nevertheless:
• Organizes the faces in the same order around the

circumplex
• Correlates very highly with human responses.
• Has about the same rank order difficulty in classifying

the emotions
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Discussion

• The discrimination correlates with human results most
accurately at a precategorization layer: The discrimination
improvement at category boundaries is in the
representation of data, not based on the categories.

• These results suggest that for expression recognition, the
notion of “categorical perception”  simply is not necessary
to explain the data.

• Indeed, most of the data can be explained by the
interaction between the similarity of the representations
and the categories imposed on the data: Fear faces are
similar to surprise faces in our representation – so they are
near each other in the circumplex.
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Conclusions from this part of the talk
• The best models perform the same task people do
• Concepts such as “similarity” and “categorization” need to

be understood in terms of models that do these tasks
• Our model simultaneously fits data supporting both

categorical and continuous theories of emotion
• The fits, we believe, are due to the interaction of the way

the categories slice up the space of facial expressions,
• and the way facial expressions inherently resemble one

another.
• It also suggests that the continuous theories are correct:

“discrete categories” are not required to explain the data.
• We believe our results will easily generalize to other visual

tasks, and other modalities.
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Backprop, 25 years later

• Backprop is important because it was the first relatively

efficient method for learning internal representations

• Recent advances have made deeper networks possible

• This is important because we don’t know how the brain

uses transformations to recognize objects across a wide

array of variations (e.g., the Halle Berry neuron)

7171
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• E.g., the “Halle Berry” neuron…


