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ABSTRACT

Learning a sequence classifier means learning to predict a
sequence of output tags based on a set of input data items.
For example, recognizing that a handwritten word is “cat”,
based on three images of handwritten letters and on gen-
eral knowledge of English letter combinations, is a sequence
classification task. This paper describes a new two-stage
approach to learning a sequence classifier that is (i) highly
accurate, (ii) scalable, and (iii) easy to use in data mining ap-
plications. The two-stage approach combines support vector
machines (SVMs) and conditional random fields (CRFs). It
is (i) highly accurate because it benefits from the maximum-
margin nature of SVMs and also from the ability of CRFs
to model correlations between neighboring output tags. It
is (ii) scalable because the input to each SVM is a small
training set, and the input to the CRF has a small num-
ber of features, namely the SVM outputs. It is (iii) easy
to use because it combines existing published software in a
straightforward way. In detailed experiments on the task of
recognizing handwritten words, we show that the two-stage
approach is more accurate, or faster and more scalable, or
both, than leading other methods for learning sequence clas-
sifiers, including max-margin Markov networks (M3Ns) and
standard CRFs.

Categories and Subject Descriptors

H.2.8 [Database management]: Database applications—
data mining.

General Terms

Algorithms.
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Conditional random fields, support vector machines, sequence
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1. INTRODUCTION
A highly active and successful direction of research in ma-

chine learning in the last seven years concerns methods for
what is called structured learning [11, 16, 18, 17, 15, 5].
Structured learning means learning to predict outputs that
have internal structure. This structure can be modeled,
and, to achieve high predictive accuracy, it must be mod-
eled. Learning to predict a sequence of output tags, given
a sequence of input data items, is an example of a struc-
tured learning problem. Specifically, suppose the input is a
sequence of images where each image is a bitmap of a hand-
written letter. A traditional supervised learning approach
is to train a function that can recognize the letter encoded
by each image separately. In this traditional approach, the
trained classifier recognizes each letter in isolation, based
only on the information available in the corresponding im-
age. In a structured learning approach, given the sequence
of images representing the letters in a word, a single trained
model recognizes all the letters of the word, using all the
input images and using knowledge learned about which let-
ters tend to be adjacent in English. For example, suppose
the word to be recognized is “fern.” The handwritten third
and fourth letters may well be almost identical, so a tradi-
tional classifier might recognize this word as “fenn” or “ferr”
or “fenr”. A sequence classifier would use probabilistic con-
straints between neighboring output letters to know that
“fern” is more likely than the alternatives, even though the
alternatives are an equally good fit to the input data at the
level of individual letters.

Research on structured learning has seen great progress,
with sequence classification as its most important and suc-
cessful subfield. Indeed, the original paper on conditional
random fields (CRFs) has been cited over 1100 times since
it was published in 2001 [11]. However, technology transfer
from basic research to applications has been limited so far.
Accelerating this technology transfer is the goal of this pa-
per. We show that existing software that is high in quality
and easy to use, specifically the well-known SVM package
named LIBSVM [3] and a new CRF package named CRF-
SGD [1], can be used together to achieve high accuracy and
high speed on a sequence classification task that so far has
been addressed only using complex custom methods that are
effectively out of reach for practitioners.

In other words, the goal of the work described here is to
show how to benefit from state-of-the-art methods in ma-
chine learning by combining them in an uncomplicated way.
Frank Lloyd Wright once wrote “‘think simple’ as my old
master used to say–meaning reduce the whole of its parts



into the simplest terms, getting back to first principles.” Our
goal in this paper is to combine multiple theoretical ideas in
order to obtain one easy-to-use high-performance method.
Following the principle of reducing the whole of its parts
into the simplest terms, we reduce the problem of learning
a sequence classifier into two subproblems.

The new learning framework is called a two-stage SVM/CRF
method. It simplifies ideas introduced previously under the
name max-margin Markov networks (M3Ns) [16]. Essen-
tially, we first use SVMs to learn to predict the labels of in-
dividual input sequence data items. Then, we use a CRF to
predict the sequence of all output labels, where the input to
the CRF is the outputs of the SVMs applied to the inputs.1

The two-stage method gains high accuracy from two comple-
mentary strengths: margin-maximization approaches can be
more accurate than likelihood-maximization approaches as
discriminative classifiers, and learning correlations between
neighboring output labels helps resolve ambiguities.

Because our goal is to present a method that practition-
ers can use easily in multiple other applications, our exper-
iments use off-the-shelf software. As an implementation of
SVMs, we use the LIBSVM package [3]. As an implemen-
tation of CRFs, we use the very recent CRFSGD package
[1]. The latter software is especially interesting, and fast,
because it solves the numerical optimization problem at the
core of CRFs by stochastic gradient descent, following but
simplifying much recent research [19].

In experiments we compare the two-stage method against
three baseline methods. The first two baselines treat the
problem as unstructured; they are standard logistic regres-
sion (LR) and SVMs [3]. The third baseline does not use the
margin-maximization idea; it is a standard CRF classifier.
In addition to the two-stage SVM/CRF approach, we also
investigate a similar two-stage LR/CRF method. Previous
studies have shown that different sets of feature-functions
lead to widely varying accuracy for CRFs [10]. Hence we
investigate a range of alternative sets of feature-functions.

2. THE TWO-STAGE SVM/CRF METHOD
The M3N method combines maximum-margin and output-

correlation constraints into a single quadratic programming
optimization problem [16]. In addition to the mathematical
challenges of combining these two types of constraints, this
approach is computationally intensive [13], although algo-
rithms that are faster than the original M3N method have
been proposed [17]. The two-stage approach that we in-
troduce has an intuitive rationale that is similar to that of
previous max-margin sequence prediction methods, but the
new approach is notably simpler mathematically and com-
putationally.

In our approach, first SVMs are trained to predict the la-
bel of each input sequence element; this is a standard multi-
class supervised learning task. Second, one CRF is trained
to predict the output sequence of labels using as its input the
outputs from the previously trained SVMs. The intuition is
that both learning approaches are somewhat orthogonal in
their advantages, so a combination of them can yield supe-
rior results.

1In previous work, the outputs of other learning methods
have been used as the input to an SVM [6, 12], but our
approach is the opposite: the output of multiple SVMs is
used as the input to another learning method.

During SVM training, the goal is to learn each class based
on each sequence element (i.e. data item or data point) and
its label in the training set, by maximizing the separation
between data points with labels in the same class and other
data points. Many studies have shown that SVMs tend to
obtain superior results, compared to other classifiers, for pre-
dicting individual labels. This advantage of SVMs stems
from their ability to use high-dimensional feature spaces via
kernels, and from theoretical guarantees on generalization
ability [16]. However, an important drawback is that it is
typically hard to choose the settings for an SVM (in partic-
ular, the best value for the soft-margin penalty C) that will
yield obtain optimum results. The most common way to
choose settings is to use a validation set that is independent
from the training and testing sets.

Given a data point in the test set, the output of the trained
SVMs is a vector of scores. In the second stage of our
approach, this vector is used as the input attributes for a
CRF classifier. Traditionally, a feature-function for a CRF
is based on one or more data points, and one label or two
adjacent labels. Our proposed new type of feature-function
is based on a prediction vector of scores for a data point,
instead of directly on the attributes of the data point. Es-
sentially, the two-stage approach uses SVMs as a feature
induction method, in order to allow a CRF to learn a better
overall classifier.

Let X be a set of input sequences and let Y be the corre-
sponding set of sequences of labels. The data (X, Y ) consist
of samples (x̄i, ȳi) for i = 1, ..., n. Each sample (x̄i, ȳi) con-
sists of L(i) data points and their labels. That is

(x̄i, ȳi) = 〈(xi1, yi1), (xi2, yi2), ..., (xiL(i), yiL(i))〉.

A label yij can belong to one of c different classes, and each
input data point xij can have p dimensions, where p is the
number of pixels in the image of one character for example.
We assume that each dimension can have one of v values.

Our experiments use an optical character recognition (OCR)
dataset compiled by Kassel [9] and standardized by Taskar
[16], who performed image segmentation to separate the
characters in each word, rasterization, and normalization of
each character. Previous papers do not mention any further
data manipulation such as dimensionality reduction. It is
well known that dimensionality reduction can be very im-
portant in image processing, but we do not investigate it
here.

3. MULTICLASS CLASSIFIERS
For multiclass classification SVMs can be used in either

one-against-all or one-against-one fashion. With the one-
against-all technique, each class is trained separately against
the union of all other classes. Applying the trained SVMs on
a test data point (xij , yij) yields a vector of prediction scores
(g1, g2, ..., gc)ij , where c is the number of classes. With
the one-against-one technique, each class is trained sepa-
rately against each other class. Applying the trained SVMs
to the test data point yields a vector of prediction scores
(g1, g2, ..., gb)ij where b = c(c − 1)/2.

Previous work [16] has indicated that the one-against-one
approach yields slightly more accurate results for the OCR
data. There are two additional advantages of using this
approach as part of the two-stage SVM/CRF method: it
yields faster SVM training, and it increases the bandwidth
of information passed to the CRF. Although one-against-one



training is conducted c(c − 1)/2 times, each time only the
data points in two classes are involved. SVM training time is
typically superlinear in the number of training examples, so
learning more classifiers each with a smaller training set is a
net win. This improvement in running time is proportional
to the number of alternative labels (c = 26 if labels are
letters in the alphabet), so it is considerable. The increase in
communication bandwidth between the SVMs and the CRF
can potentially improve the accuracy achievable by the CRF.
However, the larger number of inputs for the CRF tends to
increase its training time.

When used for multiclass classification, logistic regression
classifiers produce similar vectors of scores, which can also
be used as inputs to a CRF in a second stage. For LR train-
ing we use another off-the-shelf tool, the MATLABArsenal
package [20]. With logistic regression, each vector of scores
is a non-normalized vector of probabilities. With support
vector machines, each vector is a collection of scores with
numerical values between −12.0 and 5.0.

4. CONDITIONAL RANDOM FIELDS
Given a dataset of input and output sequences (X, Y ), the

training objective for a CRF model is to choose parameters
W (also called weights) that maximize the conditional log
likelihood log P (Y |X;W ), which is

X

(x̄i,ȳi)∈(X,Y )

log
exp

Pd

z=1 wzFz(x̄i, ȳi)
P

ȳ′ exp
Pd

z=1 wzFz(x̄i, ȳ′)
.

Here there are d different fixed feature-functions denoted Fz

for z = 1, . . . , d. There is one trainable parameter wz for
each Fz. Each feature-function Fz is actually a sum over
output sequence positions of a lower-level feature-function
fz. That is, each high-level feature-function Fz has the form

Fz(x̄i, ȳi) =
X

j

fz(xij , yij−1, yij)

where j ranges over the elements of ȳi and yi0 is a special
token to represent the beginning of a sequence.

Although the lower-level functions fz can in general be
real-valued, all the fz functions we use are binary, i.e. they
have value 0 or 1. Each fz function can depend on any
or all of the input sequence, and/or on up to two adjacent
labels in the output sequence ȳi. The reason why only at
most two adjacent output labels can be used is that making
predictions efficiently with a trained CRF model depends on
the Viterbi algorithm to compute

argmax

d
X

z=1

wzFz(x̄i, ȳi)

and this algorithm cannot handle lower-level feature-functions
that involve more than two adjacent elements of ȳi.

We investigate multiple alternative CRF designs that dif-
fer in which feature-functions they use. The alternative
CRFs that we consider use various combinations of the fol-
lowing six types of feature-function, which are all special
cases of the general form above.

Feature-functions of the first type have the form

F (1)
z (x̄i, ȳi) =

X

j

f (1)
z (xij , yij).

There are c · v · p functions of this type, because there are
c possible values for yij , v attributes of xij , and p possible
values for each attribute.

Feature-functions of the second type have the form

F (2)
z (x̄i, ȳi) =

X

j

f (2)
z (xij , yij−1, yij).

The number of functions of this type is c2vp.
When dealing with the OCR dataset, previous work sug-

gests that using features that depend only on output labels
is beneficial. In particular, the best results of [10, Section

3, Table 2] are obtained using F
(1)
z features in addition to

features that use just a single label, and just two adjacent
labels. We represent these feature types as follows:

F (3)
z (x̄i, ȳi) =

X

j

f (3)
z (yij)

and

F (4)
z (x̄i, ȳi) =

X

j

f (4)
z (yij−1, yij).

There are c features of the former type, and c2 of the latter
type.

Our contribution is to introduce features for the two-stage
approach that depend on the data point xij only indirectly,
through prediction scores gz(xij) assigned by SVM classi-
fiers. We formalize this idea as follows:

F (5)
z (x̄i, ȳi) =

X

j

f (5)
z (gz(xij), yij)

and

F (6)
z (x̄i, ȳi) =

X

j

f (6)
z (gz(xij), yij−1, yij)

where gz(xij) is one element of the score vector produced
by the multiclass SVM classifier applied to xij .

Real-valued SVM scores are discretized, in order to allow

the f
(5)
z and f

(6)
z feature-functions to be binary. Specifi-

cally, only the most significant digit is taken into account.
Given a real-valued score gz(xij), the integer value that is
used as input to the feature-function is

g′
z(xij) = ⌈gz(xij)⌉.

Each different integer value, for each of the binary SVM clas-
sifiers, then gives rise to a different binary feature-function.
When logistic regression is used instead of SVMs, scores are
probabilities between 0 and 1, so we use

g′
z(xij) = ⌈10 · gz(xij)⌉

instead.
As is customary with CRFs, we in fact maximize a regu-

larized version of the conditional log likelihood, that is

J(X, Y ) = log P (Y |X;W ) + log P (W )

where log P (W ) = − ‖W‖2

2σ2 . Often the regularization param-
eter σ is set using a validation dataset, but in our experi-
ments it is fixed at σ = 1.

The objective function is maximized by gradient descent.

The gradient (∂/∂w
(l)
z )J(X, Y ) is

X

(x̄,ȳ)∈(X,Y )

F (l)
z (x̄, ȳ) −

X

ȳ′

p(ȳ′|x̄; w(l)
z )F (l)

z (x̄, ȳ′) −
2w

(l)
z

σ



for l ∈ {1, 2, 3, 4, 5, 6}. The gradient, for each weight and
for each training example (x̄, ȳ), is essentially the difference
between the feature-function value for (x̄, ȳ) and the average
value of the feature-function averaging over each ȳ′ with
probability given by the current model p(ȳ′|x̄; w). The CRF
software we use, called CRFSGD, does stochastic gradient
descent [1]. Our experiments confirm that this approach
achieves the same accuracy as a sophisticated quasi-Newton
method (L-BFGS, [14]) but is about 10 times faster.

5. PERFORMANCE CRITERIA
Our hypothesis is that the two-stage combined SVM/CRF

method just described performs as well as more mathemat-
ically and computationally complex methods, in particular
the M3N method. In previous papers, Taskar et al. and
Perez-Cruz et al. measure accuracy as the average error per
character, but Nguyen et al. and Keerthi et al. measure ac-
curacy as the average over words of the average error per
character in each word. In this paper, we report both mea-
surements, since this is the only way to establish a direct
correspondence with previous results. As expected, both
definitions of accuracy yield very similar results.

The first definition is

AccPerChar =
1

N

X

(i,j)

I(ŷij = yij)

where N is the total number of characters in the test set,
yij is the true value of the jth character of the ith word in
the test set, and ŷij is the predicted value of this character.
The second definition is

AccPerWord =
1

M

M
X

i=1

[
1

L(i)

L(i)
X

j=1

I(ŷij = yij)]

where M is the total number of words and L(i) is the total
number of characters in the ith word.

6. EXPERIMENTS
The specific dataset used for experiments here is a subset

containing 6876 words from the OCR dataset of [9]. This
subset was compiled by Ben Taskar, and is precisely the
same dataset used previously [16, 13, 10, 15]. Each character
image in the dataset is of size of 8 · 16 = 128 pixels and is
labeled with one of 26 letters. Each pixel has value 0 or 1.
To the best of our knowledge, this is the preferred dataset for
comparing the performance of classifiers where margin and
sequential based approaches are combined, given previously
published results that study the matter.

In previous work, Taskar et al. used an unusual 10-fold
cross-validation technique where they divided the data into
training sets of about 610 words and test sets of about 5500
words. This approach is unusual because in each fold, a
small set is used for training versus a large set for testing.
In standard cross-validation, in each fold a large set is used
for training and a small set for testing. Nguyen et al. applied
a similar nonstandard technique, but they used about 600
words for training, about 5400 words for testing, about 100
words for validation. The precise cardinalities of the subsets
used in this previous work is not known.

It seems that the reason previous authors used small train-
ing sets is time limitations for training. It has been reported
[13, Section 4] that the M3N method needed to be halted

after 10 iterations of the optimization algorithm for a single
fold. The two-stage approach proposed here is much faster.
Therefore traditional 10-fold cross-validation can be used,
as done also by Perez-Cruz et al. This is desirable because
standard cross-validation gives a better idea of the ultimate
accuracy that can be achieved by different methods, since it
is based on larger training sets.

7. METHODS COMPARED
For the standard unstructured classifiers, logistic regres-

sion and SVMs, each input data point is separate and is one
array of pixels. Both methods are trained in a one-against-
one fashion for solving the multi-class problem, which is the
same as done previously by Taskar [16, Section 3]. For lo-
gistic regression the regularization constant is set to 1. For
soft-margin SVMs, three different kernels are tried: linear,
quadratic and cubic.

Changing the soft-margin penalty parameter C typically
yields significantly different results for different kernels [2].
In our experiments C is set to be 150, 250, and 450, for
the linear, quadratic, and cubic kernels respectively. Other
training parameters are set to the defaults from LIBSVM.
Notice that the CGM experiments also use LIBSVM [15].
Perez-Cruz et al. pick C to be 5, and use a radial basis
function kernel.

Standard CRF classifiers are trained using two different

sets of feature-functions. The first set consists of the F
(1)
z

and F
(2)
z features. Following Keerthi et al., the second set

consists of the F
(1)
z , F

(3)
z and F

(4)
z feature-functions. In the

first set there are 128 · 2 · 26 = 6656 F
(1)
z functions and

128 · 2 · 26 · 26 = 173056 F
(2)
z functions. In the second set

there are 26 F
(3)
z functions and 26 · 26 = 676 F

(4)
z functions

in addition to the F
(1)
z functions.

Two-stage SVM/CRF classifiers are trained using three
different sets of feature-functions. The first set includes
F

(5)
z and F

(6)
z feature-functions, and thus corresponds to

the M3N approach. The second set contains F
(3)
z , F

(4)
z

and F
(5)
z feature-functions, so it is analogous to the set of

CRF feature-functions that performs best in recent experi-
ments [10]. Finally, the third set combines the original CRF

feature-functions F
(1)
z and F

(2)
z with the novel F

(5)
z and F

(6)
z

feature-functions. After discretization, each SVM score is
one of at most 17 unique values. Given the one-against-one
approach, each score vector has length (26 · 25)/2 = 325.

Thus, there are at most 325 · 17 · 26 = 143, 650 F
(5)
z func-

tions, and at most 325·17·26·26 = 3, 734, 900 F
(6)
z functions.

The CRFSGD software only keeps features that occur more
than three times in the training set, so these feature set
cardinalities are upper bounds on the number of features
actually used.

8. ACCURACY RESULTS
Tables 1 and 2 show accuracy results using nonstandard

cross-validation, that is with a small 10% training set in
each fold, while Tables 3 and 4 show results using standard
cross-validation, with a large 90% training set in each fold.
Results are presented as mean accuracy plus/minus stan-
dard deviation over ten folds. Rows in italics are results
taken from previous papers. If a method from a previous
paper does not appear in a table, it is because the previous
paper did not report the corresponding performance metric,



or did not use the corresponding type of cross-validation.
Standard deviations are given where available. Results from
Taskar et al. appear with two places of accuracy only since
they are obtained from a figure in that paper. Finally, Table
5 presents the number of seconds needed to run one fold of
cross validation for each method.

The first unstructured baseline, the logistic regression clas-
sifier, performs better than previously reported. The im-
provement may be due to the fact that we use the one-
against-one approach. In results not shown, when running
logistic regression in one-against-all fashion, our results are
the same as previously found by Taskar.

The SVM classifiers based on LIBSVM produce interest-
ing results compared to previous experiments. They yield
slightly better accuracy than has been reported by Taskar et
al., Nguyen et al., and Perez-Cruz et al. The differences may
be due to the challenge of setting the soft-margin penalty pa-
rameter adequately. In Taskar’s work, a multiclass kernel-
vector machine [4] is used for the linear, quadratic and poly-
nomial kernels. The results from that method closely match
the performance obtained here using LIBSVM.

Nguyen et al. use two types of SVM, called SV Mstruct [8]
and SV Mmulticlass, which are both based on the SV M light

quadratic optimizer [7]. Notice that Nguyen et al. only
show results for SVMs with linear kernels, which perform
worse than SVMs with polynomial kernels in this domain.
SV Mstruct performs better than SV Mmulticlass in their ex-
periments; its accuracy is close to the accuracy we can obtain
using polynomial kernels. Perez-Cruz et al. use the same
LIBSVM package that we do; their results using a radial
basis function kernel are similar to ours using a linear ker-
nel. Clearly, so far polynomial kernels are the best known
for this domain.

Our first baseline method for structured learning, a CRF

classifier with feature types F
(1,2)
z , performs better than

the CRF of Taskar et al. by around 3 percentage points,
and much better than the CRF of Nguyen et al., beating
it by 10 percentage points. This big difference in accuracy
is likely due to differences choosing features for the CRF.
The CRFSGD software lets us efficiently use a large number
of feature-functions, which is known to be beneficial for the
success of this type of classifier.

Our second CRF baseline uses the feature-functions sug-

gested by Keerthi et al., namely the types F
(1,3,4)
z . These

are token-dependent first-order and token-independent first-
order and second-order according to their nomenclature. The
results in this case are similar to previous findings.

Last but not least, the results for the novel two-stage ap-
proach are very promising. Overall this approach does better
than logistic regression, SVM, and CRF methods separately,
and offers accuracy similar to that of the more complex M3N
and CGM methods. Using feature-functions that are token-

dependent (F
(5,6)
z or F

(1,2,5,6)
z ) seems to be important in

obtaining a good two-stage classifier.
Results with the two-stage logistic regression/CRF method

are better than results with either method alone, and almost
as good as the best results obtained with the M3N method.
Although both logistic regression and CRFs are based on
maximizing the conditional log-likelihood of a linear model,
supplying the logistic regression vector of probability esti-
mates to the CRF appears to enhance its ability to solve
the problem. Presumably the vector of scores makes explicit
information that is only implicit in the original data.

Table 1: Small training sets: average accuracy per

character.

Method Accuracy
Taskar’s LR .71
LR .7589 ± .0028
Taskar’s SVM (linear) .71
Taskar’s SVM (quadr.) .80
Taskar’s SVM (cubic) .81
CGM (Graph1) .7290 ± .0009
SVM (linear) .7334 ± .0049
SVM (quadr.) .8257 ± .0034
SVM (cubic) .8204 ± .0029
Taskar’s CRF .76

CRF F
(1,2)
z .7926 ± .0042

CRF F
(1,3,4)
z .7945 ± .0080

LR/CRF F
(3,4,5)
z .8136 ± .0022

LR/CRF F
(5,6)
z .8512 ± .0032

LR/CRF F
(1,2,5,6)
z .8559 ± .0026

Taskar’s M3N (linear) .80

SVM/CRF (linear) F
(3,4,5)
z .8116 ± .0022

SVM/CRF (linear) F
(5,6)
z .8592 ± .0037

SVM/CRF (linear) F
(1,2,5,6)
z .8659 ± .0039

Taskar’s M3N (quadr.) .87
CGM (Graph2) .8750 ± .0011

SVM/CRF (quadr.) F
(3,4,5)
z .8214 ± .0032

SVM/CRF (quadr.) F
(5,6)
z .8825 ± .0025

SVM/CRF (quadr.) F
(1,2,5,6)
z .8819 ± .0061

Taskar’s M3N (cubic) .87

SVM/CRF (cubic) F
(3,4,5)
z .8088 ± .0022

SVM/CRF (cubic) F
(5,6)
z .8685 ± .0025

SVM/CRF (cubic) F
(1,2,5,6)
z .8757 ± .0024

CGM (Graph3) .9420 ± .0005



Table 2: Small training sets: average accuracy per

character per word.

Method Accuracy
LR .7594 ± .0032
Nguyen’s SVM (linear) .7146
Nguyen’s SV Mstruct (linear) .7884
Keerthi’s SV Mstruct (linear) .8076
SVM (linear) .7341 ± .0050
SVM (quadr.) .8263 ± .0039
SVM (cubic) .8210 ± .0033
Nguyen’s CRF .6770
Keerthi’s CRF .8003

CRF F
(1,2)
z .7924 ± .0062

CRF F
(1,3,4)
z .7930 ± .0093

LR/CRF F
(3,4,5)
z .8139 ± .0031

LR/CRF F
(5,6)
z .8519 ± .0042

LR/CRF F
(1,2,5,6)
z .8557 ± .0035

Nguyen’s M3N .7492

SVM/CRF (linear) F
(3,4,5)
z .8107 ± .0030

SVM/CRF (linear) F
(5,6)
z .8589 ± .0044

SVM/CRF (linear) F
(1,2,5,6)
z .8660 ± .0046

SVM/CRF (quadr.) F
(3,4,5)
z .8205 ± .0035

SVM/CRF (quadr.) F
(5,6)
z .8810 ± .0019

SVM/CRF (quadr.) F
(1,2,5,6)
z .8808 ± .0051

SVM/CRF (cubic) F
(3,4,5)
z .8073 ± .0046

SVM/CRF (cubic) F
(5,6)
z .8677 ± .0027

SVM/CRF (cubic) F
(1,2,5,6)
z .8737 ± .0024

Table 3: Large training sets: average accuracy per

character.

Method Accuracy
LR (linear) .8182 ± .0041
CGM (Graph1) .8740 ± .0009
SVM (linear) .8135 ± .0014
SVM (quadr.) .9003 ± .0040
SVM (cubic) .9051 ± .0039

CRF F
(1,2)
z .8379 ± .0051

CRF F
(1,3,4)
z .8562 ± .0089

LR/CRF F
(3,4,5)
z .9037 ± .0037

LR/CRF F
(5,6)
z .9264 ± .0066

LR/CRF F
(1,2,5,6)
z .9214 ± .0062

SVM/CRF (linear) F
(3,4,5)
z .8962 ± .0042

SVM/CRF (linear) F
(5,6)
z .9114 ± .0038

SVM/CRF (linear) F
(1,2,5,6)
z .9082 ± .0056

CGM (Graph2) .9690 ± .0003

SVM/CRF (quadr.) F
(3,4,5)
z .9270 ± .0048

SVM/CRF (quadr.) F
(5,6)
z .9500 ± .0038

SVM/CRF (quadr.) F
(1,2,5,6)
z .9450 ± .0032

SVM/CRF (cubic) F
(3,4,5)
z .9237 ± .0063

SVM/CRF (cubic) F
(5,6)
z .9468 ± .0042

SVM/CRF (cubic) F
(1,2,5,6)
z .9424 ± .0051

CGM (Graph3) .9730 ± .0004

Table 4: Large training sets: average accuracy per

character per word.

Method Accuracy
LR .8194 ± .0042
SVM (linear) .8118 ± .0016
SVM (quadr.) .9018 ± .0038
SVM (cubic) .9066 ± .0044

CRF F
(1,2)
z .8372 ± .0054

CRF F
(1,3,4)
z .8586 ± .0086

LR/CRF F
(3,4,5)
z .9019 ± .0029

LR/CRF F
(5,6)
z .9209 ± .0069

LR/CRF F
(1,2,5,6)
z .9190 ± .0087

SVM/CRF (linear) F
(3,4,5)
z .8924 ± .0057

SVM/CRF (linear) F
(5,6)
z .9066 ± .0042

SVM/CRF (linear) F
(1,2,5,6)
z .9034 ± .0073

SVM/CRF (quadr.) F
(3,4,5)
z .9205 ± ,0037

SVM/CRF (quadr.) F
(5,6)
z .9485 ± .0037

SVM/CRF (quadr.) F
(1,2,5,6)
z .9435 ± .0069

SVM/CRF (cubic) F
(3,4,5)
z .9229 ± .0050

SVM/CRF (cubic) F
(5,6)
z .9463 ± .0015

SVM/CRF (cubic) F
(1,2,5,6)
z .9416 ± .0060

The performance of the two-stage SVM/CRF method is
good. Its accuracy is comparable to that of the M3N method
when using features based on the vector of scores and on

adjacent labels (F
(5,6)
z ). The two-stage SVM/CRF also per-

forms as well as the CGM method with cliques of size 2,
which is the fair comparison. The CGM method with
cliques of size 3 obtains the best overall results. This make
sense because there is definitely useful information in triples
of letters over and above the information in pairs of letters.
For example, while “st” and “th” are both common letter
pairs in English, the triplet “sth” is rare.

Tables 3 and 4 show that using traditional cross-validation,
with a large training set in each fold, leads to significantly
improved accuracy. With this setup, all methods do 5 to 10
percentage points better than with a smaller training set.
In summary, Tables 1 to 4 together show that the two-stage
approach, with information from either logistic regression or
SVMs provided as input to a CRF, yields the same accuracy
as mathematically more complex methods.

9. TIMING RESULTS
Previous studies do not mention the time required to con-

duct experiments. Table 5 shows the number of seconds
needed to run one fold of cross-validation for each of our
methods, with small and with big training sets. The en-
tries in the table for LR/CRF and SVM/CRF are the time
needed by the CRF stage for these approaches. Thus, the
total time for the SVM/CRF two-stage approach is the sum
of the SVM and SVM/CRF entries. The computers used for
Table 5 are quite standard and inexpensive (Redhat Linux
EL4, dual P4 3.2GHz, single CPU used, 2GB memory).

As expected, logistic regression training is fastest, while
SVM training is slowest. Given that the larger training set
is 9 times bigger, a ratio of running times of 9 or less can be
considered reasonable. The observed ratio is reasonable for
all methods, except for SVM training with a linear kernel.



Table 5: Time in seconds for one fold of training and

testing.

Method Small Large
LR (linear) 195 403
SVM (linear) 1540 62524
SVM (quadr.) 3184 9520
SVM (cubic) 2780 13770

CRF F
(1,2)
z 447 2308

CRF F
(1,3,4)
z 123 2352

LR/CRF F
(3,4,5)
z 272 623

LR/CRF F
(5,6)
z 1296 6591

LR/CRF F
(1,2,5,6)
z 1802 9318

SVM/CRF (linear) F
(3,4,5)
z 267 692

SVM/CRF (linear) F
(5,6)
z 1352 7550

SVM/CRF (linear) F
(1,2,5,6)
z 1313 10319

SVM/CRF (quadr.) F
(3,4,5)
z 335 592

SVM/CRF (quadr.) F
(5,6)
z 1267 6375

SVM/CRF (quadr.) F
(1,2,5,6)
z 2155 9064

SVM/CRF (cubic) F
(3,4,5)
z 259 651

SVM/CRF (cubic) F
(5,6)
z 1228 6279

SVM/CRF (cubic) F
(1,2,5,6)
z 1718 8930

It is an unfortunate drawback of SVMs that training time
often increases more than linearly as the number of training
examples increases. This phenomenon is observed here for
SVM training with the linear kernel. In future work, we plan
to use one of the more recent SVM implementations that
tend to be much faster because they use stochastic gradient
descent.

10. CONCLUSION
Structured learning is a new research area in machine

learning that has not yet seen wide usage in data mining or
knowledge discovery. Within the field of structured learn-
ing, the most studied task has been how to learn a classifier
that maps a sequence of inputs into a sequence of output
labels. Above, we have described a practical new approach
to training a sequence classifier. Our experiments show that
the proposed method achieves high accuracy, and is faster
and more scalable than competitors.

The proposed method combines support vector machines
and conditional random fields in a two-stage approach. It
achieves high accuracy because of the maximum-margin na-
ture of SVMs, and because CRFs can model correlations
between neighboring output labels. The SVM stage of the
new method is scalable because the input for training each
SVM is only a small subset of the entire training data. The
CRF stage of the new method is scalable because the CRF
uses only a limited number of features, namely the outputs
of the SVMs trained in the first stage.

We report the results of detailed experiments on the task
of recognizing handwritten words. Our results provide a lot
of detail concerning just one dataset, rather than being less
detailed but involving multiple datasets. The reason for this
choice is partly that a previous comparison paper in this area
[13] has been controversial. The results of this particular
previous paper show CRFs and the M3N method performing
much worse than in the experience of other researchers. The

reason for some of the poor results in [13] was uncovered
by [10]. Now, we have performed careful and systematic
experiments whose results, reported here, supersede those
of [13], and will resolve the controversy, we hope.

We feel confident that the good performance obtained
on the handwritten word recognition problem by the two-
stage method will carry over to other sequential prediction
problems. The reason is the orthogonal strengths of the
two phases of the two-stage method. In general, a margin-
based approach can extract the most important information
about individual data points, while a sequential approach
can augment the learning process by exposing the sequen-
tially structured nature of the problem. The results above
show that the two-stage SVM/CRF method yields greater
accuracy than its component individual methods, which are
the current practical state of the art. The two-stage method
matches closely the accuracy achievable with the M3N and
CGM methods, which are more complex mathematically and
computationally. For practical purposes, what is most im-
portant is that the good SVM/CRF results are obtained
using robust off-the-shelf software. This fact means that
the proposed SVM/CRF combination is usable immediately
by other researchers and practitioners in their application
areas.
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