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What is the goal of maintenance?

Preventive maintenance is a small cost now intended
to avoid a large cost later.

Goal: Minimize total short-term + long-term cost.
I Intrinsically probabilistic: Reduce expected later cost.

From reactive maintenance to proactive maintenance?

From scheduled maintenance to adaptive maintenance?

From adaptive maintenance to predictive maintenance?
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More concretely

Every time step:
I you have many measurements of a machine;
I you can adjust settings and replace parts;
I you get a short-term reward.

The goal is to learn a strategy that maximizes the total
long-term reward.

Cost-sensitive learning maximizes short-term reward.
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Which abstract research areas are relevant?
From machine learning: reinforcement learning (RL).

Operations research: approximate dynamic programming (ADP).

Most important issue: Trade off cost now for reward later.

Second issue: Exploration versus exploitation.
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What are the goals of business?

The goals of maintenance are the same.

Maximize revenue.

Minimize expense.

Minimize risk.
I Reduce probability of lost revenue, e.g. canceled flight.
I Reduce probability of high expense, e.g. plane crash.
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Lessons from data mining

Predictions are useful only if they lead to better decisions.

Costs and benefits and probabilities are important.

Must take into account follow-on effects.

Must take into account ability to influence.
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Reinforcement learning (RL) framework

An agent acts in an environment.

Goal: Learn which action a is best in each state s.

Q(s, a) is the total reward achieved by
I starting in state s,
I performing action a, then
I performing the optimal action in each later state.
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The bilinear idea

States s and actions a are real-valued vectors.

Recommended action is

a∗ = argmaxa Q(s, a)

Write Q(s, a) = sTWa where W is a matrix.

Recommended action is

a∗ = argmaxa (s
TW ) · a = argmaxa x · a

Action selection is maximization is linear programming.
I Linear constraints may be bounds for sub-actions of a.
I Or, budget limits on costs of sub-actions.
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Why is the bilinear approach useful?

Given a∗ = argmaxa (s
TW )a

the chosen action a∗ depends on the present state s only.

But, the matrix W can be learned.

So, W can emphasize aspects of a and s that are predictive of
long-term reward.

W has a weight for each component of a interacting with each
component of s.
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Alternative representations

Tabular: separate Q value for each discrete s, a pair.

Basis functions: Q(s, a) = w · [φ1(s, a), · · · , φp(s, a)].

Neural networks

Shared difficulty: How to do the maximization efficiently?

a∗ = argmaxa Q(s, a)
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Batch RL

Also called RL from historical data.

Extension of cost-sensitive supervised learning.

A single training example is a tuple 〈s, a, r, s′〉 where
I s is a state,
I a is the action taken in that state,
I r is the observed immediate reward,
I s′ is the state observed to happen next.

An episode is a sequence of linked training examples s′t = st+1.

The learner does not control or know the policy π
used to select actions a = π(s).
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Fitted Q iteration

Algorithm:

Define Q0(s, a) = 0 for all s and a.
For horizon h = 0, 1, 2, . . .

For each example 〈s, a, r, s′〉
let label v = r + γmaxbQh(s

′, b)
Train Qh+1 with labeled tuples 〈s, a, v〉

h is the horizon, γ is the discount factor.

Proposed in parallel by [Murphy, 2005] and [Ernst et al., 2005].
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Comparison with Q-learning

The update rule of standard Q learning is

Q(s, a) := (1− α)Q(s, a) + α[r + γmax
b
Q(s′, b)].

Drawbacks:
I Each example 〈s, a, r, s′〉 is discarded after being used once.
I How to choose the learning rate α?
I When Q(s, a) is updated for one pair 〈s, a〉 then
Q(s, a) for different s, a changes unpredictably.

Q iteration fits all Q(s, a) values simultaneously, so the
regression algorithm can minimize error on all values.
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Sample selection bias

The probability distribution of training examples 〈s, a〉 is not
the distribution of optimal examples 〈s, π∗(s)〉.
But Q iteration is discriminative, not generative.

I It does not model the distribution of 〈s, a〉.
I It only models how the Q value depends on 〈s, a〉.
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Optimism bias

Remember that the training label is

v = r + γmax
b
Qh(s

′, b)

The maximization tends to choose an action b that has upward
error in Qh(s

′, b).

Future work: use the double Q learning idea [van Hasselt, 2010]
to reduce the optimism bias.
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Learning the matrix W

Consider a training set of examples 〈s, a, v〉.
Suppose W ∈ Rm×n. Then

sTWa =
m∑
i=1

n∑
j=1

(W ◦ saT )ij = vec(W ) · vec(saT ).

Algorithm:
I Convert each training triple 〈s, a, v〉 into 〈vec(saT ), v〉.
I Learn vec(W ) by standard linear regression.

Each entry of the matrix saT is the interaction of
a state feature and an action feature.
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Practical variations

Leave out interaction terms of saT known to be unpredictive.

Include bias (intercept) terms for states and actions.

Can use stochastic gradient descent (SGD) instead of an exact
solution.

Use regularization to reduce overfitting.

If s and a are short, then W may not be expressive enough.
I Expand the s or a vectors with nonlinear transformations.
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Mountain car domain

Perhaps the best-known test case for reinforcement learning
[Sutton and Barto, 1998].

2D state: position x and velocity v.

1D action: acceleration a.
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Mountain car notes

Use 6D expanded state vector〈x, v, x2, xv, v2, x3〉
and 2D action vector 〈1, a〉

I The matrix W has 12 trainable parameters.

Acceleration a is continuous between −0.001 and +0.001,
but linear programming makes it always extremal.

Training states and actions are chosen uniformly at random.

Discount factor γ = 0.9.
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Results

Test episode starts at the bottom of the valley with velocity 0,
and terminates at the goal or after 500 steps.

Success as function of training set size:

# training tuples mean test episode length
100 285.6
200 317.8
400 88.1
800 88.6

1600 87.4
3200 87.2
6400 87.3

12800 85.9
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Discussion

Q iteration with a bilinear Q function learns good control with
just 400 training examples 〈s, a, r, s′〉.

I Orders of magnitude faster than variants of Q learning
[Smart and Kaelbling, 2000].

I Faster than Q iteration with a neural network [Riedmiller, 2005].
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Inventory management

An agent has stocks of many products

At each time step, it sees random demand and supply vectors.

The agent must choose how to satisfy each demand,
subject to rules about substitutability and perishability.

Example: Managing the stocks of a blood bank.
I 8 blood types, 3 ages, 27 allowed substitutions.
I 24D state vector, 81D action vector.
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Immediate reward functions

Objectives to be maximized, short-term and long-term, are
subject to debate.

Alternative immediate benefits of different supply choices:

[Yu, 2007] new
give exact blood type 50 0
substitute O- blood 60 0
substitute other type 45 0
fail to meet demand 0 -60
discard blood -20 0
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Success of alternative learned policies

Measure of long-term success: low frequency of
severe (over 10%) failure to meet demand for one blood type.

average frequency of
unmet severe unmet

A+ demand A+ demand
greedy policy 7.3% 46%
policy of [Yu, 2007] 7.9% 30%
bilinear method (i) 18.4% 29%
bilinear method (ii) 7.55% 12%
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What’s next?

For real applications, we need data!

In maintenance: 〈s, a, r, s′〉 tuples where
I s is the state of the locomotive
I a is the set of maintenance actions taken, possibly empty
I r is the short-term loss or gain
I s′ is the state of the locomotive the next week.

A state is a vector of measurements,
e.g. mileage, temperature, oil pressure, oil age.
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Possible issues

High-cost outcomes are too rare in training data.

There are too many different model types.

Observed tuples cover too little of the state/action space.

A commonsense or greedy policy is already close to optimal.

Good policies are highly nonlinear.
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