A vision for
reinforcement learning
and
predictive maintenance

Charles Elkan
University of California, San Diego

August 21, 2011

What is the goal of maintenance?

@ Preventive maintenance is a small cost now intended
to avoid a large cost later.
@ Goal: Minimize total short-term + long-term cost.

» Intrinsically probabilistic: Reduce expected later cost.

@ From reactive maintenance to proactive maintenance?

From scheduled maintenance to adaptive maintenance?

From adaptive maintenance to predictive maintenance?

N

29

More concretely

@ Every time step:

» you have many measurements of a machine;
» you can adjust settings and replace parts;
» you get a short-term reward.

@ The goal is to learn a strategy that maximizes the total
long-term reward.

o Cost-sensitive learning maximizes short-term reward.

3/29

Which abstract research areas are relevant?

@ From machine learning: reinforcement learning (RL).

@ Operations research: approximate dynamic programming (ADP).

Goal Position —»

-+—— [nelastic Wall

@ Most important issue: Trade off cost now for reward later.

@ Second issue: Exploration versus exploitation.

29

What are the goals of business?

@ The goals of maintenance are the same.

@ Maximize revenue.
@ Minimize expense.

@ Minimize risk.

» Reduce probability of lost revenue, e.g. canceled flight.
» Reduce probability of high expense, e.g. plane crash.

Lessons from data mining

@ Predictions are useful only if they lead to better decisions.

Costs and benefits and probabilities are important.

@ Must take into account follow-on effects.

Must take into account ability to influence.

6/29

Reinforcement learning (RL) framework

@ An agent acts in an environment.
@ Goal: Learn which action a is best in each state s.
@ ()(s,a) is the total reward achieved by

» starting in state s,
» performing action a, then

» performing the optimal action in each later state.

29

The bilinear idea

@ States s and actions a are real-valued vectors.

@ Recommended action is
a* = argmax, Q(s,a)
e Write Q(s,a) = s Wa where I is a matrix.

@ Recommended action is

a* = argmax, (s'W)-a = argmax, = - a

Action selection is maximization is linear programming.

» Linear constraints may be bounds for sub-actions of a.
» Or, budget limits on costs of sub-actions.

29

Why is the bilinear approach useful?

e Given a* = argmax, (s"W)a
the chosen action a* depends on the present state s only.

@ But, the matrix W can be learned.

@ So, W can emphasize aspects of a and s that are predictive of
long-term reward.

@ W has a weight for each component of a interacting with each
component of s.

29

Alternative representations

@ Tabular: separate () value for each discrete s, a pair.
@ Basis functions: Q(s,a) =w - [¢1(s,a),-- -, dp(s,a)l.

@ Neural networks

@ Shared difficulty: How to do the maximization efficiently?

a* = argmax, Q(s,a)

10/29

Batch RL

@ Also called RL from historical data.
@ Extension of cost-sensitive supervised learning.

@ A single training example is a tuple (s, a,r, s’) where
> S is a state,
» a is the action taken in that state,

r is the observed immediate reward,

» s is the state observed to happen next.

v

@ An episode is a sequence of linked training examples s} = s;11.

@ The learner does not control or know the policy 7
used to select actions a = 7 (s).

11/29

Fitted Q iteration

o Algorithm:

Define Qy(s,a) =0 for all s and a.
For horizon h =0,1,2,...
For each example (s,a,r,s")
let label v = r + v max;, Qx(s',b)
Train Q11 with labeled tuples (s, a,v)

@ h is the horizon, ~v is the discount factor.
@ Proposed in parallel by [Murphy, 2005] and [Ernst et al., 2005].

12/29

Comparison with Q-learning

@ The update rule of standard Q learning is
Q(s.a) = (1= a)Q(s, @) + afr + 7 max Q(s',b)].

o Drawbacks:

» Each example (s,a,r,s’) is discarded after being used once.

» How to choose the learning rate a?
» When Q(s,a) is updated for one pair (s, a) then
Q(s,a) for different s, a changes unpredictably.

e Q iteration fits all (s, a) values simultaneously, so the
regression algorithm can minimize error on all values.

13 /29

Sample selection bias

@ The probability distribution of training examples (s, a) is not
the distribution of optimal examples (s, 7*(s)).

e But Q iteration is discriminative, not generative.

» It does not model the distribution of (s, a).
» It only models how the Q value depends on (s, a).

14 /29

Optimism bias

@ Remember that the training label is
v =Ty max Qn(s',b)

@ The maximization tends to choose an action b that has upward
error in Qn(s',b).

e Future work: use the double Q learning idea [van Hasselt, 2010]
to reduce the optimism bias.

15/29

Learning the matrix W/

o Consider a training set of examples (s, a,v).

@ Suppose W € R™ " Then

s"Wa = Z Z(W osa’);; = vec(W) - vec(sa”).

i=1 j=1

@ Algorithm:
» Convert each training triple (s, a,v) into (vec(sa®l),v).
» Learn vec(W) by standard linear regression.

@ Each entry of the matrix sa’ is the interaction of
a state feature and an action feature.

16

29

Practical variations

Leave out interaction terms of sa’ known to be unpredictive.

Include bias (intercept) terms for states and actions.

@ Can use stochastic gradient descent (SGD) instead of an exact
solution.

Use regularization to reduce overfitting.

o If s and a are short, then W may not be expressive enough.
» Expand the s or a vectors with nonlinear transformations.

17 /29

Mountain car domain

@ Perhaps the best-known test case for reinforcement learning
[Sutton and Barto, 1998].

Goal Position —»

+— [nelastic Wall

@ 2D state: position = and velocity v.

@ 1D action: acceleration a.

18 /29

Mountain car notes

@ Use 6D expanded state vector(z, v, 2, zv, v, x3)

and 2D action vector (1, a)
» The matrix W has 12 trainable parameters.

@ Acceleration a is continuous between —0.001 and +0.001,
but linear programming makes it always extremal.

@ Training states and actions are chosen uniformly at random.

@ Discount factor v = 0.9.

19/29

Results

@ Test episode starts at the bottom of the valley with velocity 0,
and terminates at the goal or after 500 steps.

@ Success as function of training set size:

training tuples

mean test episode length

100
200
400
800
1600
3200
6400
12800

285.6
317.8
88.1
88.6
87.4
87.2
87.3
85.9

20/29

Discussion

@ Q iteration with a bilinear Q function learns good control with
just 400 training examples (s, a, 7, s').
» Orders of magnitude faster than variants of Q learning
[Smart and Kaelbling, 2000].
» Faster than Q iteration with a neural network [Riedmiller, 2005].

21/29

Inventory management

@ An agent has stocks of many products

@ At each time step, it sees random demand and supply vectors.

@ The agent must choose how to satisfy each demand,
subject to rules about substitutability and perishability.

@ Example: Managing the stocks of a blood bank.

» 8 blood types, 3 ages, 27 allowed substitutions.
» 24D state vector, 81D action vector.

Immediate reward functions

@ Objectives to be maximized, short-term and long-term, are

subject to debate.

o Alternative immediate benefits of different supply choices:

[Yu, 2007] | new
give exact blood type 50 0
substitute O- blood 60 0
substitute other type 45 0
fail to meet demand 0| -60
discard blood -20 0

23 /29

Success of alternative learned policies

@ Measure of long-term success: low frequency of
severe (over 10%) failure to meet demand for one blood type.

average | frequency of
unmet | severe unmet
A+ demand | A+ demand

greedy policy 7.3% 46%
policy of [Yu, 2007] 7.9% 30%
bilinear method (i) 18.4% 29%

bilinear method (ii) 7.55% 12%

24 /29

What's next?

e For real applications, we need data!

@ In maintenance: (s, a,r,s’) tuples where

» s is the state of the locomotive
» a is the set of maintenance actions taken, possibly empty

» 7 is the short-term loss or gain
» s’ is the state of the locomotive the next week.

@ A state is a vector of measurements,
e.g. mileage, temperature, oil pressure, oil age.

25 /29

Possible issues

High-cost outcomes are too rare in training data.
@ There are too many different model types.

Observed tuples cover too little of the state/action space.

@ A commonsense or greedy policy is already close to optimal.

Good policies are highly nonlinear.

26 /29

References |

[A Ernst, D., Geurts, P., and Wehenkel, L. (2005).
Tree-based batch mode reinforcement learning.
Journal of Machine Learning Research, 6(1):503-556.

[8 Murphy, S. A. (2005).
A generalization error for Q-learning.

Journal of Machine Learning Research, 6:1073-1097.

8 Riedmiller, M. (2005).

Neural fitted Q iteration—first experiences with a data efficient neural
reinforcement learning method.

In Proceedings of the 16th European Conference on Machine Learning
(ECML), pages 317-328.

27 /29

References ||

[@ Smart, W. D. and Kaelbling, L. P. (2000).
Practical reinforcement learning in continuous spaces.

In Proceedings of the 17th International Conference on Machine
Learning (ICML), pages 903-910.

[§ Sutton, R. S. and Barto, A. G. (1998).
Reinforcement learning: An introduction.

MIT Press.

[§ van Hasselt, H. P. (2010).
Double Q-learning.
Advances in Neural Information Processing Systems (NIPS), 23.

28/29

References |1

[Yu, V. (2007).
Approximate dynamic programming for blood inventory management.

Honors thesis, Princeton University.

29 /29

